A Model-Based Approach to Supporting Configuration
in Ubiquitous Systems

Tony McBryart, Phil Gray

! Department of Computing Science,
University of Glasgow, Lilybank Gardens, Glasgovw,28QQ, UK
{mcbryan, pdg}@dcs.gla.ac.uk

Abstract. This paper presents an approach for represendind, providing
computer support for, the configuration of intehaetsystems, particularly
ubiquitous systems, that offers a flexible methmdcombining a wide range of
configuration techniques. There are many existaudpiques offering dynamic
adaptation, ranging from fully automatic throughntaxt-sensitive to user-
driven. We propose a model that unifies all of éheechniques and offers a rich
choice of ways of combining them, based on the ephof configuration
possibilities, evaluation functions applicable &issof these possibilities and
approaches for parameterising the functions andbatng the results. We
present a concept demonstrator implementation efrttodel, designed for
home care systems, and describe a set of use based on this prototype
implementation that illustrate the power and flditypof the approach.

Keywords: ubiquitous systems, dynamic configuration, modehl@ation

1 Introduction

Ubiquitous systems typically use large numbersenfsers to detect the state of the
environment of use [1] and offer multiple differetgvices and methods of interacting
with users [2]. The multiplicity and volatility dhese contexts of use, including the
presence or absence of devices and resourcesjalgp@ben the users or devices are
mobile, leads to a demand for systems that arebbapaf extensive and regular
reconfiguration in regards to choice of interactteehniques and components. In
addition, as the opportunities for reconfiguratigrow, so does the likelihood that
users will attempt to appropriate their systemsxploit this flexibility to provide
new application functionality in new ways.

This situation has led to the development of saféwaarchitectures and
technologies that enable this dynamic reconfigarato take place and also to the
development of a variety of techniques for carrying this configuration. The latter
range from conventional preference settings througteractive configuration
interfaces to autonomic context-sensitive systdrasadjust the form of interaction to
the current state of the user and setting; perbhaped on sophisticated policies or via
matching to previous similar patterns of use. Eatlhese techniques is useful in
certain circumstances and, indeed, combinatiotiseofechniques are also possible.

From both a design and implementation point of yigwwould be desirable to
treat all of these techniques in a unified wayyasants of a single coherent model of
configuration, so that they can be more easily cmeq, transformed, combined,
refined and swopped. This paper presents such a&Ilmbdsed on the notions of
configuration possibilities and evaluation funcgoover such possibilities. We shall
argue that this model offers a rich design spaca f@nge of configurations, making
it easier to combine techniques and to developvariants of existing ones.

In Section 2 we briefly review related work on ttenfiguration of user interfaces
to identify the techniques we wish to unify. Sewet3 presents our model-based
approach to configuration followed by Section 4ttbascribes a proof of concept
based on a set of configuration examples in theehcare domain, implemented
using a software framework we have built. Sectioofférs our conclusions and an
indication of future work.

2 Related Work

Many techniques for choosing an appropriate interactechnique or device have
been developed in the context of ubiquitous systeesign. In this section we
summarise some of the most popular approaches \gitime exemplar
implementations. This section is intended to disctine use of the system from the
perspective of a typical user and does not comaentaitectural features of particular
approaches.

Thevenin and Coutaz [3] present the notion of plagtthat identifies equivalence
of usability as the primary criterion for assessimgeraction adaptation. Their
implementation demonstrates automatic and semmnzatio generation of user
interfaces exhibiting plasticity.

Manual configuration is frequently used to allove tliser complete control over a
configuration. Using a manual approach it is nsagsfor the user to specifically
make a modification to the configuration when cimstances change. This
configuration can be stored in a configuration ,filgossibly expressed in an
appropriate specification language [4] but oftermownly manipulated by an
interactive editor such as Jigsaw [5] which us&gaaw pieces” metaphor to enable
a user to see the interconnection of devices antatupulate them to meet changes in
demand. Another similar approach is Speakeasthf]allows direct connections, as
in Jigsaw, but also employs a task based appro&enentemplates are “filled out”
with the appropriate devices by the user.

