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ABSTRACT

We propose a network characterization of combinatoria¢fisiand-
scapes by adapting the notion ioherent networkgroposed for
energy surfaces [5]. We use the well-known familyK land-
scapes as an example. In our case the inherent network isaple g
where the vertices are all the local maxima and edges meam bas
adjacency between two maxima. We exhaustively extract sath
works on representative small K landscape instances, and show
that they are ‘small-worlds’. However, the maxima graptes raost
random, since their clustering coefficients are much latgan
those of corresponding random graphs. Furthermore, theeeeg
distributions are close to exponential instead of PoissaniWe
also describe the nature of the basins of attraction and télai-
tionship with the local maxima network.

Categories and Subject Descriptors

1.2.8 [Artificial Intelligence ]: Problem Solving, Control Methods,
and Search-Heuristic methodsG.2.2 Discrete Mathematicg:
Graph Theory—Network problems

General Terms
Algorithms, Measurement, Performance

Keywords

Landscape Analysis, Network Analysis, Complex Networks;dl
Optima, N K Landscapes
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A fitness landscape of a combinatorial problem can be seen as a
graph whose vertices are the possible configurations. Ifdwe
figurations can be transformed into each other by a suitgiseso
tor move, then we can trace an edge between them. The resultin
graph, with an indication of the fitness at each vertex, isp re
resentation of the given problem fitness landscape. Doy&][5,
has recently introduced a useful simplification of the finkeed-
scape graph for the energy landscapes of atomic clusteesidéh
consists in taking as vertices of the graph not all the ptessitin-
figurations, but only those that correspond to energy minifa
atomic clusters these are well-known, at least for relbtigenall
assemblages. Two minima are considered connected, anarnhus
edge is traced between them, if the energy barrier sepgrétam
is sufficiently low. In this case there is a transition stateaning
that the system can jump from one minimum to the other by ther-
mal fluctuations going through a saddle point in the energyehy
surface. The values of these activation energies are mkisblyn
experimentally or can be determined by simulation. In thig/w
a network can be built which is called the “inherent struetwr
“inherent network” in [5]. We use a modification of this idear f
studying the well-knownN K combinatorial landscapes. In our
case, a vertex of the graph is a local maximum, and there idgm e
between two maxima if they lay on adjacent basins.

In the context of meta-heuristics, it is important to idgnthe
features of landscapes that would influence the effectaemé
heuristic search. Such knowledge may be helpful for botdipte
ing the performance and improving the design of meta-hecsis
Among the features of landscapes known to have a strong mtiue
on heuristic search, is the number and distribution of logaima
in the search space. An interesting property of combirattand-
scapes, which has been observed in many different studidgsat
on average, local optima are very much closer to the global op
timum than are randomly chosen points, and closer to eadr oth
than random points would be. In other words, the local optnga
not randomly distributed, rather they tend to be clustenea‘icen-
tral massif' (or “big valley” if we are minimising). This ghmally
convex landscape structure has been observed iV #kidamily of
landscapes [11], and in many combinatorial optimisatiambjams,
such as the traveling salesman problem [2], graph bipamtity
[13], and flowshop scheduling [16].

In this study we seek to provide fundamental new insights int



the structural organization of the local optima in combami land-
scapes, particularly into the connectivity and charasties of their
basins of attraction, usingV K landscapes as a case study. To
achieve this, we first map the landscape onto a network, amd th
analyze the topology of this network for a number of sniélk
landscape instances for which complete networks can bénebita
Our analysis is inspired, in particular, by the work of Doge §]

on energy landscapes, and in general, by the field of commex n
works [14, 20, 21]. The study of complex networks has already
permeated the evolutionary computation field. Specificatlyhe
study of scientific collaborations [3, 12], the structureagbopu-
lation in cellular evolutionary algorithms [9, 10, 15], atite evo-
lution of networks of cellular automata [19]. However, otudy

is the first attempt, to our knowledge, of using network asialy
techniques in connection with the study of fithess landssapel
problem difficulty in combinatorial optimization.

