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Abstract—Telecare and telehealth system services can be 

dynamically configured to collect, analyse, store, and adapt to 

multimodal data about people as they go about their activities of 

daily life. These services need to be able to personalise to subjects 

and adapt to changes in lifestyles, environments and technology. 

Such dynamic adaptability may be well supported by a low-level 

rule programming approach; however measures may need to be 

taken to limit the emergence of conflicts between the distributed 

rulesets owing to differing programmatic assumptions and 

unexpected changes.  

Here, we consider types of conflict that might arise when a 

variety of care devices are brought together and begin to rely on 

each others’ services. This paper describes a distributed rule-

based conflict detection approach for use with heterogeneous 

mobile and home care devices. We propose methods that make it 

possible to detect certain forms of rule conflict. To do so, we 

introduce Event Calculus based logic for writing device rules and 

an analytical framework for conflict detection. 

Keywords-service conflict detection; rule-based sensor 

networks; ambulatory assessment 

I. INTRODUCTION 

Mobile and sensor technologies are used for care and 
healthcare purposes across a wide range of settings including 
the home, care homes, and hospitals. They are increasingly 
being used to monitor individuals on the move and indeed such 
ambulatory assessment can be used in preference to hospital 
visits.   

Regardless of the setting however, often such telecare 
systems cannot be altered, and so all individuals will 
experience the same system for the duration of its use. 
Ambulatory assessment systems could gain considerably from 
an ability to be personalised to the subjects being monitored 
[1]. A significant motivating factor for personalisation is that   
diseases can manifest differences both between individuals 
(inter-individual) and over time for a particular individual 
(within-individual). This is particularly true for long term 
assessment. The types of sensors used and their patterns of 
usage must, therefore match these transient subject states. So 
the system must be both personalised for an individual and 
altered for that individual over time. 

 Statically designed solutions are insufficient at handling 
the level of change that long term telecare implies since the 

designers would have to have a priori knowledge of the 
changes to the behaviour of their subjects and the deployment 
environments. An alternative approach is to program semi-
autonomous devices to form into dynamic ad hoc coalitions 
that provide each other with services. The rules governing each 
part of the telecare system can be managed separately to 
personalise the telecare solution for each subject. The rules of 
the overall system behaviour will therefore be distributed 
amongst the network components and dynamically change in 
time, but not necessarily known to or programmed by any 
particular individual. 

Our research into such a rules-based approach is part of the 
Personalised Ambient Monitoring (PAM) project, which is 
investigating the feasibility of reducing the incidence of 
debilitating episodes through personalised ambient monitoring 
of affective disorder patients in their homes. We are attempting 
to collect patient activity signatures in an ambient and 
unobtrusive manner. System personalisation is a core issue for 
PAM since activity signatures differ amongst patients and can 
change over the course of patient lifetime. The types of sensors 
used, and their patterns of usage, must be personalised in order 
to match patient states and be accepted by users. System 
personalisation requires a dynamic and flexible programming 
method but it must also be easy to program, represent domain 
information and above all result in correct system behaviour. 
One of our goals was to collect micro-data from long term 
repeated sampling of people going about their lives at home 
and on the move using a changing set of heterogeneous worn 
and environmental devices. We acknowledge that people 
change in time and that individuals vary with respect to their 
concerns and disease manifestations, and therefore we placed a 
great deal of value on the ability for the system to be 
personalised.  

We evaluated the effectiveness of the technology in 
technical trials with control participants [2]. Reliability 
concerns arose from our desire to use such a dynamic network. 
Changes could lead to different device rules interfering with 
each others’ operations. Device rules can conflict such that the 
functionality of one device may modify another in unexpected 
ways.  

The main contribution of this paper is to show how a 
collection of devices can be used for telecare and to show that 
it is possible to detect various types of conflict in a rule-based 



approach to programming telecare solutions. Detecting 
conflicts should aid in reducing reliability concerns and thereby 
increase adoption of rule-based telecare. We have developed 
rule conflict investigation tools. These tools permit dynamic 
and straightforward personalisation of network behaviour. 
They also support additional equipment as and when they 
become available. 

II. RELATED WORK 

A. Ambulatory Assessment  

This work focuses on mental health assessment. Although it 
is not a new concept, ambulatory psychological/psychiatric 
assessment has recently begun to emerge as an important tool 
for clinicians and researchers as a result of methodological and 
technological trends. Questions have arisen in 
psychology/psychiatry concerning how closely subjective 
reports from questionnaires and laboratory findings match real 
world in-context behaviour [3]. Concurrently, sensors, 
computers, and communication devices are becoming smaller, 
more reliable, less expensive and easier to use.  

