

Speech Technology for E-Inclusion and Rehabilitation

Mark Hawley

- Access
- Control
- Communication
- Assessment
- Treatment

Focus on:

- physical disability
- dysarthria

- Speech recognition provides important means of access for some people with physical disability and 'normal' speech
- Recognition accuracy correlates with intelligibility
 - Speech recognition works for 'normal' speech, mild dysarthria and some moderate dysarthria
 - Does not work well for severe dysarthria
- Speaker dependent discrete word recognisers more successful than continuous for severe dysarthria

Control

• Control of the home environment an essential aspect of independence

- Current control methods can be slow and effortful
- Home control systems based on speaker dependent recognition are available
 - but do not perform adequately, especially for disordered speech

STARDUST

(Speech Training and Recognition for Dysarthric Users of aSsistive Technology)

- User-centred approach aim to make it work for our users
 - Speaker dependent recognition
 - Small vocabulary of discrete words tailored to speech capabilities of individual
 - Closed loop between recogniser training and user training

Participant	Vocabulary size	Pre-training		Post-training	
		No. of examples of each word	recognition accuracy (%)	No. of examples of each word	recognition accuracy (%)
1	11	30	95.8	103-108	100.0
2	7	13	96.2	32-34	100.0
3	10	30	82.0	51-58	86.0
5	13	30	96.9	79-110	99.7
6	11	30	92.7	46-55	96.4
7	11	30	77.3	35-50	95.5
8	13	30	80.0	56-66	90.8
overall			88.5		95.4

STARDUST recognition accuracy

Sex	Sex	Diagnosis	Intelligibility Rating	Recognition Accuracy (%)		
			(%)	Word (test)	Word	Phrase
1	F	Cerebral Palsy (CP)	10	100.0	90.0	83.3
2	М	Multiple Sclerosis	22	100.0	81.6	76.7
3	М	СР	0	86.0	93.0	86.7
4	М	СР	22	99.7	86.7	76.7
5	F	СР	0	90.8	83.3	70.0

Recognition accuracy in the home in normal usage under uncontrolled conditions

Communication

• Speech synthesis used extensively in assisted communication

- Much current research aims to increase the 'naturalness' of synthesised speech
 - Naturalness vs. intelligibility
 - Complex issues regarding acceptance of 'natural' voices by disabled people

VIVOCA Voice-input voice-output communication aid

User and professional consultation

Method

VOCA users and speech therapists

Semistructured interviews and focus groups

Thematic analysis

Results

- Acceptable as a means of communication
- Potential advantages over conventional VOCA
 - Quicker
 - Easier to use
 - Increased communication and independence
- Useful where speed and intelligibility crucial
 - *Meeting new people*
 - Telephone
 - Shopping
- Range of requirements for hardware and software

Assessment

Breaks in Phonation longer than .005 seconds Pitch Variation Index: 1.03	Pitch Values (Hz)
	320
***************************************	300
	280
	260
	240
	220
	200
	180
	160
	140
	120
	100
	80
	60
	40
<	>
Analyse 🖆	

Normal voice quality, low pitch variation (PVI=1.03) Hoarse / strangled voice, pitch variation is greater (PVI=2.73); CFDA objective measurement computes a 'D' grade

Therapy

OLP (Ortho-Logo-Paedia)

A clinical trial (7 subjects) suggests:

- Computerised therapy can be as effective as traditional techniques
- •Patients can practise independently
- •Potential for intensive treatment with reduced routine therapist input

- Speech technology has an important role in assistive technology :
 - Access
 - Control
 - Communication
- And in therapy
 - Assessment
 - Treatment
- R&D in clinical applications of speech technology is multi-disciplinary
 - requires knowledge of disabled user, assistive technology, speech pathology and speech technology
- Role of speech technology for older people?

www.barnsleyrd.nhs.uk

www.shef.ac.uk/cast

mark.hawley@nhs.net