Metaheuristic Design Pattern: Surrogate Fitness Functions

Alexander E.I. Brownlee1
John R. Woodward1
Jerry Swan2

1 University of Stirling, UK
2 University of York, UK
Outline

• Problem statement
• Solution
• Consequences
• Implementation
• Examples
Problem statement

• Metaheuristics need some notion of “fitness”

We’re done – how did we do? (objectives)

• Two purposes:
 1. Measure quality (wrt the objectives+constraints)
 2. Guide the search

• (1) is not necessarily suitable for (2)…
Problem statement

The *true* fitness function might:

1. Be costly
2. Be noisy
3. Not have a useful search gradient
Solution

• *Surrogate* fitness function in place of “true” FF
 – Still need to refer to “true” fitness occasionally

• a.k.a. meta-model, proxy, fitness model or approximation
 – typically one of the above for costly problems, but less so for noisy problems or reshaping landscape

• Two types:
 – Static
 – Dynamic
Solution

• Static surrogates
 – part of problem definition
 – can include domain knowledge
 – typically guides search towards partial solutions

• Constraint relaxation, multi-objective weights
 – *might* be classed as surrogates

• Often used already!
 – We don’t usually directly search the real world
Solution

• Dynamic surrogates
 – Regression or machine learning: polynomials, Kriging, artificial neural networks, interpolations
 – Fitness inheritance

• Trained using samples of “true” fitness

• Updated or replaced over time
 – bridge / handle / body pattern

• Ensembles combine strengths of many
 – “composite” pattern
Consequences

• Search landscape altered
• Approximation errors
 – Must make reference to objective function
 – e.g. Surrogate filters new solutions before full evaluation, or switch between surrogate & true
• Can offer speed up – but balance with overhead
• Surrogate explicitly models fitness: mine it to support decision making
Example 1

- Long-running simulations of building energy performance (mins to hrs)
- RBFN surrogate uses population as training data
- Filters offspring before evaluation with full simulation
- Many similar examples

Example 2

- Eternity II puzzle
- Objective: maximise matched adjacent edges
- *Surrogate* objectives:
 - Completed 2x2 squares
 - Completed 3x3 squares
 - Completed 4x4 squares
 - Tiles with all 4 edges matched
- Search iterates over two stages: surrogate, then objective

Example 3

- MFM-GA uses undirected PGM (Markov network) to approximate fitness
- PGM initialised with dependencies between 5-bit blocks in problem, coefficients estimated using randomly generated population
- Fewer evals wrt GA, but more overhead

<table>
<thead>
<tr>
<th></th>
<th>GA</th>
<th>MFM-GA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Evals</td>
<td>83421</td>
<td>70839 (surr.) 14520 (true)</td>
</tr>
<tr>
<td>Runtime</td>
<td>1.44 s</td>
<td>24.6 s</td>
</tr>
</tbody>
</table>
Mining a surrogate model

• Examine the surrogate model to gain insight into the problem

• Model here shows where glass is preferred (blue) on the façade
Summary

• “true” fitness not always suited to guiding search
• Use surrogates to improve search efficiency
• Static surrogates often used already!
• More reading...

www.cs.stir.ac.uk/~sbr sbr@cs.stir.ac.uk
Class diagram

- ObjectiveFunction
- Problem
- Solver
- SurrogateFunction
- EnsembleSurrogate
- DynamicSurrogate
- EvaluationFunction

Relationships:
- ObjectiveFunction -> Problem
- Problem -> SurrogateFunction
- SurrogateFunction -> EnsembleSurrogate
- SurrogateFunction -> DynamicSurrogate
- Problem -> Solver