Ambulatory assessment promises to provide clinicians, 
researchers, and individuals with real-time collected, 
ecologically valid, unbiased contextualised data about 
symptoms, physiology, activity, behaviour and 
mental/emotional state [4]. It has been suggested that 
individualised interactive moment-specific real-world treatment 
could be provided based on ambulatory assessment systems, 
and longitudinal continuous data could greatly enhance social 
science research. Ambulatory assessment systems are still in 
their infancy and much work remains to be addressed. This 
paper proposes techniques to ensure that personalisation results 
in a stable system. In particular this work addresses rule-based 
systems that support dynamic real time system behavioural 
changes by allowing the rules to be changed at run-time. It is 
crucial that the changing rules remain consistent and do not 
degrade system performance. 

B. Rule-based Sensor Networks 

Rule-based middleware for sensor networks has been used 
in a number of projects such as [5] - [8]. These studies show 
that the programming and concurrency models are simplified 
compared with other approaches. Furthermore they indicate 

that program correctness is easier to prove, and that rule-based 
systems remain sufficiently expressive at high conceptual 
levels. Also rule notations that employ an event driven 
paradigm find favour in sensor networks; whereas an 
imperative paradigm does not.  

More generally rule-orientation is seen as a more natural 
way to express programs for sensor networks. It was pointed 
out by [8] that application developers using rule-oriented 
middleware are protected from complexities arising from tight 
real-world integration, network dynamics, and resource 
limitations. Rule based systems have been built that allow the 
rules to be changed at run time [8]. This is very attractive for 
personalised systems that must change over time. Maintaining 
a consistent set of rules across the system, however, is 
challenging. 

C. Rule consistency 

In rule-based systems where rules may originate from a 
number of sources and end up being executed across a number 
of destinations, there is a strong possibility of the rules being 
inconsistent and causing behavioural conflict. This has been 
noted in [8], where they discuss the importance of detecting 
and resolving such conflicts. However that paper did not 
address a method to do it; rather by not employing rules 
between nodes but only accepting them from a single trusted 
server, they avoided this requirement. The trusted server 
employed meta-rules [9] to ensure conflict was resolved within 
the server and so conflicting rules were not distributed. 

In this paper we draw on a wider literature of programming 
conflict frequently described as Feature Interaction [10]. This 
topic was initially addressed in telephony, but has expanded to 
a wide range of domains experiencing program or control 
conflict; such as cars, lifts, internet services, and building 
control. Here the focus is on rule conflict in telecare sensor 
networks. 

III. OUR METHODS 

Attempting to personalise devices and networks to monitor 
subjects in-situ exposes the need to use adaptable programming 
approaches. Reliability concerns arise, however, from having 
the need for a dynamic network, with features that change in 
time. These dynamic changes could lead to different features 
interfering with each others’ operations. 

We have been considering whether a rule-based approach 
to programming devices provides a natural way to express 
device behaviour whilst limiting the risks of rule conflict. Here 
we present Event Calculus based feature rule descriptions and 
conflict analysis rules. 

A. Event Calculus Based Rules 

The Event Calculus was designed by Kowalski & Sergot as 
a way of representing and reasoning about actions and their 
effects in time [11]. It is expressed using the Horn clause subset 
of first-order predicate logic and its ontology contains three 
main concepts: fluents, actions (or events) and time points. 
Fluents are properties of the universe of discourse that can 
change in time. These properties may either take a 
propositional form such as “the subject is in the house” or a 
quantifiable form, for instance the level of ambient sound in a 

Figure 1.  Example Data Storage Through Processing 

feature rule 

 dstp(T1) :-    
 T2 is T1+1 ... T7 is T1 + 6, 
 initiallyN(connection), 
 initiallyP(message), 
 happens(listen_for_connection,T1), 
 happens(transfer_data,T3), 
 happens(process_data,T4), 
 happens(store_data,T5), 
 happens(dstp(T7),T7), 
 initiates(listen_for_connection,

 connection,T2), 
 terminates(transfer_data,connection,T4),  
 terminates(process_data,message,T6). 