Context sensitive systems are systems that chbesateraction techniques to use
based on data gathered from the user’s environmeheir context. Schmidt [7]
describes a hierarchical model of context whicHudes the user model(s), social
environment, task model, environmental conditiond physical infrastructure from
which adaptations are derived.

Another approach is to define a “utility functiottiat automatically decides which
interaction styles or devices should be used tonconicate with the user. These
utility functions may then make use of any contektdata gathered as part of the
function. This is the approach taken by SousaGadan [8] where a utility function

is used to express the combination of the useefepences, the suppliers preferences
and quality of service preferences. The task ofingaa choice is then an effort to
maximise this utility function. This approach i@ found in Supple [9] which
performs user interface adaptation according tdilyurule based on pre-assigned
weights for screen components.

Rule based reasoning can be used to select apgepriteraction techniques
automatically based on rules or policies manuadly lsy the user. In the work of
Connelly and Khalil [10] this takes the form of jpi¢s for devices and interaction
spaces being combined to determine the interactiethods that are allowed to be
used. This approach is also a clear influencéerctrrent work being undertaken by
W3C Ubiquitous Web Applications [11§here content and presentation are selected
based on selection rules based on the charaateristthe device(s) currently in use.

Another approach used by the Comet (Context of Memildable widgET)
architecture [12] is to employ introspective comguits that publish quality of use
guarantees for a set of contexts of use. Adapitsitiwe triggered by policies; at which
point the current context of use will be derivedl mompared against the quality of
use guarantees published by available Comets toenwmkdecision on which
component should be used. Each component musftinerbe able to identify its
own quality of use statistics in each of the cotg@f use it is possible to appear in.

It is also possible to use “recommender” or coltative filtering techniques to
make the decision. A recommender algorithm mayausellection of preference or
usage histories and compare them to similar inftiomaeither from the same user or
from multiple users. This approach is used inDlmenino system [13] to determine
which components a user has access to using ayhafterequently used components
from other users.

A final approach to be considered is employed ky IBATINE framework [14]
based on the USIXML mark up language. ISATINE m@ti-agent architecture that
decomposes the adaptation of a user interfacestefus that can be achieved by the
user, the system and by other external stakeholdEne user can take control of the
adaptation engine by explicitly selecting which ptdsion rule to prefer from an
adaptation rule pool in order to express the gb#h® adaptation more explicitly but
does not provide a mechanism to utilise multiplefiguration techniques at run-time.

All of these techniques are useful in certain ainstances, but currently no system
provides a unified method of offering them all, bbaeparately and in combination.
Our approach, described below, is intended to peothis unification.

3 Unified Model-Based Approach

Our approach to the configuration of interactivstsyns is to represent each of the
techniques discussed in Section 2 within a unifieoldel. This approach allows
designers to provide many configuration technigagsarallel or in combination and
are potentially modifiable at run-time and capaiflbeing driven by user interaction.

3.1 An Application Context

Our work has been carried out as part of MATCddmulti-university research project
devoted to investigating infrastructure support fdynamically configurable,
multimodal ubiquitous home care systems. For thason, we illustrate our approach
by the use of a running example taken from this @iom In this example Fred and
Shirley are an older couple with chronic conditighat could be ameliorated by
appropriate use of ubiquitous home care technoldgyparticular, Shirley has
worsening arthritis and is no longer able to morauad the house easily; she relies
on Fred for tasks such as controlling the heatysgesn, closing the curtains and for
most household chores. Fred recently had a stréleis still physically fit but has
become more and more forgetful since the strokeragudires continual reminders for
when to take his medication. He is also hard afing.

3.2 A Unified Model of Configuration

The model we present here is designed around theepd ofevaluation functions
that are responsible for both identifying opportiési for change as well as reflection
on the alternatives available to make a change.