The next section introduces the study of complex netwonkg, a
describes the main featuressshall-worldandscale-freenetworks.
Section 3 describes how landscapes are mapped onto nepandks
includes the relevant definitions and algorithms. The eicgdinet-
work analysis of our selecte K landscape instances is presented
in Section 4, whilst Section 5 gives our conclusions andsdea
future work.

2. COMPLEX NETWORKS

The recent interest in the study of networks and networksed sy

tems was influenced by the seminal paper by Watts and Strogatz

[21], who showed that many real-world networks are neitloanc
pletely ordered nor completely random, but rather exhibjiartant
properties of both. Some of these network properties camiastig
fied by simple statistics such as the clustering coeffidignihich
is a measure of local density, and the average shortest gagthl
I, which is a global measure of separation. It has been showa in
cent years that many social, biological, and man-made rsystew
what has been calledsanall-worldtopology [21], in which nodes
are highly clustered yet the path length between them islsmal

A second important aspect in the study of networks has been

the realization that in many real-world networks, the dstiion
of the number of neighbours (the degree distribution) isciity
right-skewed with a "heavy tail", meaning that most of thele®
have less-than-average degree whilst a small fractionslef have
a large number of connections. These qualitative desorigtan
be described mathematically by a power-law [1], which has th
asymptotic formp(k) ~ k<. This means that the probability of
a randomly chosen point having a degkedecays like a power of
k, where the exponent (typically in the rangg2, 3]) determines
the rate of decay. A distinguishing feature of power-lawtriis-
tions is that when plotted on a double logarithmic scale, \aguo
law appears as a straight line with negative slap&his behavior
contrasts with a normal distribution which would curve giyaon

a log-log plot, such that the probability of a node having grde
greater than a certain "cutoff" value is nearly zero. Themveauld
then trivially represent a characteristic scale for thewoelt degree
distribution. Since networks with power-low degree dimition
lack any such cutoff value, at least in theory, they are oftated
scale-freenetworks [20]. Examples of such scale-free networks are
the world-wide-web, the internet, scientific collaboratand cita-
tion networks, and biochemical networks.

3. LANDSCAPES AS NETWORKS

and how two states were connected. The states and their@onne
tions will then provide the nodes and edges of the networksiFe-
tems with continuous degrees of freedom, the author adthithie
through the ‘inherent structure’ mapping [18]. In this meggpeach
point in configuration space is associated with the minimem (
‘inherent structure’) reached by following a steepestzdas path
from that point. This mapping divides configuration intoinasof
attraction surrounding each minimum on the energy landscap
We use a modification of this idea for thg K family of bi-
nary landscapes, which indeed can be applied to any conobinat
rial landscape. In our case, the vertexes of the graph aredhé
maxima of the landscape, obtained exhaustively by runniogsé
improvement local search algorithm (see Algorithm 1) frorarg
configuration of the search space. The edges in the netwariect
local optima of adjacent basins of attraction. An illustatfor a
model 2D landscape can be seen in Figure 1, which is inspyred b
similar figure appearing in [5, 6]. Here, we illustrate a natkvof
local maxima (instead of local minima). A more formal defiit
of our inherent networks is given in Section 3.1. As it wasdhse
in the study on physical energy landscapes [6], we do notidens
multiple edges, or weights in the edges. This may be a faotor t
consider in future work.
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Figure 1: Amodel of a 2D landscape (left), and a contour plotb
the local optima partition of the configuration space into bains
of attraction surrounding maxima and minima (right). A sim-
ple regular network of six local maxima can be observed.

Note that while a physical energy landscape is formally & con
tinuous landscape, ours are strictly combinatorial, iiscréte and
finite. Moreover, the energy landscape of a stable atomistety
crystal or molecule is relatively smooth and easy to seanchhas
been called a “funnel” landscape [5]. In contrast,NiK land-
scapes one can continuously vary the intrinsic landscdfieutty
by changing the value oK. As a result, we shall see thatK
landscapes show a number of different behaviors dependirg o
for a givenN, and these different behaviors are reflected on their
inherent networks. Indeedy K landscapes can be seen as analo-
gous to those of spin-glasses [11, 17]. In contrast to atcingter
energy landscapes, spin glass landscapes may show fiurstiat.
configurations that must respect conflicting constraintd,solving
for the ground state of the system that is, the minimum eneogy
figuration is an NP-hard problem. Similar consequencesarsatl
by the introduction of epistatic interactions through therease of
the K value inN K landscapes.

