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ABSTRACT

Local Optima Networks (LONs) have been recently proposethas
alternative model of combinatorial fithess landscapes. mbdel
compresses the information given by the whole search spége i
a smaller mathematical object that is the graph having agesr
the local optima and as edges the possible weighted tramsitie-
tween them. A new set of metrics can be derived from this model
that capture the distribution and connectivity of the lagatima in
the underlying configuration space.This paper departs fhende-
scriptive analysis of local optima networks, and activelidges the
correlation between network features and the performahadm

cal search heuristic. Th¥ K family of landscapes and the Iterated
Local Search metaheuristic are considered. With a sttt
sound approach based on multiple linear regression, itasvish
that some LONSs’ features strongly influence and can everypart
predict the performance of a heuristic search algorithnis $tudy
validates the expressive power of LONs as a model of coninat
rial fithess landscapes.

Categories and Subject Descriptors

F.2.m [Analysis of Algorithms and Problem Complexity]: Mis-

cellaneous; G.2.20iscrete Mathematicg: Graph Theory—Net-
work problems 1.2.8 [Artificial Intelligence ]: Problem Solving,
Control Methods, and SearchHeuristic methods

General Terms
Algorithms, Measurement, Performance
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Combinatorial Fitness Landscape, Local Optima Networlgdlo
Search Heuristics
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1. INTRODUCTION

One of the most conspicuous limitations of heuristic seareth-
ods in combinatorial optimization, is the ability to becotrepped
at a local optimum [9]. The number and distribution of locpt o
tima in a search space have, therefore, an important impeaitteo
performance of heuristic search algorithms. A recentlyppsad
model: Local Optima Networks [22, 25], provides an interined
ate level of description for combinatorial fitness landgsapThe
model has a higher descriptive power than a single statlstietric
or set of metrics; but it also compresses the search spaca imbre
manageable mathematical object. Specifically, a grapmbaas
vertices the optima configurations of the problem and assetige
possible weighted transitions between these optima. Tétisark
representation allows the application of new analyticalsand
metrics to study combinatorial landscapes, namely, thbsem-
plex networks analysis (e.g. degree distribution, clusgecoeffi-
cient, assortativity, and community structure, to namevg.fdn
previous work, alternative definitions of edges have beediad,
and some of these metrics have been computed on the network ex
tracted for two combinatorial problems: the NK family of tan
scapes [22, 16, 17, 25, 24], and the Quadratic Assignmei pro
lem [7, 6]. Those studies have been mainly descriptive patth
distinctive correlations between some network featurespevi-
ous knowledge about search difficulty in these landscapgbéen
found. A previous related work [18], explored the relatioips be-
tweenN K landscape features and the performance of a hybrid EA.
The authors use standard landscape metrics, and conduatya st
based mainly on scatter plots. They suggest that: “furtr@ks
necessary to gain better understanding of the escape réte ao-
tual problem difficulty”. The present study, addresses #xaiis
point. The goal is to systematically explore correlatioe$neen
local optima network features and the performance of a afch
tic local search algorithm (lterated Local Search) runrmgthe
underlying combinatorial optimization problem (in thisidy the
NK family of landscapes). The ‘escape rate’ is a property re-
lated to the local optimum, and the LON could be considerea as
new tool to better understand problem difficulty. The ultiengoal
is to have predictive models of the performance of specifiallo
search heuristics when solving a given combinatorial ogttion
problem. This paper proposes an initial predictive modglesfor-
mance based on the most influential LON features.



2. METHODS

The local optima network model of combinatorial landscapes
and the iterated local search metaheuristic are consideréds
study. The relevant definitions and experimental setup aeng
below.

2.1 Local Optima Network

A fitness landscap0] is a triplet(S,V, f) whereS is a set
of potential solutions i.e. theearch spaceV : § — 2% is a
function that assigns to evesye S a set of neighbor¥ (s) i.e the
neighborhood structureand f : S — R is the evaluation of the
corresponding solutions i.e. tffitness function

The present study uses the well-knowi -landscapes [12] as
a benchmark set. It is a problem-independent model for nactst
ing combinatorial landscapes that are tunably rugged.dmtbdel,

N refers to the number of (binary) genes in the genotype, he. t
string length, and¥ to their epistatic interaction, i.e. the number
of other loci (chosen at random here) that influence the fitnes-
tribution of a particular gene. Starting from thig-loci 2-allele
additive model, by increasing the non-linearityfrom O toN — 1,
the landscapes can be tuned from smooth to rugged. Héhise,
the search space of all-bit binary strings, and its size f§ = 2".
The neighborhood is defined by the minimum possible move,on it
which is the single bit-flip operation, and the neighborh@izk

is tV(s) = N. The fitness function evaluates each genotype
asf(s) = ~ SN fi(si,si1, - - -, sixc ), where the values of loci
contributionsf; : {0, 1}** — [0, 1] are drawn uniformly at ran-
domin|o, 1].