To do this we introduce concept of @nfiguration possibility (hereafter,
‘possibility’, for short) which is arencapsulated solution (consisting of interaction
components, techniques and devices) that can iotinaction between a system task
and a user A possibility includes any software componenggaded to perform data
transformations related to the interaction as waslteferences to the components that
will be responsible for rendering the interactioa physical devices.

Reminder Text Speech
@ Reminder to Female @D}
Reminder > %Ol'te -I;th e SSp?he Ch >
Task onverter ynthesis Speaker

Fig. 1. A typical configuration possibility

Consider a medication reminder for Fred; one ofpbssibilities, as shown in Figure
1, might be to deliver the reminder via a speeattt®sis system. The possibility
would include the component representing the plysievice (the speaker), the
component representing the speech synthesis systsponsible for converting text
to speech) and the component that converts a megicaeminder into the
appropriate textual alert.

To construct a set of possibilities it is possitileuse a service discovery system
that models relationships between components tetawt a directed graph of the
available components suitably configured. By idfgimtg interactive components it is

1 http://www.match-project.org.uk

possible to traverse the graph with the goal ofstroieting a set of possibilities that
can be used with the application task.

Reminder to Female @
Polite Text » Speech >
@ Converter Synthesis Speaker
Reminder
Task Reminder to Male Speech
Urgent Text)
C t Synthesis —=
onverter GUI (TV)

Fig. 2. A typical graph.

Figure 2 shows a typical, albeit simple, graph thay be constructed from the data in
a service discovery system. In this graph we @dude many different possibilities
(such the speaker using polite text and a femaileeyowe have shown a speaker that
requires the choice of two of the intermediate congmts as well as a GUI that does
not require intermediate components. By startnognfthe reminder task as the root
node we can perform as simple breadth first traldcsdetermine each possibility in
the graph.

More complicated graphs including cycles will regua more robust traversal
algorithm to determine every possibility. Some nswered questions currently
remain over the likelihood of graph explosion, amkat impact this may have on
performance, given unrestricted, large numbersossipilities. This will be a subject
of future research and is not addressed here; te wWa have not experienced
performance problems with graphs of moderate coxitglé-70 nodes, ~120 edges).

Once the graph has been built and traversed taeceeaet of possibilities we can
begin to analyse the appropriateness of each plitysiblro do this we evaluate each
possibility by using one, or many, evaluation fimes.

The purpose of an evaluation function is to raiiterfor otherwise analyse these
possibilities such that a configuration decision bea made. Evaluation functions can
have a many-to-many relationship with task assignmethere may be many
evaluation functions used to review the possikiitior the medication reminder task
while a single evaluation function may be used #iameously for many tasks.

Figure 3 shows one possible result from the apjidinaof two evaluation functions
(a ranking and an approval function) to some of pessibilities we could have
generated in the previous step. The Usage HidRamking is an example of an
evaluation function which uses the recommenderaaar to rank possibilities while
the Doctor's Approval function allows or disallowsossibilities; here the Male
Speech synthesis is disallowed as it sounds todlasiro Fred and can confuse
Shirley.

Usage History
Ranking

@ Reminder to Female ((
A Reminder [Polite Text (> Speech

Task Conveter Synthesis Speaker

Doctors Approval

5 E @ n I?Jeminﬁri? | | Male Speech | | (@D}
Reminder rgent 1e

Synthesis
Task Conveter Speaker

C Re?ifzer ™

Task GUI(TV)

Fig. 3. Example results from the application of a rankéwgluation function and an
approval evaluation function.

To allow multiple evaluation functions to be useidhva single task it is possible to
use evaluation functions to combine results viacfi@m compositions (in effect a
meta-evaluation functign This allows the results of multiple approaches
(implemented as evaluation functions) to be contitogether into a single function
that can be mapped onto the task.

A 4 ‘» Lowest Rank Meta- LA
r”* cC 5 Function A
, A N —
Doctor’s Approval Combination
B X ——>» :
Approval Meta-Function
C | f
A 4
Usage A B 3 }
History B 1 C 5 |
Analysis C T
7777777777777 * Additive Combination
> Meta-Function
, A 1
Fred’s
Preferences B 2
C 3

Fig. 4. Example results from the combination of three eaabn functions.