Below we present the relevant formal definitions and alporg
to obtain our combinatorial analogous of an energy landsdap
herent network.

To model a physical energy landscape as a network, Doye [6] 3-1 Definitions and Algorithms

needed to decide first on a definition both of a state of theepyst

Definition : Fitness landscape.



A landscape is a triplgtS, V, f) whereS is a set of potential solu-
tions i.e. a search spacg,: S — 2% a neighborhood structure,
is a function that assigns to evesyc S a set of neighbour¥’(s),
andf : S — R is a fitness function that can be pictured as the
heightof the corresponding potential solutions.

In our study, the search space is composed by binary strings o
length N, therefore its size i8". The neighborhood is defined by
the minimum possible move on a binary search space, thdtss, t
1-move or bit-flip operation. In consequence, for any givieimg
s of length N, the neighborhood size {3 (s)| = N. Notice that

two models were found in [11] in terms of global propertieshef
respective families of landscapes, such as mean numbecalf lo
optima or autocorrelation length. Therefore, we explone e
adjacent neighborhood model, leaving the random modetfaré
analysis.

In order to avoid sampling problems that could bias the tesul
we used the largest values &f that can still be analyzed exhaus-
tively with reasonable computational resources. We thtraeted
the local optima networks of landscape instances Witk- 16, 18,
andK = 2,4,6,...,N — 2, N — 1. For each pair ofV and K val-

in NK landscapes, two neighboring solutions never have the sameues, 30 instances were explored. Therefore, the netwaakistits

fitness value. Therefore, neutrality is not present. Laaples with
neutrality will be considered in future work.

Definition: Local Optimum.
A local optimum is a solutios™ such thatvs € V(s*), f(s) <
£(s).

The LocalSearch algorithm to determine the local optima and
therefore define the basins of attraction, is given below:

Algorithm 1 LocalSearch

Choose initial solutions € S

repeat
chooses’ € V(s) such thatf(s,) = matyecv(s) f(z)
if f(s) < f(s)then

S — 8/

end if

until sis a Local optimum

The LocalSearch algorithm defines a mapping from the search
spaceS to the set of locally optimal solutionS*. We therefore
define a basin of attraction as follows:

Definition : Basin of attraction.

The basin of attraction of a local optimuiris the set); = {s €
S| LocalSearch(s) = i}. The size of the basin of attraction of a
local optima; is the cardinality ob;.

We then define the inherent network, or network of local optim
as:

Definition : Local optima network.

The local optima networlkG = (S*, E) is the graph where the
nodes are the local optima, and there is an edgec E between
two local optima; andj if there is at least a pair of direct neighbors
(1-bit apart)s; ands;, such thats; € b; ands; € b;. That is, if
there exists a pair of direct neighbors solutiesand s;, one in
each basiny; andb;)

4. EMPIRICAL NETWORK ANALYSIS

4.1 Experimental Setting

The NK family of landscapes [11] is a problem-independent
model for constructing multimodal landscapes that can uatiyl
be tuned from smooth to rugged. In the mod®l,refers to the
number of (binary) genes in the genotype (i.e. the stringtlen
and K to the number of genes that influence a particular gene. By
increasing the value & from 0to N — 1, NK landscapes can be
tuned from smooth to rugged. Thesariables that form the context
of the fithess contribution of geng can be chosen according to dif-
ferent models. The two most widely studied models areahdom
neighborhoodmodel, where the: variables are chosen randomly
according to a uniform distribution among the- 1 variables other
thans;, and theadjacent neighborhoothodel, in which the: vari-
ables that are closest tg in a total orderingsi, sz, ..., sn (Us-
ing periodic boundaries). No significant differences bemwéhe

reported below represent the average behaviour of 30 indiepe
instances.

