
A Model-Based Approach to Supporting Configuration
in Ubiquitous Systems

Tony McBryan1, Phil Gray1

1 Department of Computing Science,

University of Glasgow, Lilybank Gardens, Glasgow, G12 8QQ, UK
{mcbryan, pdg}@dcs.gla.ac.uk

Abstract. This paper presents an approach for representing, and providing
computer support for, the configuration of interactive systems, particularly
ubiquitous systems, that offers a flexible method for combining a wide range of
configuration techniques. There are many existing techniques offering dynamic
adaptation, ranging from fully automatic through context-sensitive to user-
driven. We propose a model that unifies all of these techniques and offers a rich
choice of ways of combining them, based on the concept of configuration
possibilities, evaluation functions applicable to sets of these possibilities and
approaches for parameterising the functions and combining the results. We
present a concept demonstrator implementation of the model, designed for
home care systems, and describe a set of use cases based on this prototype
implementation that illustrate the power and flexibility of the approach.

Keywords: ubiquitous systems, dynamic configuration, model, evaluation

1 Introduction

Ubiquitous systems typically use large numbers of sensors to detect the state of the
environment of use [1] and offer multiple different devices and methods of interacting
with users [2]. The multiplicity and volatility of these contexts of use, including the
presence or absence of devices and resources, especially when the users or devices are
mobile, leads to a demand for systems that are capable of extensive and regular
reconfiguration in regards to choice of interactive techniques and components. In
addition, as the opportunities for reconfiguration grow, so does the likelihood that
users will attempt to appropriate their systems to exploit this flexibility to provide
new application functionality in new ways.

This situation has led to the development of software architectures and
technologies that enable this dynamic reconfiguration to take place and also to the
development of a variety of techniques for carrying out this configuration. The latter
range from conventional preference settings through interactive configuration
interfaces to autonomic context-sensitive systems that adjust the form of interaction to
the current state of the user and setting; perhaps based on sophisticated policies or via
matching to previous similar patterns of use. Each of these techniques is useful in
certain circumstances and, indeed, combinations of the techniques are also possible.

From both a design and implementation point of view, it would be desirable to
treat all of these techniques in a unified way, as variants of a single coherent model of
configuration, so that they can be more easily compared, transformed, combined,
refined and swopped. This paper presents such a model, based on the notions of
configuration possibilities and evaluation functions over such possibilities. We shall
argue that this model offers a rich design space for a range of configurations, making
it easier to combine techniques and to develop new variants of existing ones.

In Section 2 we briefly review related work on the configuration of user interfaces
to identify the techniques we wish to unify. Section 3 presents our model-based
approach to configuration followed by Section 4 that describes a proof of concept
based on a set of configuration examples in the home care domain, implemented
using a software framework we have built. Section 5 offers our conclusions and an
indication of future work.

2 Related Work

Many techniques for choosing an appropriate interaction technique or device have
been developed in the context of ubiquitous systems design. In this section we
summarise some of the most popular approaches with some exemplar
implementations. This section is intended to discuss the use of the system from the
perspective of a typical user and does not compare architectural features of particular
approaches.

Thevenin and Coutaz [3] present the notion of plasticity that identifies equivalence
of usability as the primary criterion for assessing interaction adaptation. Their
implementation demonstrates automatic and semi-automatic generation of user
interfaces exhibiting plasticity.

Manual configuration is frequently used to allow the user complete control over a
configuration. Using a manual approach it is necessary for the user to specifically
make a modification to the configuration when circumstances change. This
configuration can be stored in a configuration file, possibly expressed in an
appropriate specification language [4] but often commonly manipulated by an
interactive editor such as Jigsaw [5] which uses a “jigsaw pieces” metaphor to enable
a user to see the interconnection of devices and to manipulate them to meet changes in
demand. Another similar approach is Speakeasy [6] that allows direct connections, as
in Jigsaw, but also employs a task based approach where templates are “filled out”
with the appropriate devices by the user.

Context sensitive systems are systems that choose the interaction techniques to use
based on data gathered from the user’s environment – their context. Schmidt [7]
describes a hierarchical model of context which includes the user model(s), social
environment, task model, environmental conditions and physical infrastructure from
which adaptations are derived.