This approach would allow, for example, the setatf an interaction technique
for the notification task to be based on a comlimabf context sensitive, manual
and/or automatic reasoning. A typical example lié tmight be that the users’
preferences are weighted against the results oblborative filtering system
receiving input from multiple users, based on thecess of similar tasks.

Figure 4 shows one possible method by which thresuation functions (2
ranking and 1 approval) might be combined togethahis approach to determine
which possibility to use from the three availabtesgibilities shown in Figure 3.

Two of the evaluation functions are implementedrasking functions which
“score” each of the possibilities. The individyalanked results of both ranking
functions are first combined together using an tdgimeta-function before the
results of this are combined with the results of thoctor's approval evaluation
function. The result of this is that possibilit4 ‘was the possibility with the lowest
combined rank that had also been approved andheasfore selected.

The meta-functions can be replaced or changedlatonprovide different results,
for example the choice of meta-function to combiine results of the two ranking
functions could have instead been multiplicativenature which may have had a
different result.

A useful result of this is that the system has illsupport for multiple, conflicting
stakeholders using the system. Each stakeholdéhentask can have their own
evaluation function(s) modelled after their views requirements — the results of
which can then be combined within the same framkworhis allows the natural
specification of how conflicts can be solved bymdiag the meta-evaluation function
being used to combine the results.

The result of an evaluation function (or set oflaation functions) should be the
set of possibilities to use for interaction; aswshan Figure 4. In this case, a single
technique has been selected, although functionktralgo enable multiple concurrent
techniques to be used.

Evaluation functions are a flexible method of redsg about the available
possibilities and can be applied at different levef granularity; some evaluation
functions may consider an entire possibility whdéhers may only operate over
selected portions of a possibility; for example @valuation function may only
consider the choice of physical output device snrdasoning. Evaluation functions
may utilise external sources of data such as cbmexsage history and can be
parameterisable such that a single evaluation ifumainay be reused in multiple
situations (such as gathering of user preferenoes fmultiple stakeholders) or even
called recursively.

3.3 Interactive Evaluation Functions

Evaluation functions can, and often must, be imtira components themselves.
Users can (i) provide inputs prior to function ¢iea or use (e.g., preference files
read by a function), (ii) interact with an evalwatifunction directly as part of the
evaluation process, (iii) indicate a changed opirtitus triggering a re-evaluation or
(iv) interact implicitly, in which some evaluatidanctions gather usage information

or indications of the user’s satisfaction over titnedetermine how to rank or filter
possibilities.

Similarly, a meta-evaluation function can be int¢ike. In the example, in Figure
4, the “lowest rank” meta-evaluation function coblel replaced with a function that
presents the two remaining choices to the usergalith the current rankings and
asks them to choose which should be used.

The process of allowing for user interaction asag pf this process means that an
evaluation process may need to be deferred uetilffer has responded. In this case a
provisional decision may have to be made in thentive to provide a service until
the user has had sufficient time to complete timé@raction.

Since we can combine approaches systematicallycanehave a combination of
automatic and manually-controlled evaluation fumetin use at the same time. We
may also have policy-based evaluation functionseghixn — we may even have
multiple different policy specification languagessitig used at any one time.

We envisage two primary modes of interaction: (ig-@ff or sporadic interaction
where the user specifies their needs and wantshiareee and rarely changes them,
and (ii) continuous interaction where the user diggly interacts with the system, or
plans to interact with the system, to assist in theice of suitable interaction
techniques.

In addition, we believe that evaluation functiomasid meta-evaluation functions)
may be required to provide explanatory informatiomeviews on the current state of
the system or on previous choices they have madarssimilar to the approach in
the Crystal application framework [15]. This allwsers to have an idea of the
reasoning by which an interaction technique wasehdqwhy is the system behaving
as it is?) or to be presented with the currentlyilable choices and the ways in which
the system can assess them (how might the systeavéé& changed?).