4.2 General Network Statistics

Table 1 reports the average of the network properties medsur
on N K landscapes folN = 16, 18 and all evenK values; K =
N — 1is also given. Values are averages over 30 randomly gener-
ated landscapes, andn. are, respectively, the mean number of
vertices and the mean number of edges of the graph for a given
rounded to the next integef! is the average of the mean clustering
coefficient$ over all the generated landscap&s, is the average
clustering coefficient of a random graph with the same nurober
vertices and mean degregis the average of the mean degres.
the average of the mean path lengths over all landscapanaesta
The last column contains the average degree assortativéifi
cienta, which measures whether nodes with similar degrees tend
to pair up with each other. The assortativity coefficientosputed
according to [14].

Notice that the mean number of vertexas X confirms that the
number of local optima (and thus the search difficulty) iases
with the value of K. Some other interesting inferences can be
drawn from these metrics. First of all, looking at thealues one
can conclude that the maxima networks are small worlds foakl
ues ofK since the growth of is bounded by a functio®(log n.,).

In a sense, this is not surprising as the whole configurati@te
spans the binary hypercu§e, 1}V of degreeN with 2V vertices,
which has maximum distance (diametér)= log2", i.e. 16 and
18 for our studied instances. However, while the base corafigun
space has constant degree for any node, the maxima network ar
degree-inhomogeneous (see next section) and have ahgstar
efficients well above those of equivalent random graphsywstgp
that there is local structure in the networks. For bdth= 16 and
18, the mean degreefirst increases with" and then goes down
again for K > 8. The assortativity coefficients are always very
small which means that there is almost no correlation betiee
degrees of neighboring nodes. For easy energy landscapgs, D
found that the networks were slightly disassortative [6].

4.3 Degree Distributions

The degree distribution functiop(k) of a graph represents the
probability that a randomly chosen node has dedré®4]. Ran-
dom graphs are characterized by(&) of Poissonian form, while
social and technological real networks often show long tiailthe
right, i.e. there are nodes that have an unusually large auwib
neighbors. Sometimes this behavior can be described by arpow

The clustering coefficienC; of a nodei is defined axC; =
2F;/ki(k; — 1), whereE; is the number of edges in the neigh-
borhood ofi. ThusC; measures the amount of “cliquishness” of
the neighborhood of nodeand it characterizes the extent to which
nodes adjacent to nodeare connected to each other. The cluster-
ing coefficient of the graph is simply the average over allezod

C=+>N Ci[14).



Table 1: Network properties of N K landscapes forN = 16, 18 and all

evenK values; K = N — 1is also given. Values are averages

over 30 randomly generated landscapes, standard deviatisrare shown as subscriptsn, and n. represent the number of vertexes
and edges (rounded to the next integer)’, the mean clustering coefficient, whilsC:. is the clustering coefficient of a random graph
with the same number of vertexes and mean degree, which (s, ~ z/7,. Z represent the mean degred, the mean path length , and

a the degree assortativity coefficient.

6 46029 26,4142035 | 0.550.013 | 0.2500.0150
8 89033 56, 0221951 0.440.008 | 0.1390.0061
10 | 1,47034 86, 4461766 0.360.006 | 0.0800.0023
12 | 2,25432 | 117,0851111 | 0.300.003 | 0.0460.0009
14 | 3,26429 146,3901025 | 0.260.002 | 0.0270.0003
15| 3,86833 | 160,690829 | 0.250.002 | 0.0219.0003

N =16
K Ty Ne C C z l a
2 3315 261166 0.680.095 | 0.5070.1536 | 14.553.826 | 1.540.182 | —0.00070.00591
4 17833 6, 3341646 0.660.036 | 0.4060.0615 | 70.486.615 | 1.600.062 | —0.01620.00467

114.763.033 | 1.750.016 | —0.02370.00283
124.521.800 | 1.880.008 | —0.0219¢.00250
117.621.137 | 2.000.009 | —0.01700.00182
103.910.695 | 2.190.012 | —0.01220.00104
89.700.349 | 2.470.009 | —0.00920.00064
83.090.469 | 2-580.007 | —0.00860.00059