 Another approach is to define a “utility function” that automatically decides which
interaction styles or devices should be used to communicate with the user. These
utility functions may then make use of any contextual data gathered as part of the
function. This is the approach taken by Sousa and Garlan [8] where a utility function

is used to express the combination of the user’s preferences, the suppliers preferences
and quality of service preferences. The task of making a choice is then an effort to
maximise this utility function. This approach is also found in Supple [9] which
performs user interface adaptation according to a utility rule based on pre-assigned
weights for screen components.

Rule based reasoning can be used to select appropriate interaction techniques
automatically based on rules or policies manually set by the user. In the work of
Connelly and Khalil [10] this takes the form of policies for devices and interaction
spaces being combined to determine the interaction methods that are allowed to be
used. This approach is also a clear influence on the current work being undertaken by
W3C Ubiquitous Web Applications [11] where content and presentation are selected
based on selection rules based on the characteristics of the device(s) currently in use.

Another approach used by the Comet (Context of use Mouldable widgET)
architecture [12] is to employ introspective components that publish quality of use
guarantees for a set of contexts of use. Adaptations are triggered by policies; at which
point the current context of use will be derived and compared against the quality of
use guarantees published by available Comets to make a decision on which
component should be used. Each component must therefore be able to identify its
own quality of use statistics in each of the contexts of use it is possible to appear in.

It is also possible to use “recommender” or collaborative filtering techniques to
make the decision. A recommender algorithm may use a collection of preference or
usage histories and compare them to similar information, either from the same user or
from multiple users. This approach is used in the Domino system [13] to determine
which components a user has access to using a history of frequently used components
from other users.

A final approach to be considered is employed by the ISATINE framework [14]
based on the USIXML mark up language. ISATINE is a multi-agent architecture that
decomposes the adaptation of a user interface into steps that can be achieved by the
user, the system and by other external stakeholders. The user can take control of the
adaptation engine by explicitly selecting which adaptation rule to prefer from an
adaptation rule pool in order to express the goal of the adaptation more explicitly but
does not provide a mechanism to utilise multiple configuration techniques at run-time.

All of these techniques are useful in certain circumstances, but currently no system
provides a unified method of offering them all, both separately and in combination.
Our approach, described below, is intended to provide this unification.

3 Unified Model-Based Approach

Our approach to the configuration of interactive systems is to represent each of the
techniques discussed in Section 2 within a unified model. This approach allows
designers to provide many configuration techniques in parallel or in combination and
are potentially modifiable at run-time and capable of being driven by user interaction.

3.1 An Application Context

Our work has been carried out as part of MATCH1, a multi-university research project
devoted to investigating infrastructure support for dynamically configurable,
multimodal ubiquitous home care systems. For that reason, we illustrate our approach
by the use of a running example taken from this domain. In this example Fred and
Shirley are an older couple with chronic conditions that could be ameliorated by
appropriate use of ubiquitous home care technology. In particular, Shirley has
worsening arthritis and is no longer able to move around the house easily; she relies
on Fred for tasks such as controlling the heating system, closing the curtains and for
most household chores. Fred recently had a stroke. He is still physically fit but has
become more and more forgetful since the stroke and requires continual reminders for
when to take his medication. He is also hard of hearing.

3.2 A Unified Model of Configuration

The model we present here is designed around the concept of evaluation functions
that are responsible for both identifying opportunities for change as well as reflection
on the alternatives available to make a change.

To do this we introduce concept of a configuration possibility (hereafter,
‘possibility’, for short) which is an encapsulated solution (consisting of interaction
components, techniques and devices) that can offer interaction between a system task
and a user. A possibility includes any software components needed to perform data
transformations related to the interaction as well as references to the components that
will be responsible for rendering the interaction via physical devices.

Fig. 1. A typical configuration possibility

Consider a medication reminder for Fred; one of the possibilities, as shown in Figure
1, might be to deliver the reminder via a speech synthesis system. The possibility
would include the component representing the physical device (the speaker), the
component representing the speech synthesis system (responsible for converting text
to speech) and the component that converts a medication reminder into the
appropriate textual alert.

To construct a set of possibilities it is possible to use a service discovery system
that models relationships between components to construct a directed graph of the
available components suitably configured. By identifying interactive components it is

1 http://www.match-project.org.uk

possible to traverse the graph with the goal of constructing a set of possibilities that
can be used with the application task.

Fig. 2. A typical graph.