In summary this approach allows us to combine togreautomatic reasoning
functions together with interactive functions withd unified model where conflicts
between stakeholders can be represented explicitly.

3.4 Interaction Evolution

One of the aims of this approach is to supjradraction evolution The concept of
evolution we use here is influenced by Dourish [MacLean [17] and Fickas [18].
Each of these authors identifies the ability torappate, tailor and evolve a system
over time as a key feature of ubiquitous systei® define interaction evolution as
multiple related instances of interaction configtiwa that have a directed goal to
change some aspect of the system with respectt@incattributes of quality. For
example, an elderly user might develop a visualaimpent (e.g., cataracts) that
requires a reduction in dependency on conventigizalal displays. Over time their
visual capacity might deteriorate, perhaps reggltimthe invalidation of the current
configuration choice. Our approach enables us ftitd bevaluation functions that
operate over longer periods of time (sequenceshofces), thus supporting such
evolution by exploiting persistence.

4 Validation of Our Approach

In the remainder of this paper we will discuss aitidl validation of our approach
through example concept demonstrator applicatibased on the scenario presented
in Section 3.2 (see section 4.2 for more details).

4.1 The MATCH Software Framework

These demonstrators have been implemented in aaeftframework developed
within the MATCH project. This section describée tarchitecture briefly; further
details of the implementation of this framework available in [19].

Within the framework architecture (Figure 5) setbk application tasks are
controlled by a Task Manager component, respondiinestarting, stopping and
otherwise controlling tasks and their parameters.

s > e Interaction C t
ensors Control nteraction Components
@ > GUIAbstract Ul «g=p» I
[l Analogue . =
Sensor

Task Manager

Tasks
iy Iy
| Digital =5

Sensor
= Earcon Abstract Ul > ((

= Speech Abstract Ul -«

. . Interaction . . .
Service Discovery Manager J—> Policy Service Ontology Service

Evaluation | |
Functions T 3

[—

Fig. 5. MATCH Architecture

Components such as sensors and interaction comigsoaen provided as logical
software “bundles” within the system which can lyaamically added and removed
at runtime. Components are not limited to thosecktare locally accessible; for
instance some components may be implemented assaeites which are hosted
remotely. Interaction components and tasks arestexgd with a service discovery
system, supported by an Ontology Service [20], taat be used to hold high-level
descriptions of components and tasks. Evaluationctfons benefit from the

Ontology service which allows reasoning about @assf related components and
their effects on the user based on the informdiedd by the ontology service.

Communication between components and tasks is tedkey a publish/subscribe
message handler.

The Interaction Manager subsystem is responsibig¢hi® implementation of the
approach described in Section 3. When a taskaidest, it will request from the
Interaction Manager any bindings to interaction poments it requires. The
Interaction Manager has a repository of assigneduation functions and will query
the appropriate evaluation functions to determireedllocation. Evaluation functions
can additionally notify the Interaction Managertthachange has occurred requiring
re-evaluation, performed subject to meta-evaluagioproval (to allow for deferral of
re-evaluations).

Since some evaluation functions may be implemeasertlles or policies we have
provided a Policy Service [20] component whichapable of reasoning over sets of
policies and is a service available to evaluationcfions. Other services, such as
alternative policy services, recommender servicassage history services could also
be made available to evaluation functions to use.

In the rest of this section we present a numbeisefcase examples that have been
built with this framework to demonstrate the basigtability of our model for
unifying automatic and interactive techniques fonfiguration. The implementations
use a SHAKE [21] battery-powered multi-sensor pagkipped with accelerometer,
gyroscope and magnetometer to detect movemenistratiee interaction devices we
use for this implementation are currently simulateaisions of the actual devices
mentioned in this section (e.g., TV and phone etotda and the user interfaces to the
evaluation functions remain primitive.