N =18

2 5025 478342 0.620.106 | 0.4140.1697
4 33072 17,5764898 0.610.044 | 0.3320.0573
6 99473 93,0438588 | 0.510.016 | 0.1890.0115
8 | 2,09370 | 214,8446793 | 0.410.007 | 0.0980.0038
10 | 3,619 348, 7615275 | 0.330.004 | 0.0530.0011
12 | 5,65759 | 476,6143416 | 0.270.002 | 0.0300.0005
14 | 8,35260 594, 9022459 | 0.230.001 | 0.0170.0002
16 | 11,7973 | 707,3262296 | 0.2109.001 | 0.0100.0001
17 | 13,79577 | 762,1972299 | 0.200.001 | 0.0080.0001

17.084.930 | 1.660.210 | 0.003900.00530
105.398.106 | 1.670.058 | —0.01680.00495
187.074.650 | 1.820.012 | —0.0279¢.00321
205.292.615 | 1.920.006 | —0.02630.00184
192.761.150 | 2.050.009 | —0.0199¢.00127
168.501.003 | 2.290.012 | —0.0141¢.00072
142.460.652 | 2.560.007 | —0.01020.00044
119.920.368 | 2.720.003 | —0.00800.00036
110.510.377 | 2-790.005 | —0.0072¢.00026
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Figure 2: Cumulative degree distributions for N = 16 and K = 4 (top), K = 10 (bottom). All 30 curves are plotted. Left: Log-log

plot. Right: Lin-log plot.

law, but often the distribution is less extreme and can bedfiky finite, tends to distribute normally according to a genevaifula-
a stretched exponential or by an exponentially truncateslepo tion of the central limit theorem [7]. In other words, if theesiage
law[14]. of the sum were plotted, the original shapes would essénbal

Figure 2 shows all the curves for 30 randomly generated land- lo

st. The curves cannot be described by power-laws: thisilpibs

scapes folV = 16 and K = 4, 10, whilst figure 3 does the same ity is ruled out by the left parts of figs. 2, and 3 which are deub

for N = 18. To smooth out fluctuations in the high degree region, lo
the cumulative degree distribution function is plottedjaiis just st
the probability that the degree is greater than or equil Ithe sin-

gle curves are shown rather than the average curve becausernth th
of a sufficient number of independent random variables witi a ty]

garithmic plots. In log-log plots, power laws should agpas
raight lines, at least for a sizable part of abscissaesrang

On the other hand, the right images in the same figures shaw tha
e distributions can be fitted approximately by exponéntithe

pe p(k) = (1/z)e */* wherez is the mean degree, as most

trary distributions, provided that the first few momentsséand are curves are approximately straight lines on these lineguplots.
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This is true for the larger part of the degree range. When we ap

proach the finite degree cutoff the fit is obviously less gdawhall

networks such as those with = 16 and K = 4 show larger
fluctuations and their tails decay faster than exponewtialiwo

particular examples with a medium valuel§f(K = 8) are shown
in detail in fig. 4, together with an exponential fit. Table 2e5 the
parameters of the regression lines forslland K values.
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Figure 4: Cumulative degree distribution (with regressionline)
of two representative instances withk' = 8, N = 16 (top) and
N = 18 (bottom).

Table 2: Correlation coefficient (3), intercept (&) and slope (3)
and slope of the linear regression between the cumulative mo-
ber of nodes and the degree of nodeslog(p(k)) = o+ Bk +e.
The averages and standard deviations of 30 independent land
scapes, are shown.

N =16

K p a B

2 | —0.8160.340 | 4.050.717 | —0.11099.0379
4 | —0.9320.026 | 6.070.276 | —0.02950.0026
6 —0.9670.009 | 7.090.105 —0.01780.0009
8 | —0.9860.006 | 7-600.107 | —0.01440.0007
10 | —0.9890.004 | 8.040.125 | —0.01460.000s
12 | —0.9900.004 | 8.510.156 | —0.01700.0010
14 | —0.9920.003 | 8.920.121 | —0.0202¢.0010
15| —0.9910.004 | 9.-110.144 | —0.02200.0011