Figure 2 shows a typical, albeit simple, graph that may be constructed from the data in
a service discovery system. In this graph we can deduce many different possibilities
(such the speaker using polite text and a female voice); we have shown a speaker that
requires the choice of two of the intermediate components as well as a GUI that does
not require intermediate components. By starting from the reminder task as the root
node we can perform as simple breadth first traversal to determine each possibility in
the graph.

More complicated graphs including cycles will require a more robust traversal
algorithm to determine every possibility. Some unanswered questions currently
remain over the likelihood of graph explosion, and what impact this may have on
performance, given unrestricted, large numbers of possibilities. This will be a subject
of future research and is not addressed here; to date we have not experienced
performance problems with graphs of moderate complexity (~70 nodes, ~120 edges).

Once the graph has been built and traversed to create a set of possibilities we can
begin to analyse the appropriateness of each possibility. To do this we evaluate each
possibility by using one, or many, evaluation functions.

The purpose of an evaluation function is to rank, filter or otherwise analyse these
possibilities such that a configuration decision can be made. Evaluation functions can
have a many-to-many relationship with task assignments; there may be many
evaluation functions used to review the possibilities for the medication reminder task
while a single evaluation function may be used simultaneously for many tasks.

Figure 3 shows one possible result from the application of two evaluation functions
(a ranking and an approval function) to some of the possibilities we could have
generated in the previous step. The Usage History Ranking is an example of an
evaluation function which uses the recommender approach to rank possibilities while
the Doctor’s Approval function allows or disallows possibilities; here the Male
Speech synthesis is disallowed as it sounds too similar to Fred and can confuse
Shirley.

Fig. 3. Example results from the application of a ranking evaluation function and an
approval evaluation function.

To allow multiple evaluation functions to be used with a single task it is possible to

use evaluation functions to combine results via function compositions (in effect a
meta-evaluation function). This allows the results of multiple approaches
(implemented as evaluation functions) to be combined together into a single function
that can be mapped onto the task.

Fred’s

Preferences

Usage

History

Analysis

Doctor’s

Approval

Additive Combination

Meta-Function
A 1

B 2

C 3

A 3

B 1

C 2

Approval Combination

Meta-Function

Lowest Rank Meta-

Function
A

A 4

C 5

A √

B X

C √

A 4

B 3

C 5

Fig. 4. Example results from the combination of three evaluation functions.

This approach would allow, for example, the selection of an interaction technique
for the notification task to be based on a combination of context sensitive, manual
and/or automatic reasoning. A typical example of this might be that the users’
preferences are weighted against the results of a collaborative filtering system
receiving input from multiple users, based on the success of similar tasks.

Figure 4 shows one possible method by which three evaluation functions (2
ranking and 1 approval) might be combined together in this approach to determine
which possibility to use from the three available possibilities shown in Figure 3.

Two of the evaluation functions are implemented as ranking functions which
“score” each of the possibilities. The individually ranked results of both ranking
functions are first combined together using an additive meta-function before the
results of this are combined with the results of the doctor’s approval evaluation
function. The result of this is that possibility ‘A’ was the possibility with the lowest
combined rank that had also been approved and was therefore selected.

The meta-functions can be replaced or changed at will to provide different results,
for example the choice of meta-function to combine the results of the two ranking
functions could have instead been multiplicative in nature which may have had a
different result.

A useful result of this is that the system has inbuilt support for multiple, conflicting
stakeholders using the system. Each stakeholder in the task can have their own
evaluation function(s) modelled after their views or requirements – the results of
which can then be combined within the same framework. This allows the natural
specification of how conflicts can be solved by changing the meta-evaluation function
being used to combine the results.

The result of an evaluation function (or set of evaluation functions) should be the
set of possibilities to use for interaction; as shown in Figure 4. In this case, a single
technique has been selected, although functions might also enable multiple concurrent
techniques to be used.

Evaluation functions are a flexible method of reasoning about the available
possibilities and can be applied at different levels of granularity; some evaluation
functions may consider an entire possibility while others may only operate over
selected portions of a possibility; for example an evaluation function may only
consider the choice of physical output device in its reasoning. Evaluation functions
may utilise external sources of data such as context or usage history and can be
parameterisable such that a single evaluation function may be reused in multiple
situations (such as gathering of user preferences from multiple stakeholders) or even
called recursively.