Figure 2.  Missed Trigger Interaction occurs when the Context 

Triggering rules delay the activation of a home gateway. 

room. A fluent can hold at a given point in time, if it was 
previously initiated by an action and has not been subsequently 
terminated. Actions occur at points in time and can modify 
fluents. Time points provide a narrative based structure 
independent of any particular action. 

We identified device control and knowledge management 
service feature rules from a literature review of state of the art 
ambulatory assessment systems. We encoded each of these 
rules into Event Calculus based rules in Prolog. For instance, 
figure 1 shows the encoding of a Data Storage Through 
Processing rule that could be used by a node to handle 
incoming data by processing them, then storing the processed 
data. Such a rule might describe that the recipient begins in a 
state listening for a connection. When a triggering message 
arrives, data is streamed and collected. The data are processed 
using appropriate algorithms once the streaming has 
completed. The processed data are stored and the device goes 
back to listening for more connections. If a connection is 
established the data is uploaded and the connection is 
terminated upon data transfer completion. The recipient should 
then return to a state where it can repeat the process for new 
inbound data. 

B. Conflict Detection 

A networked environment with a dynamic collection of 
sensing and processing nodes that attempt to detect for unusual 
subject behaviour could be a recipe for network device 
conflicts. For instance, features operating within and across 
devices could rely on synchronisation and concurrency patterns 
that may not actually arise owing to interactions between the 
devices and the rest of the network. Device conflicts reduce the 
levels of certainty that we can have in the care assessment data 
and conclusions to actuate based on them. We used the Event 
Calculus to look for conflicts by analysing the device rules.  

This work is inspired by research on the feature interaction 
problem as there are many similarities between this problem 
and rule conflict. A classic telephony example from the feature 
interaction literature involves the user Alice subscribed to the 
feature Originating Call Screening (OCS), screening out calls 
to the user Charlie. The user Bob is subscribed to the feature 
Call Forwarding when Busy (CFB), forwarding calls to Charlie 

when busy. A conflict can occur if Alice calls Bob when he is 
busy, because either the call from Alice would be forwarded to 
Charlie, thereby invalidating OCS, or else the call would be 
blocked, thereby invalidating CFB. In either case, the operation 
of one of the two features would be invalidated by the presence 
of the other.  

Searching for such conflicts in Event Calculus forms of the 
narratives and service specifications can lead to the discovery 
of conflicts amongst them. In order to detect conflicts between 
rules, we developed an analytical rule system that can be used 
to understand what happens when multiple feature rules are 
triggered. The system analyses rule execution sequences to 
determine whether the rules lead to conflict. The framework 
ignores the contents of the triggering messages, the actions that 
arise from being triggered and the semantic meanings of the 
features. Prolog programs based on the framework resolve 
goals by loading the feature rules and then proceeding to check 
for interactions between every possible pair of features 
(including checking features against themselves).  

Checking a pair of features involves two phases: 
initialisation and detection. The initialisation phase resets the 
Prolog environment by removing all assertions from it. It then 
adds a number of time points (establishing a linear order 
amongst them) and initialises a message fluent that can be sent 
to the features. The detection phase involves passing feature 
rules, time points and messages to conflict detection rules. The 
conflict detection rules are then used to evaluate whether the 
feature rules are concordant or conflict, and to record 
evaluation results.  

For this work we studied feature rules looking for instances 
of different types of conflict: Shared Trigger Interaction (STI), 
Sequential Action Interaction (SAI), Sequential Action 
Interaction (SAI), and Missed Trigger Interaction (MTI). STIs 
occur when the antecedents of multiple features are satisfied 
such that they each perform actions in response to the same 
triggering event, and the operation of one or more of the 
features is different from how it would have reacted had it been 
the sole responder. SAIs occur when the operation of a feature 
is triggered in response to the actions of another feature. LIs are 
special cases of SAI whereby the operation of the chained 
features leads to redundant cycles. MTIs arise when the 
operation of a feature prevents the triggering of the operation of 
another one. The second feature may get stuck awaiting its 
trigger which is delayed, thereby causing the feature to operate 
incorrectly or not at all. 

To contextualise sensor networks for behaviour monitoring, 
we considered case studies based on a scenario involving 
researchers interested in studying the impact of Bipolar 
Disorder on subjects conducting their usual activities of daily 
living. Bipolar disorder is a severe psychiatric disorder 
characterised by patients being in patterned (possibly cyclic 
and/or recursive) affective states, including mania, hypomania, 
eurythmia, depression and mixed states.  