4.2 Scenario for the Demonstrator Applications

Recall that Shirley has worsening arthritis reimgz her mobility. Fred wants to be
informed about Shirley’s activity levels so thatd@es not worry. Fred is interested
in seeing this data on his mobile phone both atéhand away. He does not need to
be notified about the status if he is currentlytie room with Shirley since he can
observe for himself. The monitoring data is oknest to external agencies such as
Shirley’s doctor who would like to be kept apprisgcchanges in Shirley’s condition.

To this end Shirley wears a wireless accelerométgrcaptures her movement in
real time and delivers it to the MATCH frameworkasensor stream. A task exists
in the framework that interprets the raw sensoa @aid generates notifications when
there has been little movement or unusual move petterns.

4.3 Example 1 — Utility Function, Multiple Resolutions
We can imagine that Shirley’s doctor has prepanmedeealuation function which

selects a “default” hardcoded configuration. Téngluation function is designed to
advise both himself and Fred of Shirley’s condit@mnan ongoing basis. This default

evaluation function is a utility function designém maximise benefit by using pre-
selected interaction components.
Utility functions are the simplest type of evalaatifunction to implement as they
can be completely self-contained and use extresigiple logic to perform their task.
As discussed in Section 3 an evaluation functiom dminput a set of possibilities
available and returns as an output the set of Ipitissis to select.
In this case the set of available possibilities nmajude:
e SMS to the doctor’s phone (perhaps provided forrgerecy conditions or
for another task)
e HTTP post submission to a shared monitoring scraerthe doctors
surgery
e Atelevision in the living room
« Aloudspeaker which is audible throughout the house
e A monitoring application on Fred’s mobile phone
The utility evaluation function is hardcoded toestlthe HTTP post submission as
well as the audible loudspeaker and will simplyuretboth of these possibilities
which are both started, discarding all other pakisés.

4.4 Example 2 — Manual Configuration

Since the previous approach was entirely hardcaidddes not specifically address
Fred and Shirley’'s needs for the monitoring appilicg it does not deliver the
required information to Fred’'s phone and the frequeudspeaker announcements
are annoying to Shirley and difficult to hear foe#.

To resolve this, Fred and Shirley decide to magusgkcify the devices to be used.
To implement a manual choice in the form of an e&tbn it is only necessary to
create an approval style evaluation function thavis the user’s choice and only
approves the appropriate possibility.

In this scenario Shirley has created a connectiantte HTTP based surgery
monitor and manually adds and removes connectionsréd’s phone and to the
television in the living room depending on whetbenot Fred is home.

4.5 Example 3 — Simple Preferences

Eventually, despite the additional control that olrconfiguration provides, Shirley
tires of manually changing the device between Ergiione and the television and
decides that what is actually required is to useptteferences evaluation function.

Fred selects a set of preferences (Phone > TV >d4meaker) and changes the
monitoring task to use the preferences evaluatiostfon with his set of preferences.

The evaluation function will take the set of avhiéa possibilities and return a
single possibility of the highest preference, ifethe phone is available then the
phone possibility will be used, otherwise the ted@mn and finally the loudspeaker.

Since the system only considers available posséisiFred starts turning his phone
off when he’s in the house so that it is markedirevailable and cannot be selected.
This causes his second preference, the televigidie used.

4.6 Example 4 — Combining Evaluation Functions

Previously the preferences were configured only Foed's usage and ignored the
needs of the doctor who needed to monitor Shirlegtedition over a period of time.

Thus it is necessary to combine the doctor’s neéttsFred’s preferences. To do
this, the simplest approach is to have two evaluatiinctions — one for the doctor’s
needs and one for Fred’s. One evaluation funcelects the doctor’s surgery
monitoring application, if available, and otherwige SMS function, the other
duplicates the preferences in the previous example.

These can both be implemented as two instancebeofame basic preferences
evaluation function but with different sets of mmefnces.