3.3 Interactive Evaluation Functions

Evaluation functions can, and often must, be interactive components themselves.
Users can (i) provide inputs prior to function creation or use (e.g., preference files
read by a function), (ii) interact with an evaluation function directly as part of the
evaluation process, (iii) indicate a changed opinion thus triggering a re-evaluation or
(iv) interact implicitly, in which some evaluation functions gather usage information

or indications of the user’s satisfaction over time to determine how to rank or filter
possibilities.

Similarly, a meta-evaluation function can be interactive. In the example, in Figure
4, the “lowest rank” meta-evaluation function could be replaced with a function that
presents the two remaining choices to the user along with the current rankings and
asks them to choose which should be used.

The process of allowing for user interaction as a part of this process means that an
evaluation process may need to be deferred until the user has responded. In this case a
provisional decision may have to be made in the meantime to provide a service until
the user has had sufficient time to complete their interaction.

Since we can combine approaches systematically, we can have a combination of
automatic and manually-controlled evaluation function in use at the same time. We
may also have policy-based evaluation functions mixed in – we may even have
multiple different policy specification languages being used at any one time.

We envisage two primary modes of interaction: (i) one-off or sporadic interaction
where the user specifies their needs and wants in advance and rarely changes them,
and (ii) continuous interaction where the user frequently interacts with the system, or
plans to interact with the system, to assist in the choice of suitable interaction
techniques.

In addition, we believe that evaluation functions (and meta-evaluation functions)
may be required to provide explanatory information or reviews on the current state of
the system or on previous choices they have made so far; similar to the approach in
the Crystal application framework [15]. This allows users to have an idea of the
reasoning by which an interaction technique was chosen (why is the system behaving
as it is?) or to be presented with the currently available choices and the ways in which
the system can assess them (how might the system behave if changed?).

In summary this approach allows us to combine together automatic reasoning
functions together with interactive functions within a unified model where conflicts
between stakeholders can be represented explicitly.

3.4 Interaction Evolution

One of the aims of this approach is to support interaction evolution. The concept of
evolution we use here is influenced by Dourish [16], MacLean [17] and Fickas [18].
Each of these authors identifies the ability to appropriate, tailor and evolve a system
over time as a key feature of ubiquitous systems. We define interaction evolution as
multiple related instances of interaction configuration that have a directed goal to
change some aspect of the system with respect to certain attributes of quality. For
example, an elderly user might develop a visual impairment (e.g., cataracts) that
requires a reduction in dependency on conventional visual displays. Over time their
visual capacity might deteriorate, perhaps resulting in the invalidation of the current
configuration choice. Our approach enables us to build evaluation functions that
operate over longer periods of time (sequences of choices), thus supporting such
evolution by exploiting persistence.

4 Validation of Our Approach

In the remainder of this paper we will discuss an initial validation of our approach
through example concept demonstrator applications, based on the scenario presented
in Section 3.2 (see section 4.2 for more details).

4.1 The MATCH Software Framework

These demonstrators have been implemented in a software framework developed
within the MATCH project. This section describes the architecture briefly; further
details of the implementation of this framework are available in [19].

Within the framework architecture (Figure 5) sets of application tasks are
controlled by a Task Manager component, responsible for starting, stopping and
otherwise controlling tasks and their parameters.

Policy Service

GUI Abstract UI

Speech Abstract UI

Earcon Abstract UI

Ontology ServiceService Discovery

Task Manager

Tasks

Interaction

Manager

Evaluation

Functions

Sensors Interaction Components

Analogue

Sensor

Digital

Sensor

Data

Control

Fig. 5. MATCH Architecture

Components such as sensors and interaction components are provided as logical
software “bundles” within the system which can be dynamically added and removed
at runtime. Components are not limited to those which are locally accessible; for
instance some components may be implemented as web services which are hosted
remotely. Interaction components and tasks are registered with a service discovery
system, supported by an Ontology Service [20], that can be used to hold high-level
descriptions of components and tasks. Evaluation functions benefit from the

Ontology service which allows reasoning about classes of related components and
their effects on the user based on the information held by the ontology service.

Communication between components and tasks is brokered by a publish/subscribe
message handler.