The scenario case studies depict how features could conflict 
by a particular conflict type. For example, an example MTI 
case study is shown in figure 2. It shows rules for a case study 
in which a mobile phone is subscribed to a feature rule that 
delays the transmission of a message that would activate a 



Figure 3.  MTI conflict detection rule. 

home monitoring system. Such delays may be reasonable from 
a phone programmer’s point of view to minimise bandwidth 
usage and maximise battery life. If the subject travels from 
home, returns home briefly, then sets off again the home 
monitor would remains off because a trigger to turn it on would 
not be sent by the phone. This would lead to not capturing any 
abnormal behaviour about the brief return. Section 4 shows 
results of five case studies (one for each interaction type). 

C.  Conflict Detection Rules 

Each of the conflict types were encoded as detection 
algorithms. These detection rules can be loaded into the 
analysis engine to check different rules for conflict.  

Detecting MTI can be accomplished by testing features 
sequentially to ensure that a common fluent holds before being 
passed to each of the tested features. The fluent can be 
considered as a type of triggering message that should remain 
in a consistent state between features. Such an approach need 
not make any assumptions about the contents of the message, 
nor about the actions that should be performed by the features, 
nor also about what the rules do upon receiving a message.  
The algorithm for detecting MTI is shown in figure 3. The 
analytical framework evaluates a MTI concordance rule with 
arguments that consist of a pair of feature description rules, 
time points for the start times of each of the features, and the 
message fluent. The fluent initially holds prior to being passed 
to the first feature. Features conflict if the fluent becomes 
clipped prior to the execution of a feature. 

STI detection, shown in figure 4, begins by loading 
arguments that consist of a pair of feature description rules, but 

Figure 4. STI conflict detection algorithm. 

ignores the time points and the message fluent arguments. The 
fluent initially holds prior to being passed to the first feature 
and the second feature. Features conflict if a check of the 
initiated actions from the first instance of the first rule does not 
match the second instance's initiated actions. 

SAI can be detected by testing to determine if a feature rule 
performs an action that leads to actions being performed by a 
second rule. This can be accomplished by running rules 
sequentially within the framework and checking for α 
sentences that describe actions that will be performed as a 
result of the firing of the two rules. The analytical framework 

Figure 5. SAI conflict detection algorithm. 



 

 

performs the procedures shown in figure 4. It uses the standard 
initialisation phase and then loads the SAI detection rule. This 
begins by ensuring the correct ordering of the time points. It 
then performs the first feature rule, stores its α sentences, and 
then re-initialises the world. Then it performs the second 
feature rule and stores its α sentences whereupon it re-runs the 
first rule and subtracts the second rule's actions from its 
actions. The remaining α sentences are compared with the 
actions from the initial run of the first rule. If they are the same 
then the second rule results in no additional actions, therefore 
the rules concord; otherwise they conflict by SAI.  

LI occurs when one rule triggers another which in turn 
causes the first one to be re-triggered. LI, therefore, is a special 
case of SAI that can be defined as SAI leading to the triggering 
of the first rule's actions. This can be detected by performing 
SAI checks on the features and examining the output for cases 
where two features have SAI regardless of whether they are the 
first or second rule.  

IV. EXPERIMENTAL RESULTS 

Case studies were used to validate the detection algorithms 
against device rules. Here, we describe the results from one 
case study per conflict type. 

A. MTI Case study 

This is an MTI example of potentially conflicting rules. The 
rules describe features for subject response prompting and 
notification suppression (which might be enabled if a subject 
were in a meeting for instance). These rules each receive 
variables for the triggering message fluent and the time points 
for when they are respectively executed. Conclusions and 
Future Work 

The results of analysing these features using the analysis 
engine for MTI are shown in table 1. The table shows that if the 
notification suppression feature is used prior to a second usage 
of the feature or the use of the response prompting feature then 
MTI occurs. In addition two instances of the response 
prompting feature will conflict if they are used together, as will 
response prompting when it is called before notification 
suppression. 

B. STI Case study 

This case study is characterised by the use of features from 
different services that run on the same device. In this case a  

 

Feature 1 Feature 2 Result 

Context Trigger Context Trigger STI 

Context Trigger State Trigger A STI 

Context Trigger State Trigger B Concordance 

State Trigger A Context Triggering STI 

State Trigger A State Trigger A STI 

State Trigger A State Trigger B Concordance 

State Trigger B Context Trigger Concordance 

State Trigger B State Trigger A Concordance 

State Trigger B State Trigger B Concordance 

 

mobile phone has features for Context Trigger to determine 
what activity the subject is engaged in when leaving home.  