N =18

2 —0.8230.343 | 4.570.865 —0.10880.0325
4 | —0.9510.025 | 6.710.225 | —0.01980.0021
6 —0.9820_007 7.740_107 —0.009800005
8 —0.9910.004 | 8.280.096 | —0.00760.0003
10 | —0.9940.003 | 8.740.119 | —0.00760.0004
12 | —0.9950.003 | 9-190.161 | —0.00880.0005
14 [ —0.9950.003 | 9.650.134 | —0.01100.0005
16 | —0.9940.003 | 10.10.173 | —0.01390.000s
17 —0.9940_005 10.20_207 —0.015100008

tant difference is that we do not observe power-law distiiins.
Indeed, power-law degree distributions of the inherentggnkand-
scape networks point to the “easiness” of those landscajpesto
the presence of highly connected nodes, which are also atheng
fittest, a simple gradient-descent would bring a searchemdo

a local energy minimum, often the global one, starting argneh
in the configuration space. In other words, there exist tharfél”
effect described by Doye [5]. In contragy K landscapes have
tunable difficulty. How can random networks with exponentie-

If we compare these results with Doye’s [5, 6] the most impor- gree distributions be obtained? One way is the followingeach



time step, just add a new node, and add a new link between twoto the global maximum foiV = 16 and N = 18, and all values

randomly chosen nodes, including the new one. lteratirgydi
namical process produces graphs with an exponential llisin
of the node degrees [4]. BIf K landscapes are static and thus itis
difficult to see how this process could be implemented. Hanev
the following qualitative explanation might help. Imagihat K is
increased from 2 t&V — 1 in single steps. Then we could have the
image of the previous landscape increasing its size andrdefg
itself whenK goes from its current value t& + 1. The new max-
ima that appear could be considered as if they were addedrdyna
ically (of course some previous optima might disappear af.we
Edges in the new landscape are selected essentially rapdwithi
more probability of selecting an already existing node. S[twith
this imaginary mechanism a distribution close to expoéntould
be obtained.

Thus, as theV K landscape difficulty varies smoothly whéi
is increased, the degree distribution of the correspondiagima
networks remains essentially exponential. We do not olessrale-
free distributions for the easy landscapes as in the enargistape
case [5]. This is understandable: standard energy landsdap
molecular chemistry and crystal physics do correspondeunnb-
dynamically stable states which are naturally smooth aisg &a
reach when the system is forming or it is slightly perturbed.
contrast,N K landscape are synthetic and do not correspond to any
physical principle in their construction. The only physisgstems
that resembléV K landscapes are spin glasses, in which conflicting
energy minimization requirements lead to frustration amthhd-
scape ruggedness [11, 17]. However, disordered condenasierm
systems similar to spin glasses are only obtained in pdaticitu-
ations, for instance by fast cooling [17].

4.4 Basins of Attraction

Besides the maxima network, it is useful to describe the-asso
ciated basins of attraction as these play a key role in search
gorithms. Furthermore, some characteristics of the basinsbe
related to the network features described above. The nation
the basin of attraction of a local maximum has been preséanted
sect. 3.1. We have exhaustively computed the size and nuofiber
all the basins of attraction fa¥ = 16 andN = 18 and for all even
K values plusK = N — 1. In this section, we analyze the basins
of attraction from several points of view as it is describetbt.

4.4.1 Global optimum basin size vs.

N=16 ——
[N J—

0.1 ¢

0.01 ¢

0.001 ¢

relative size of the global optima’s basin

le-04

14

12

16 18

Figure 5: Average of the relative size of the basin correspating
to the global maximum for each K over 30 landscapes.

In Figure 5 we plot the average size of the basin correspgndin

of K studied. The trend is clear: the basin shrinks very quickly
with increasingK. This confirms that the higher thi€ value, the
more difficult for an stochastic search algorithm to locaghasin

of attraction of the global optimum

4.4.2 Number of basins of a given size
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Figure 6: Cumulative distribution of the number of basins of a
given size with regression line. Two Representative landapes
are visualized with N=16 (top) and N=18 (bottom) and K=4. A
lin-log scale is used.