The Interaction Manager subsystem is responsible for the implementation of the
approach described in Section 3. When a task is started, it will request from the
Interaction Manager any bindings to interaction components it requires. The
Interaction Manager has a repository of assigned evaluation functions and will query
the appropriate evaluation functions to determine the allocation. Evaluation functions
can additionally notify the Interaction Manager that a change has occurred requiring
re-evaluation, performed subject to meta-evaluation approval (to allow for deferral of
re-evaluations).

Since some evaluation functions may be implemented as rules or policies we have
provided a Policy Service [20] component which is capable of reasoning over sets of
policies and is a service available to evaluation functions. Other services, such as
alternative policy services, recommender services or usage history services could also
be made available to evaluation functions to use.

In the rest of this section we present a number of use-case examples that have been
built with this framework to demonstrate the basic suitability of our model for
unifying automatic and interactive techniques for configuration. The implementations
use a SHAKE [21] battery-powered multi-sensor pack equipped with accelerometer,
gyroscope and magnetometer to detect movement traces. The interaction devices we
use for this implementation are currently simulated versions of the actual devices
mentioned in this section (e.g., TV and phone emulators) and the user interfaces to the
evaluation functions remain primitive.

4.2 Scenario for the Demonstrator Applications

Recall that Shirley has worsening arthritis restricting her mobility. Fred wants to be
informed about Shirley’s activity levels so that he does not worry. Fred is interested
in seeing this data on his mobile phone both at home and away. He does not need to
be notified about the status if he is currently in the room with Shirley since he can
observe for himself. The monitoring data is of interest to external agencies such as
Shirley’s doctor who would like to be kept apprised of changes in Shirley’s condition.

To this end Shirley wears a wireless accelerometer that captures her movement in
real time and delivers it to the MATCH framework as a sensor stream. A task exists
in the framework that interprets the raw sensor data and generates notifications when
there has been little movement or unusual movement patterns.

4.3 Example 1 – Utility Function, Multiple Resolutions

We can imagine that Shirley’s doctor has prepared an evaluation function which
selects a “default” hardcoded configuration. This evaluation function is designed to
advise both himself and Fred of Shirley’s condition on an ongoing basis. This default

evaluation function is a utility function designed to maximise benefit by using pre-
selected interaction components.

Utility functions are the simplest type of evaluation function to implement as they
can be completely self-contained and use extremely simple logic to perform their task.

As discussed in Section 3 an evaluation function has as input a set of possibilities
available and returns as an output the set of possibilities to select.

In this case the set of available possibilities may include:
• SMS to the doctor’s phone (perhaps provided for emergency conditions or

for another task)
• HTTP post submission to a shared monitoring screen at the doctors

surgery
• A television in the living room
• A loudspeaker which is audible throughout the house
• A monitoring application on Fred’s mobile phone

The utility evaluation function is hardcoded to select the HTTP post submission as
well as the audible loudspeaker and will simply return both of these possibilities
which are both started, discarding all other possibilities.

4.4 Example 2 – Manual Configuration

Since the previous approach was entirely hardcoded it does not specifically address
Fred and Shirley’s needs for the monitoring application; it does not deliver the
required information to Fred’s phone and the frequent loudspeaker announcements
are annoying to Shirley and difficult to hear for Fred.

To resolve this, Fred and Shirley decide to manually specify the devices to be used.
To implement a manual choice in the form of an evaluation it is only necessary to
create an approval style evaluation function that knows the user’s choice and only
approves the appropriate possibility.

In this scenario Shirley has created a connection via the HTTP based surgery
monitor and manually adds and removes connections to Fred’s phone and to the
television in the living room depending on whether or not Fred is home.

4.5 Example 3 – Simple Preferences

Eventually, despite the additional control that manual configuration provides, Shirley
tires of manually changing the device between Fred’s phone and the television and
decides that what is actually required is to use the preferences evaluation function.

Fred selects a set of preferences (Phone > TV > Loudspeaker) and changes the
monitoring task to use the preferences evaluation function with his set of preferences.

The evaluation function will take the set of available possibilities and return a
single possibility of the highest preference, i.e. if the phone is available then the
phone possibility will be used, otherwise the television and finally the loudspeaker.

Since the system only considers available possibilities Fred starts turning his phone
off when he’s in the house so that it is marked as unavailable and cannot be selected.
This causes his second preference, the television, to be used.

4.6 Example 4 – Combining Evaluation Functions

Previously the preferences were configured only for Fred’s usage and ignored the
needs of the doctor who needed to monitor Shirley’s condition over a period of time.

