
Modular Feature Specification

Ken Turner
University of Stirling

4th April 2001

1

Intr oduction

• motivation:

• separate description and analysis
• formalisation in various languages
• ‘plug-in’ domain and language
• extensions for feature modularity

• notation:

• root diagram
• spliced feature
• template feature

• toolset:

• architecture
• LOTOS:

• framework
• translation
• analysis

2

Motiv ation

• CRESS (CHISEL Representation
Employing Systematic Specification)
based on CHISEL:

• mature industrial basis
• simple graphical notation

• goals of CRESS:

• separate description and analysis
• backwards-compatible with CHISEL

• defined, enforced diagram rules
• fully formalised
• modular, flexible feature description
• ‘plug-in’ domain and language

• originally could handle:

• features described in isolation
• diagram translation to LOTOS and SDL

• extensions needed for:

• self-contained features
• flexible combination of features
• multi-leg billing and redirection

3

Root Diagram – POTS

1 Off-hook A

2 DialTone A

3 Dial A B 17 On-hook A

4 Start Ringing B A |||
Start AudibleRinging A B 15 LineBusyTone A

Idle B

5 Answer B 13 On-hook A

6 Stop Ringing B A |||
Stop AudibleRinging A B |||

Start Billing A B

7 On-hook A

8 Disconnect B A |||
Stop Billing A B

9 On-hook B 12 On-hook A

10 On-hook B

11 Disconnect A B |||
Stop Billing A B

Busy B

14 Stop Ringing B A |||
 Stop AudibleRinging A B

16 On-hook A

Uses Address A Address B

Off-hook P / Busy P <- True
Answer P / Busy P <- True
On-hook P / Busy P <- False
Start Ringing P Q / Busy P <- True
Stop Ringing P Q / Busy P <- False
Idle P <- ~Busy P

4

Spliced Feature

• splice a feature into root diagram if:

• non-modular, non-parameterised
• localised effect, applies only once

• INTL (IN Teen Line):
POTS Start

POTS 1
1 Off-hook A

2 OriginationAttempt A A Any Time

Uses / POTS

3 SendToResource A A M1

4 Announce A M1

5 On-hook A 7! Dial A A1

8 Resource A A1

13 Continue A A Any

POTS 2

9 SendToResource A A M2

10 Announce A M2 |||
Resource A Any

11 Terminate A A

12 On-hook A

6 ResourceAbort A A

5

Template Feature

• instantiate feature in root diagram if:

• modular, parameterised
• spread effect, applies several times

• CFBL (Call Forward Busy Line):

1* Dial P QUses / POTS

ElseBusy Q &&
ForwardBusy Q != Any /

Via P ForwardBusy Q <- Q /
Q <- ForwardBusy Q

• compare this in spliced form:
POTS 2

POTS 3
3 Dial A B

4 Start Ringing C A |||
Start AudibleRinging A C

Busy B &&
(C!=Any) && Idle C

Uses Address C / POTS

Dial A B / C <- ForwardBusy B

POTS 4 15 LineBusyTone A

16 On-hook A13 On-hook A

14 Stop Ringing C A |||
Stop AudibleRinging A C

5 Off-hook C

Else

6 Stop Ringing C A |||
Stop AudibleRinging A C |||

LogBegin A B A Time |||
LogBegin B C B Time

10 On-hook C7 On-hook A

Idle B

11 Disconnect A C |||
LogEnd A B Time |||
LogEnd B C Time

8 Disconnect C A |||
LogEnd A B Time |||
LogEnd B C Time

12 On-hook A9 On-hook C

6

Billing and Redirection

• billing must be modelled properly:

• raison d’être for operators!
• can lead to interactions in its own right
• billing variations needed (e.g. Credit

Card, FreePhone, Split Charging)
• forwarding leads to multiple billing legs
• record each leg and who pays
• chain features (e.g. INFB, INFR, INCF,

CFBL)
• template loops return to start of chain
• Start/Stop Billing macro events

• INFB (IN Freephone Billing):

1* Dial P Q

2 InfoAnalysed Q P Q Time

Uses / POTS

3 AnalyseRoute Q P Q A1 /
Bill P Q <- A1 4 Continue Q P Q

7

CRESS Tools

• designed to be independent of:

• application domain
• diagram editor
• target language
• platform

• framework depends on domain/language

• preprocessor instantiates:

• domain-dependent data types
• user profiles
• root/feature combinations
• for chosen target language

• toolset:

Target
Language
Realisation

Target
Back-End

Analysis/
Simulation

Results

Target
Front-End

CRESS
Diagram

Target
Language
Framework

Code
Generator

Diagram
Editor LexerPre-

processor
Parser

8

LOTOS Framework

Specification Network [User] : NoExit
Librar y ... (* library *)
Type ... (* pre-defined *)
Type ... (* domain-specific *)
Behaviour (* overall *)

Hide Bill,Stat,Scp In
CallInstances [Bill,Scp,Stat,User]

|[Scp]|
ServiceControl [Scp,Stat]

|[Stat]|
StatusManager [Bill,Stat] (...)

|[Bill]|
BillingSystem [Bill]

CRESS LOTOS

diagram param process param
Any dummy / AnyAddress
node direct / process call
event ||| event ‘;’ / ‘|||’
event event offer
event param ‘!’ / ‘?’
variable read expression / read status
variable write Let / write status
Time read clock
leaf node Stop / recursion

9

LOTOS Anal ysis

• emphasis so far on generic description

• validation strategy:

• evaluate features in isolation
• build up ‘use case’ scenarios
• represent using ANTEST (ANISE Test)
• check scenarios with all features
• interactions show up as deadlock or

non-determinism

• future plans:

• techniques of others (e.g. Ottawa)
• automated test generation
• symbolic checking

10

Conc lusion

• formalisation:

• diagram rules thoroughly checked
• automated translation to LOTOS/SDL
• embedded in specification framework

• feature description:

• spliced features for ‘one-offs’
• template features much more modular
• multi-leg billing/redirection handled

• toolset:

• domain/language/platform
independent

• early work on interaction analysis

• future work:

• new telecomms uses (SIP, policies)
• non-telecomms uses
• automated test generation
• symbolic checking

11

Discussion Points

• syntactic, not semantic, composition
needed?

• representation more important than
analysis?

• proper feature architecture can reduce
need for interaction detection?

• diagrammatic, not symbolic, notation
needed?

• validation more practical than
verification?

• off-line analysis more useful than on-line
resolution?

• what are modular features?

• why has ‘BellCore’ interest in CHISEL

waned?

• how to get companies using CRESS?

• necessary to model speech in features?

12

