
What is An Architecture? Kenneth J. Turner

Department of Computing Science and Mathematics University of Stirling, Stirling FK9 4LA, Scotland

Telephone: +44-1786-467-420 *Facsimile:* +44-1786-464-551 *Email:* kjt@cs.stir.ac.uk *Web:* http://www.cs.stir.ac.uk/~kjt/

7th September 1999

The Importance of Architecture

- architecture not development is hard
- architecture like program design, development like program coding
- poor architecture means:
 - hard to understand
 - hard to modify and extend
 - hard to analyse
- a good architecture:
 - essential for vague, ill-defined areas
 - improves informal problem statement
- working on a messy problem directly leads to a messy design!

Some Definitions

- dictionary definitions of architecture:
 - art or practice of structures
 - unifying or coherent form
 - method or style of building
- dictionary definitions of formality:
 - form or essence of a thing
 - outward form, structure, relationships or arrangement rather than content
- dictionary definitions of specification:
 - arrangement in a definite pattern
 - organisation of parts dominated by the whole
 - aggregated elements and their relationships
- architecture, formality and specification are thus closely related!

Historical Views

- 'in architecture, as in all the other operative arts, the end must direct the operation' (Sir Henry Wotton, 1624)
- 'the four arts of poetry, painting, music and architecture (which is a science) are the four faces of man' (William Blake, 1808)
- 'architecture in general is frozen music' (Friedrich von Schelling, 1809)
- 'no person who is not a great sculptor or painter can be an architect, he can only be a builder' (John Ruskin, 1853)
- 'no architecture is so haughty as that which is simple' (John Ruskin, 1853)
- 'after great pain, a formal feeling comes' (Emily Dickinson, 1876)

Questions and Answers

- questions the nature of architecture:
 - is architecture merely structure?
 - is architecture always design?
 - is structure mandatory?
 - do style and elegance play a part?
 - what should an architecture contain?
 - how detailed should architecture be?
 - how to assess architecture quality?
 - how to handle legacy architectures?
- answers architecture concerns:
 - components (the building blocks)
 - combinators (how to combine the building blocks)
 - principles (guidelines for defining the architecture)
 - criteria (methods for assessing the architecture)

Architectural Principles

- architectural principles answer questions like:
 - how to get a good architecture?
 - is this a good architecture?
 - is this architecture better?
- such principles are only guidelines and not mechanistic
- architectural principles come from:
 - systems theory
 - software engineering
 - formal methods

Principle	Techniques	Criteria
Modularity	Functional Decomp.	Coherence
	Constraint Decomp.	Decoupling
	Temporal Decomp.	Proportion
	Spatial Decomp.	
Generality	Parameterisation	Abstractness
	Generalisation	Commonality
	Unification	Adaptability
Simplicity	Idealisation	Uniformity
	Deferment	Elegance
	Minimisation	Economy

Modularity

- some familiar techniques:
 - divide and conquer
 - structured analysis
 - top-down specification
- modularity techniques:
 - functional decomposition
 - constraint decomposition
 - temporal decomposition
 - spatial decomposition
- decomposition carried out 'vertically', so multiple hierarchical levels

Generality

- must strike a balance between:
 - specificity suitable for next refinement, but not too specialised
 - generality more general than needed now, but not too cumbersome
- generality techniques:
 - parameterisation values, structure
 (e.g. for replication), sensible defaults
 - generalisation avoiding *unnecessary* restrictions
 - unification identifying similarities

Simplicity

- simplicity works with generality, removing unnecessary differences
- may require greater abstractness though not generality
- simplicity techniques:
 - idealisation:
 - 'blue sky' approach
 - initially ignore restrictions
 - avoid special cases
 - deferment:
 - avoid details too soon
 - controlled introduction of structure
 - minimisation
 - one solution instead of two ('Occam's Razor')
 - consistent use of limited constructs

Personal Publications on Architecture

- Gyula Csopaki and Kenneth J. Turner. Modelling digital logic in SDL. FORTE X/PSTV XVII, November 1997.
- Richard O. Sinnott and Kenneth J. Turner. Applying the architectural semantics of ODP to develop a trader specification. Computer Networks, March 1997.
- Kenneth J. Turner. An architectural foundation for relating features. Feature Interactions in Telecommunication Networks and Software Systems, June 1997.
- Kenneth J. Turner. Incremental requirements specification with Lotos. Requirements Engineering, November 1997.
- Kenneth J. Turner. Relating architecture and specification.
 Computer Networks, March 1997.
- Kenneth J. Turner. Specification architecture illustrated in a communications context. Computer Networks, March 1997.
- Kenneth J. Turner. A structural comparison of FrameMaker and LaTEX. Electronic Publishing, April 1997.
- Kenneth J. Turner. An architectural description of intelligent network features and their interactions. Computer Networks, September 1998.
- Kenneth J. Turner and Richard O. Sinnott. DILL: Specifying digital logic in Lotos. FORTE VI, October 1994.
- Kenneth J. Turner and Marten van Sinderen. Lotos specification style for OSI. The LOTOSPHERE Project, 1995.