Figure 6 shows the cumulative distribution of the number of
basins of a given size (with regression line) for two repnéstive
instances withK' = 4 and N = 16 (top) andN = 18. Table 3
shows the average (of 30 independent landscapes) coorelzdi
efficients and linear regression coefficients (interceptand slope
(B)) between the number of nodes and the basin sizes. Notite tha
distribution decays exponentially or faster for the lowérand it
is closer to exponential for the high&f. This observation is rele-
vant to theoretical studies that estimate the size of ditrabasins
(see for example [8]). These studies often assume that tia ba
sizes are uniformly distributed. From the slopsf the regression
lines (table 3) one can see that high value&ogive rise to steeper
distributions (higher3 values). This indicates that there are less
basins of large size for large values &t In consequence, basins
are broader for low values df’, which is consistent with the fact
that those landscapes are smoother.

4.4.3 Fitness of local optima vs. their basin sizes

The scatter-plots in figure 7 illustrate the correlationnssn the
basin sizes of local maxima (in logarithmic scale) and tfigiess
values. Two representative instances for= 18 andK = 4,8 are
shown. Table 4 shows the averages (of 30 independent lgreisca
of the correlation coefficient, and the linear regressiceffa@ents
between these two metrics (maxima fitness and their bas#s)siz
All the studied landscapes fd¥ = 16 and 18, are reported. Notice



Table 3: Correlation coefficient (p), and linear regression co-
efficients (intercept @) and slope (3)) of the relationship be-
tween the basin size of optima and the cumulative number of
nodes of a given (basin) size (in logarithmic scaldog(p(s)) =
a+ Bs+e€). The average and standard deviation values over 30
instances, are shown.

N =16
K F; & 3
2 | —0.9440.0454 | 2.890.673 | —0.00030.0002
4 —0.9590.0310 | 4.190.554 | —0.00149.0006
6 | —0.9670.0280 | 5.090.504 | —0.00360.0010
8 —0.9820.0116 | 5.970.321 —0.00800.0013
10 | —0.9850.0161 | 6.740.392 | —0.01630.0025
12 | —0.9900.0088 | 7.470.346 | —0.03040.0042
14 | —0.9940.0059 | 8.080.241 —0.05080.0048
15 | —0.9950.0044 | 8-370.240 | —0.06350.0058
N =18
2 | —0.9590.0257 | 3.180.696 | —0.00010.0001
4 —0.9600.0409 | 4.570.617 | —0.00050.0002
6 | —0.9670.0283 | 5.500.520 | —0.00150.0004
8 | —0.9770.0238 | 6.440.485 | —0.00370.0007
10 | —0.9850.0141 7.240.372 —0.00770.0011
12 | —0.9890.0129 | 7.980.370 | —0.01500.0019
14 | —0.9930.0072 | 8.690.276 | —0.02720.0024
16 | —0.9950.0056 | 9-330.249 | —0.04500.0036
17 | —0.9920.0113 | 9.490.386 | —0.05440.0058
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Figure 7: Correlation between the fitness of local optima
and their corresponding basin sizes, for two representatie in-
stances withN = 18, K = 4 (top) and K = 8 (bottom).

that, there is a clear positive correlation between thedgnalues

of maxima and their basins’ sizes. In other words, the higher
peak the wider tend to be its basin of attraction. Therefore,
average, with a hill-climbing algorithm, the global optimwvould

be easier to find than any other local optimum. This may seem
surprising. But, we have to keep in mind that as the numberazf |
optima increases (with increasirfg), the global optimum basin

Table 4: Correlation coefficient (p), and linear regression coef-
ficients (intercept (@) and slope (3)) of the relationship between
the fitness of optima and their basin size (in logarithmic scke:

log(s) = a + Bf + €). The average and standard deviation

values over 30 instances, are shown

N =16

K P o B

2 | 0.8320.0879 | —15.4765.9401 | 33.0665.9252
4 [ 0.8420.0259 | —13.0351.9907 | 27.0942 8611
6 | 0.8520.0180 | —12.9770.9921 | 26.0611. 4908
8 | 0.8600.0088 | —12.5700.3769 | 24.8800.5725
10 [ 0.8500.0050 | —11.9540.3501 | 23.5610.5421
12 ] 0.8330.0065 | —11.4850.2093 | 22.5190.4773
14 ] 0.8160.0047 | —11.2610.2008 | 21.8640.3256
15| 0.8120.0044 | —11.3520.2100 | 21.8760.3208