In order to combine these evaluation functions @ cse a meta-evaluation
function (election system) to the task which opesabver a selection of sub-
evaluation functions. When the meta-function iergpd it simply queries each sub-
function in turn and returns as its result the onéet of the results from each sub-
function. In this case it would return the setlud result of the doctor’s preferences
(the surgery monitoring application) and Fred'sf@rences (the phone or television
depending on availability).

We could extend this to add an evaluation funcf@anrShirley which may provide
an “anti preference”, i.e. devices she doesn't evant used which may have higher
precedence than the meta-evaluation function déstlikere.

Other tactics of combining evaluation functions ldobe formed by providing
alternate meta-evaluation functions (i.e. the s#etion or union of the results of
multiple approval functions).

4.7 Example 5 — Context Sensitivity

In the previous two examples; Fred has had to hisrphone off when he enters the
house to cause the preference based system tchswitasing the television. This
situation is not ideal since Fred may receive phazalls while his phone is turned off.

To address this problem, it is decided that Freu&ference evaluation function
should be replaced with a context sensitive evalnafunction to control the
configuration based on Fred’s behaviour. Hereajygropriate contextually sensitive
evaluation function would detect if Fred is at hoarenot and return the appropriate
possibility. Other contextual evaluation functiomkich might be used by Fred and
Shirley are monitoring of light levels to determivliich rooms are in use to only use
interfaces available in those rooms, or monito@mgpient sound levels to adjust the
volume of audio alerts or to determine if they appropriate at all.

This can be extended further by simply turningabetext sensitive function into a
switch between two sub-evaluation functions — ypraferences in one situation vs.
your preferences in another situation. This carfupther extended to create logic
trees of evaluation functions which control the-swlluation functions to be used.

It is also possible that the actual data being too@il could be contextual, such
that if Shirley has not moved for an extended merd time then the choice of
interaction technique might change (i.e. to sen&KI$ to the doctors phone) rather
than using the passive monitoring provided by thgery.

5 Conclusions

In this paper we have presented a model-based agpto supporting configuration.
This approach allows for the combination of mu#lipéchniques ranging from fully
automatic to fully interactive approaches for cgafation and including various
intermediate combinations.

The approach described here expressed composiifiuaction without using a
specific specification or description language instead supports the combination of
multiple disparate languages (for example; JavaCBRT [22], MATLAB) within a
single configuration if so desired. This appro&intended to be realised as a tool-
supported configuration system where evaluatiortions can be combined together
and specified by the stakeholders. However, it nmgve useful to express
configurations in the model via a custom language.

Our initial examples, described above, only invdlve selection and configuration
of output components. We are now extending ourcases to support the selection,
combination and configuration of components inwadvboth input and output. We
are working on more sophisticated interactive nestaluation functions, including
their user interfaces, intended for typical usdre. lome care system. We are also
working on applying techniques from voting systetnsthe model by viewing
evaluation functions as voters in an election aretapevaluation functions as the
election systems themselves.

In the longer term, we believe that this approacmore broadly applicable than
we have described here, including the selectioncamfiguration of application tasks
and sensors and involving multiple stakeholder$ winflicting requirements. This
will be the focus of further research.

6 Acknowledgements

This research was carried out within the MATCH (Mising Advanced

Technologies for Care at Home) Project funded bgtt&h Funding Council (grant
HR04016). We wish to thank our MATCH colleagues tloeir contribution to the
ideas presented here and for their work in devalppihe MATCH software
framework.

7 References

1. Dey, AK. and Mankoff, J.: Designing mediation foontext-aware application&\CM
Transactions on Computer-Human Interaction (TOCHB(1):53--80, (2005)

2. Oviatt, S.: Ten myths of multimodal interaction. Gommications of the ACM, 42(11):74-
81, (1999)

3. Thevenin, D. and Coutaz, J.: Plasticity of User fiaies: Framework and Research
Agenda Proceedings of Interact, 9010-117, (1999)

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

Magee, J., Dulay, N., Eisenbach, S. and KramerSgecifying Distributed Software
Architectures.Proceedings of the 5th European Software Enginge@onference 37-
153, (1995)