Thus it is necessary to combine the doctor’s needs with Fred’s preferences. To do
this, the simplest approach is to have two evaluation functions – one for the doctor’s
needs and one for Fred’s. One evaluation function selects the doctor’s surgery
monitoring application, if available, and otherwise the SMS function, the other
duplicates the preferences in the previous example.

These can both be implemented as two instances of the same basic preferences
evaluation function but with different sets of preferences.

In order to combine these evaluation functions we can use a meta-evaluation
function (election system) to the task which operates over a selection of sub-
evaluation functions. When the meta-function is queried it simply queries each sub-
function in turn and returns as its result the union set of the results from each sub-
function. In this case it would return the set of the result of the doctor’s preferences
(the surgery monitoring application) and Fred’s preferences (the phone or television
depending on availability).

We could extend this to add an evaluation function for Shirley which may provide
an “anti preference”, i.e. devices she doesn’t ever want used which may have higher
precedence than the meta-evaluation function discussed here.

Other tactics of combining evaluation functions could be formed by providing
alternate meta-evaluation functions (i.e. the intersection or union of the results of
multiple approval functions).

4.7 Example 5 – Context Sensitivity

In the previous two examples; Fred has had to turn his phone off when he enters the
house to cause the preference based system to switch to using the television. This
situation is not ideal since Fred may receive phone calls while his phone is turned off.

To address this problem, it is decided that Fred’s preference evaluation function
should be replaced with a context sensitive evaluation function to control the
configuration based on Fred’s behaviour. Here the appropriate contextually sensitive
evaluation function would detect if Fred is at home or not and return the appropriate
possibility. Other contextual evaluation functions which might be used by Fred and
Shirley are monitoring of light levels to determine which rooms are in use to only use
interfaces available in those rooms, or monitoring ambient sound levels to adjust the
volume of audio alerts or to determine if they are appropriate at all.

This can be extended further by simply turning the context sensitive function into a
switch between two sub-evaluation functions – your preferences in one situation vs.
your preferences in another situation. This can be further extended to create logic
trees of evaluation functions which control the sub-evaluation functions to be used.

It is also possible that the actual data being monitored could be contextual, such
that if Shirley has not moved for an extended period of time then the choice of
interaction technique might change (i.e. to send an SMS to the doctors phone) rather
than using the passive monitoring provided by the surgery.

5 Conclusions

In this paper we have presented a model-based approach to supporting configuration.
This approach allows for the combination of multiple techniques ranging from fully
automatic to fully interactive approaches for configuration and including various
intermediate combinations.

The approach described here expressed composition and function without using a
specific specification or description language but instead supports the combination of
multiple disparate languages (for example; Java, ACCENT [22], MATLAB) within a
single configuration if so desired. This approach is intended to be realised as a tool-
supported configuration system where evaluation functions can be combined together
and specified by the stakeholders. However, it may prove useful to express
configurations in the model via a custom language.

Our initial examples, described above, only involve the selection and configuration
of output components. We are now extending our use cases to support the selection,
combination and configuration of components involving both input and output. We
are working on more sophisticated interactive meta-evaluation functions, including
their user interfaces, intended for typical users of a home care system. We are also
working on applying techniques from voting systems to the model by viewing
evaluation functions as voters in an election and meta-evaluation functions as the
election systems themselves.

In the longer term, we believe that this approach is more broadly applicable than
we have described here, including the selection and configuration of application tasks
and sensors and involving multiple stakeholders with conflicting requirements. This
will be the focus of further research.

6 Acknowledgements

This research was carried out within the MATCH (Mobilising Advanced
Technologies for Care at Home) Project funded by Scottish Funding Council (grant
HR04016). We wish to thank our MATCH colleagues for their contribution to the
ideas presented here and for their work in developing the MATCH software
framework.