Similarly, rules have been set up using State Trigger to 
determine the emotional state that the subject is in when the 
subject’s behavioural state changes from sitting to walking. An 
interaction can occur when the subject walks away from home. 
Here, both features may be triggered, however only one can 
elicit a response at a time, therefore a conflict occurs and the 
other feature will not be fulfilled.  

Table 2 shows the analysis results for this case study. It 
shows the results of the use of two different versions of the 
state trigger rule. Normally, only one form of a feature would 
be used; however, in this case it is interesting to see what 
would happen depending on the form used. Form A responds to 
changes upon receiving state information in a similar manner 
as the Context Trigger rule. They both trigger an action in 
response to being triggered. Form B of the state triggering rule 
however is inert. 

C. SAI Case Study 

The case study features the rules Data Transfer and 
Redirect Data Stream. Data Transfer causes an action to occur, 
but Redirect Data Stream initiates a fluent change in response 
to the action. The fluent change in turn leads to the 
performance of another action. It is this connection which 
characterises a sequential interaction.  

The results of testing the feature rules in the analytical 
framework using the SAI detection rule are shown in table 3.  

 

Feature 1 Feature 2 Result Looping 
Case 

Data Transfer| Data Transfer| SAI Yes 

Data Transfer| Data Redirect  SAI Yes 

Data Redirect  Data Transfer| SAI Yes 

Data Redirect  Data Redirect  Concordance No 

Feature 1 Feature 2 Result 

Notification 
suppression 

Notification 
suppression 

MTI 

Notification 
suppression 

Response 
prompting 

MTI 

Response 
prompting 

Notification 
suppression 

MTI 

Response 
prompting 

Response 
prompting 

MTI 

TABLE III.  SAI CASE STUDY DETECTION RESULTS 

TABLE I.  MTI CASE STUDY DETECTION RESULTS TABLE II.  STI CASE STUDY DETECTION RESULTS 



SAI was detected when Data Redirect was the first feature rule 
and Data Transfer was the second. This situation resulted in 
Data Transfer preceding Data Redirect and thereby initiating an 
action that leads to the initiation of an action within Data 
Redirect. SAI also resulted when Data Transfer was the first 
feature followed by either another Data Transfer or Data 
Redirect. 

D.  LI Case study 

This case study considered a case where Data Transfer and 
Data Redirect are used on two devices, each directing the 
stream to the other. The results are also presented in table 3. A 
check of Data Transfer as both the first and second features 
resulted in LI in this case. 

V. CONCLUSIONS AND FUTURE WORK 

A vision of telecare is one of continuous collection, storage, 
analysis and reaction to multimodal data streams from a variety 
of sources. These processes will automatic, adaptive and 
personalised. The fusion of objectively measured and 
subjectively reported data on physical activity, location, 
interactions with others, psychological state and context will 
provide a wealth of knowledge from which we can tailor 
appropriate care. 

With adaptation, however, comes the concern of 
minimising device conflicts. Like other complex adaptive 
systems such as call control systems, interactions can emerge 
that degrade the integrity of the network. These must be 
guarded against in future telecare systems.  

We have begun this process by developing and testing 
algorithms that can be used to detect conflicts between telecare 
service features. In this paper we have reported the detection of 
four kinds of conflict that emerged in distributed telecare 
service rule descriptions. Situations that involve the distributed 
operation of a variety of devices are likely to occur. It is 
important to guard against conflicts within them to ensure the 
reliability of data collection and analysis procedures that will 
underpin the delivery of care. 

The next step in this work will be a more thorough 
exploration of our initial results employing a broader range of 
scenarios and exercises. Also, the technique has a strong 
potential to be embedded more effectively within a future 
version of the PAM network architecture to provide a more 
responsive coverage. This will allow personalised telecare 
networks to self-heal when conflicts are detected and resolve 
problems in such a way as to maximise the integrity of the data. 

Resolving conflicts in real-time will be an important aspect of 
such work. Future technical trials of embedded conflict 
detection will allow us to collect real-world data which could 
be compared with trial data from our system with conflict 
detection switched off. These steps are being actively pursued.  
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