Humble, J., Crabtree, A., Hemmings, T., Akesson,.Kidleva, B., Rodden, T. and
Hansson, P.: Playing with the Bits-User-configunatiamf Ubiquitous Domestic
Environments.Proceedings of the Fifth Annual Conference on Ubys Computing,
UbiComp2003Seattle, Washington, USA:12-15, (2003)

Edwards, W.K., Newman, M.W., Sedivy, J., Smith, dnd lzadi, S.: Challenge:
Recombinant Computing and the Speakeasy ApprdadProc. MOBICOM'02 - The 8th
Annual International Conference on Mobile Computipg. 279--286 (2002)

Schmidt, A., Beigl, M. and Gellersen, H.W.: These more to context than location.
Computers & Graphics23(6):893-901, (1999)

Sousa, J.P. and Garlan, D.: Improving User-Awarenbg Factoring it Out of
Applications.Proc System Support for Ubiquitous Computing WornkghtbiSys) (2003)
Gajos, K., Christianson, D., Hoffmann, R., Shaked Henning, K., Long, J.J. and Weld,
D.S.: Fast and robust interface generation for witigs applicationsProceedings of
Ubicomp’05 (2005)

Connelly, K. and Khalil, A.: Towards Automatic DegicConfiguration in Smart
EnvironmentsProceedings of UbiSys Worksh@p003)

W3C Ubiquitous Web Applications, Content Selectioor fDevice Independence
(DISelect) 1.0, http://www.w3.0rg/TR/2007/CR-cselent20070725/

Calvary, G., Coutaz, J., Daassi, O., Balme, L. anddee) A.: Towards a new generation
of widgets for supporting software plasticity: ttommet". Preproceedings of EHCI/DSV-
IS, 4:41--60, (2004)

Bell, M., Hall, M., Chalmers, M., Gray, P. and BrowB,: Domino: Exploring Mobile
Collaborative Software AdaptationNCS (2006)

Jaquero, V.L., Vanderdonckt, J., Montero, F. anchZatez, P.: Towards an Extended
Model of User Interface Adaptation: the ISATINE rfrawork. In Proc. Engineering
Interactive Systems 20@Z007)

Myers, B.A., Weitzman, D., Ko, AJ. and Chau, D.Hnstvering Why and Why Not
Questions in User Interfacds. Proc. ACM Conference on Human Factors in Computing
Systemspp. 397-406, Montreal, Canada (2006)

Dourish, P.: Developing a Reflective Model of Colledttve SystemsACM Transactions
on Computer-Human Interactip@(1):40--63, (1995)

MacLean, A., Carter, K., Lovstrand, L. and Moran, User-tailorable systems: pressing
the issues with button®roceedings of the SIGCHI conference on Human factor
computing systems: Empowering pedpi&-182, (1990)

Fickas, S.: Clinical Requirements Engineering. IncPI€SE 2005Proceedings of the
27th international conference on Software engimegempp. 140--147. ACM (2005)

Gray, P., McBryan, T., Martin, C., Gil, N., Wolteid,, Mayo, N., Turner, K., Docherty,
L., Wang, F. and Kolberg, M.: A Scalable Home Cayst&m Infrastructure Supporting
Domiciliary Care. University of Stirling, TechnicRleport CSM-173 (2007)

Wang, F., Docherty, L.S., Turner, K.J., Kolberg, Bhd Magill, E.H.: Services and
Policies for Care at Homeén Proc. International Conference on Pervasive Cotimgu
Technologies for Healthcargp. 7.1-7.10 (2006)

Williamson, J., Murray-Smith, R. and Hughes, S.: @&jle: excitatory multimodal
interaction on mobile devicedn Proc. SIGCHI conference on Human factors in
computing system{(2007)

Turner, K.J., Reiff-Marganiec, S., Blair, L., Pang, Gray, T., Perry, P. and Ireland, J.:
Policy Support for Call Control. Computer Standardsl anterfaces, 28(6):635-649,
(2006)