N =18

2 | 0.8390.0680 | —16.5856.0606 | 35.9258.6640
4 | 0.8420.0257 | —14.4582.1746 | 30.1743.1520
6 | 0.8520.0140 | —14.5420.9506 | 29.2191.4147
8 | 0.8670.0066 | —14.5150.3750 | 28.5380.5988
10 | 0.8660.0038 | —13.9140.3068 | 27.2090.4621
12 | 0.8540.0030 | —13.1800.1700 | 25.7510.2804
14 [ 0.8360.0027 | —12.6020.1399 | 24.5530.2214
16 | 0.8220.0022 | —12.5020.1039 | 24.1330.1633
17 | 0.817¢.0027 —12.5830.1278 24.1430 2066

is more difficult to reach by an stochastic local search digor
(see figure 5). This observation offers a mental pictureVat
landscapes: we can consider the landscape as composed @ a la
number of mountains (each corresponding to a basin of stimc
and those mountains are wider the taller the hilltops. Meggdhe
size of a mountain basin grows exponentially with its hight.

4.4.4 Basins sizes of local optima vs. their degrees

The scatter plots in figure 8 illustrate the correlation ket
basin sizes of maxima and their degrees. Representatizoes
with N = 18, andK = 4,8, are illustrated. There is a clear pos-
itive correlation between the degree and the basin sizesagima
in the network. This observation suggests that landscajibsow
K values can be searched more effectively since a given config-
uration has many neighbors belonging to the same large Ibéisin
attraction. It is also confirmed that the basins for l&hare much
larger than those for higlk’, not only the basin corresponding to
the global maximum.

5. CONCLUSIONS

We have proposed a new characterization of combinatorial fit
ness landscapes using the well-known family\oK landscapes as
an example. We have used an extension of the concept of inher-
ent networks proposed for energy surfaces [5] in order ttratis
and simplify the landscape description. In our case therérite
network is the graph where the vertices are all the local maxi
and edges mean basin adjacency between two maxima. We have
exhaustively obtained these graphs #ér= 16 and N = 18, and
for all even values of<, plus K = N — 1. The maxima graphs
are small worlds since the average path lengths are shodcatel
logarithmically in the size of the graphs. However, the mai
graphs are not random. This is shown by their clusteringficoef
cients, which are much larger than those of correspondindora
graphs and also by their degree distribution functionsctvhie not
Poissonian but rather exponential. The construction ofrthgima
networks requires the determination of the basins of attraof
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Figure 8: Correlation between the degree of local optima
and their corresponding basin sizes, for two representatie in-
stances with with N = 18, K = 4 (top) and K = 8 (bottom).

the corresponding landscapes. We have thus described tilre na
of the basins and their relationship with the local maxinmavoek.
We have found that the size of the basin corresponding toltiab
maximum becomes smaller with increasiig The distribution of
the basin sizes is approximately exponential forrland K, but
the basin sizes are larger for la, another indirect indication of
the increasing randomness and difficulty of the landscagesnw
K becomes large. Finally, there is a strong positive coligaldie-
tween the basin size of a maxima and their degree, which comfir
that the synthetic view provided by the maxima graph is aulsef
one.

This study represents our first attempt towards a topolbgiuz
statistical characterization of easy and hard combiretdaind-
scapes. Much remains to be done. First of all, the resultsdfou
should be confirmed for larger instancesof< landscapes. This
will require good sampling techniques, or theoretical &sidince
exhaustive sampling becomes quickly impractical. Othad$aape
types should also be examined, such as those containingaheut
ity, which are very common in real-world applications. Waskn
progress for neutral versions 8f K landscapes. Finally, the land-
scape statistical characterization is only a step towapldment-
ing good methods for searching it. We thus hope that our tesul
will help in designing or estimating efficient search teciugs and
operators.
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