7 References

1. Dey, A.K. and Mankoff, J.: Designing mediation for context-aware applications. ACM
Transactions on Computer-Human Interaction (TOCHI), 12(1):53--80, (2005)

2. Oviatt, S.: Ten myths of multimodal interaction. Communications of the ACM, 42(11):74-
81, (1999)

3. Thevenin, D. and Coutaz, J.: Plasticity of User Interfaces: Framework and Research
Agenda. Proceedings of Interact, 99:110-117, (1999)

4. Magee, J., Dulay, N., Eisenbach, S. and Kramer, J.: Specifying Distributed Software
Architectures. Proceedings of the 5th European Software Engineering Conference:137-
153, (1995)

5. Humble, J., Crabtree, A., Hemmings, T., Åkesson, K.P., Koleva, B., Rodden, T. and
Hansson, P.: Playing with the Bits-User-configuration of Ubiquitous Domestic
Environments. Proceedings of the Fifth Annual Conference on Ubiquitous Computing,
UbiComp2003, Seattle, Washington, USA:12-15, (2003)

6. Edwards, W.K., Newman, M.W., Sedivy, J., Smith, T. and Izadi, S.: Challenge:
Recombinant Computing and the Speakeasy Approach. In Proc. MOBICOM'02 - The 8th
Annual International Conference on Mobile Computing. pp. 279--286 (2002)

7. Schmidt, A., Beigl, M. and Gellersen, H.W.: There is more to context than location.
Computers & Graphics, 23(6):893-901, (1999)

8. Sousa, J.P. and Garlan, D.: Improving User-Awareness by Factoring it Out of
Applications. Proc System Support for Ubiquitous Computing Workshop (UbiSys), (2003)

9. Gajos, K., Christianson, D., Hoffmann, R., Shaked, T., Henning, K., Long, J.J. and Weld,
D.S.: Fast and robust interface generation for ubiquitous applications. Proceedings of
Ubicomp’05, (2005)

10. Connelly, K. and Khalil, A.: Towards Automatic Device Configuration in Smart
Environments. Proceedings of UbiSys Workshop, (2003)

11. W3C Ubiquitous Web Applications, Content Selection for Device Independence
(DISelect) 1.0, http://www.w3.org/TR/2007/CR-cselection-20070725/

12. Calvary, G., Coutaz, J., Daassi, O., Balme, L. and Demeure, A.: Towards a new generation
of widgets for supporting software plasticity: the "comet". Preproceedings of EHCI/DSV-
IS, 4:41--60, (2004)

13. Bell, M., Hall, M., Chalmers, M., Gray, P. and Brown, B.: Domino: Exploring Mobile
Collaborative Software Adaptation. LNCS, (2006)

14. Jaquero, V.L., Vanderdonckt, J., Montero, F. and Gonzalez, P.: Towards an Extended
Model of User Interface Adaptation: the ISATINE framework. In Proc. Engineering
Interactive Systems 2007 (2007)

15. Myers, B.A., Weitzman, D., Ko, A.J. and Chau, D.H.: Answering Why and Why Not
Questions in User Interfaces. In Proc. ACM Conference on Human Factors in Computing
Systems. pp. 397-406, Montreal, Canada (2006)

16. Dourish, P.: Developing a Reflective Model of Collaborative Systems. ACM Transactions
on Computer-Human Interaction, 2(1):40--63, (1995)

17. MacLean, A., Carter, K., Lovstrand, L. and Moran, T.: User-tailorable systems: pressing
the issues with buttons. Proceedings of the SIGCHI conference on Human factors in
computing systems: Empowering people:175-182, (1990)

18. Fickas, S.: Clinical Requirements Engineering. In Proc. ICSE 2005. Proceedings of the
27th international conference on Software engineering. pp. 140--147. ACM (2005)

19. Gray, P., McBryan, T., Martin, C., Gil, N., Wolters, M., Mayo, N., Turner, K., Docherty,
L., Wang, F. and Kolberg, M.: A Scalable Home Care System Infrastructure Supporting
Domiciliary Care. University of Stirling, Technical Report CSM-173 (2007)

20. Wang, F., Docherty, L.S., Turner, K.J., Kolberg, M. and Magill, E.H.: Services and
Policies for Care at Home. In Proc. International Conference on Pervasive Computing
Technologies for Healthcare. pp. 7.1-7.10 (2006)

21. Williamson, J., Murray-Smith, R. and Hughes, S.: Shoogle: excitatory multimodal
interaction on mobile devices. In Proc. SIGCHI conference on Human factors in
computing systems (2007)

22. Turner, K.J., Reiff-Marganiec, S., Blair, L., Pang, J., Gray, T., Perry, P. and Ireland, J.:
Policy Support for Call Control. Computer Standards and Interfaces, 28(6):635-649,
(2006)

