1. Template Method Hyper-heuristics
2. The Composite Design Pattern

GECCO -

John Woodward jrw@cs.stir.ac.uk
Jerry Swan jsw@cs.stir.ac.uk
Simon Martin spm@cs.stir.ac.uk
Outline

Template method hyper-heuristics
– Sets of algorithms
– Type signatures
– Example Genetic Algorithm mutation operator
– Consequences

Composite design pattern
– hyper-heuristic
– Ensembles.
Template Method Hyper-heuristics

• **Template Method** is a design pattern.

• Some methods of a class have specified type signatures but no implementation (body) i.e. abstract class.

• The abstract class(es) can be supplied later by another programmer.

• OR can be supplied by Automatic Programming Technique such as **Genetic Programming**.
Proposing Sets of Algorithms

In the *template method*, one or more algorithm steps can be **overridden** by subclasses to allow **differing** behaviours while ensuring that the **overarching** algorithm is still followed.

- **Concrete** methods/classes **constrain** the **behaviour** of the program.
- **Abstract** methods/classes allow **variation**.

A template is a **skeleton**.
1. **Challenge** is defining an algorithmic framework *(set)* that **includes** useful algorithms, and **excludes** others.

2. Let Genetic Programming **select the best algorithm for the problem class at hand.** Context!!! Let the data speak for itself without imposing our assumptions.
Type Signatures

- \(H = \text{history}, \ P = \text{population} \)

\[
\begin{align*}
\text{initialization} : & \ Void \rightarrow P \\
\text{selection} : & \ P \times H \rightarrow P \\
\text{variation} : & \ P \times H \rightarrow P \\
\text{succession} : & \ P \times H \rightarrow P \\
\text{termination} : & \ H \rightarrow \text{Bool}
\end{align*}
\]
Evolutionary Algorithm Template

procedure evolve
begin
 pop = initialization()
 history = []
 repeat
 parents = selection(pop, history)
 offspring = variation(parents, history)
 pop = succession(offspring, history)
 history = history.append(pop)
 until termination(history)
end
Example – mutation for GA.

• **Examples:** one point and uniform mutation.

• **Behaviour:** Given a bit string of length n, return a bit string of length n.

• We could write another mutation operator.

• **NO NO NO** – let Genetic Programming DO ALL THE HARD (and boring) WORK.

• **Generate-and-and-test** a Generate-and-test method
A **program** is a list of instructions and arguments. A **register** is set of addressable memory (R0,..,R4). Negative register addresses means **indirection**. A program can only **affect IO registers indirectly**. +1 (TRUE) -1 (FALSE) +/- sign on output register. Insert bit-string on IO register, and extract from IO register.
Expressing Mutation Operators

- **Line**
 - **0**
 - UNIFORM: Rpt, 33, 18
 - ONE POINT MUTATION: Rpt, 33, 18
 - **1**
 - Nop
 - **2**
 - Nop
 - **3**
 - Nop
 - **4**
 - Nop
 - **5**
 - Nop
 - **6**
 - Nop
 - **7**
 - Nop
 - **8**
 - Nop
 - **9**
 - Nop
 - **10**
 - Nop
 - **11**
 - Nop
 - **12**
 - Nop
 - **13**
 - Nop
 - **14**
 - Nop
 - **15**
 - Nop
 - **16**
 - Nop

- Uniform mutation
 - Flips all bits with a fixed probability.
 - 4 instructions

- One point mutation
 - Flips a single bit.
 - 6 instructions

Why insert NOP?
- We let GP start with these programs and mutate them.

10/07/2014
John Woodward University of Stirling
In a Nutshell

• **Humans** design the structure of the program e.g. the for-loops (GP is bad at that) (INVARIANT)
• Let **GP** build the **body** of the for-loop (VARIANT).
• The final program is part **man made** and part **machine made**.
• We used the **Object Oriented** approach but could be expressed in terms of e.g. **Functional programming** (pass in a mutation operator).
Consequences

1. Instead of proposing a **single algorithm**, “In this paper we propose a novel algorithm”...

2. We can now propose a set of algorithms, “In this paper we propose **10,000 algorithms**”

3. The resulting algorithm is **typically better** than a human designed algorithm.

4. If the problem changes, **we can instantly call on Genetic Programming again**.
The Composite Design Pattern

The composite pattern describes that a group of objects is to be treated in the same way as a single instance of an object.

- Hyper heuristics
- Ensembles
Hyper-Heuristics

- Heuristics to **choose** heuristics $H: [S] -> [S]$
- Heuristics to **generate** heuristics $H: [O] -> [O]$
Composite Hyper-heuristic

- Operator maps state to state. \(O: [S] -> [S] \)
- Where \([S]\) is a list (trace or history of states)
- Hyper-heuristic \(H: [S] \times [O] -> [S] \times [O] \)
- Selective hyper-heuristics update former \([S]\)
- Generative hyper-heuristics update latter \([O]\)
Ensembles of Classifiers

1. How to **combine** the classifier outputs to compute an overall classification?
2. How to **generate** multiple diverse classifiers to produce a well-performing ensemble?
3. How to **set the parameters** of machine learning algorithms?
4. How can we build high quality classifiers more efficiently in the new era of **big data** and **parallel processing**?
Combining Classifier Outputs

- **Majority vote**: The entire set of classifiers vote on a class, and the class which receives the most votes is taken.

- **Averaging**: If the outputs of each classifier are a real number then the outputs can be averaged.

- **Weighted average**: Each classifier is assigned a weight according to its `expertise'. When the averaging is done more emphasis is placed on the classifiers with a higher weight.

- **Algebraic combiners**: real-valued outputs of classifiers are combined through statistical expressions such as sum, mean, product, median, minimum, maximum.
Generating Diverse Classifiers

- **Bagging** (bootstrap aggregation)random samples (usually with replacement) taken from the original dataset
- **Boosting** adjusts the probability of sampling misclassified data. Thus, misclassified data is more likely to be considered in the training of subsequent classifiers.
- **Stacked Generalization** trains multiple levels of classifiers.
- **Mixture of Experts** generates several classifiers whose outputs are combined through a rule which typically trained using the expectation maximization (EM) algorithm.
Consequences

1. Generation of **Diverse** Classifiers
2. Statistically better **behaviour**
3. Integration of different types of classifier
4. Learning Classifier Systems
5. **Confidence**
6. Levels of Measurement
7. **Statistics and Machine Learning**
8. Classifier Outputs as Features
9. Ensembles of Linear Classifiers
10. **Big Data and Parallelism**
Surrogate Fitness Function

• We may substitute an objective function (supplied by the domain expert) with a surrogate fitness function.
 1. It is expensive to execute
 2. It is not known explicitly
 3. It is rugged/multimodal.
Closing Statement

• A catalogue of design patterns (with motives and consequence) could stop us reinventing the wheel.
• Definition – do we need one? Even informal?
• Metaheuristics are very ad hoc – why?
• Machine learning – training and testing phase.
• Standardise terminology? (Re)-educate?
• Thank you – questions? 😊