A local optimum(LO), which is taken to be a maximum here, is
a solutions™ such thatvs € V(s), f(s) < f(s*). All optima are
determined through exhaustive search by recursively ngnttie
1-bit-flip best-improvement hill-climber, as in Algorithin Let us
denote byh(s) the operator that associates to each solutiensS,
the solution obtained after applying that algorithm untheer-
gence to aLO. SinceS is of finite size and there is no neutrality

in f(s) values, this produces a partition of the landscape in a finite

number of basins of attraction, which we can denoté&ty, LO-,
LOs ..., LOy,, the local optima.

Algorithm 1: Best-Improvement Hill-Climber

Choose initial solutiors € S ;
repeat
chooses’ € V(s), such thatf(s') = maz,ecv(s) f(z);
if f(s) < f(s") then
L s+ s';

until s is a Local Optimum

The connections among them account for the chances of escap

ing from a LO and jumping into another one with a controlled
move [24]. There exists a directed transitiapn from LO; to LO;
if it exists a solutions such thatd(s, LO;) < D andh(s) =
LO;, where the distancé(s;, s;) can be measured in “number
of moves” (i.e Hamming distance in the bit-flip operator ga3de
distance-threshold> € N can be chosen accordingly to the ap-
plied perturbation; in this work, it is set th = 2. The weight
wi; of such a transition is thenw;; = #{s € S | d(s, LO;) <
D andh(s) = LO;}, i.e. the number of paths at distanbestart-
ing at LO; and reaching the basin @&fO;. This can be normalized
by the number of solutions within reach w.r.t. the given afise
threshold, i.ef{s € S | d(s, LO;) < D}.

The weighted and directed gragh = (V, E) having the set

of verticesV = {LO,...,LOy.} and the set of edgeB =
{eijlwi; > 0}, is theLocal Optima NetworKLON) [24].

2.2 lterated Local Search

Iterated local search is a relatively simple but successfyb-
rithm. It operates by iteratively alternating between sp a
move operator to the incumbent solution and restartind kearch
from the perturbed solution. This search principle has redis-
covered multiple times, within different research comntiesiand
with different names [3, 14]. The teriterated local searcHILS)
was proposed in [13]. Algorithm 2 outlines the procedure.

Algorithm 2: Iterated Local Search

so < GeneratelnitialSolution;
s* < LocalSearchso);
repeat
s « Perturbatiolis™);
s™* + LocalSearchs');
s* + AcceptanceCriteriofs*, s");
until termination condition met

In the present study, the base LocalSearch heuristic isatine s
best-improvement hill-climber of Algorithm 1, which stops a
LO. This heuristic uses the single bit-flip move operatorerEfore,

a 2-bit-flip mutation is chosen as a Perturbation operatdieia
different LO is found after that, the search process actbptsiove
if its fitness is higher (we are assuming maximization). Witkse
settings, ILS is performing a first-improvement hill-climb in the
configuration space of the LON with the escape-edges atndista
D = 2, as defined in section 2.1.

The search terminates at the global optimum, which for bench
mark problems is knowa priori, or when reaching a pre-set limit
of fitness evaluation$' Ep,qx.

2.3 Performance Evaluation

As the performance criterion, we selected the expected aumb
of function evaluations to reach the global optimwsudcesgafter
independent restarts of the ILS algorithm (Algorithm 2).[This
measure accounts for both the success nateq (0, 1]) and the
convergence speed. In theory, afté¥ — 1) unsuccessful runs
stopped afl’,s-steps and the final successful one runningTor
steps, the total running time would Be = "0 " (Tus),, + Ts.
Taking the expectation and considering thafollows a geometric
distributiort with parametep., it gives:

B(T) = <%> E(Tus) + E(T))

‘where inthe present caB¢7ys) = F Emaa, the ratio of successful

to total runs is an estimator fer,, andE(T) can be estimated by
the average running time of those successful runs.

The ILS variant detailed in Sec. 2.2 éssentially incomplete
i.e. there are soluble problem instances for which the sscgb-
ability is < 1 even in the limit of an infinite running time [11].
Given the chosen acceptance criterion, the search willtesén
get stuck. Indeed, out of the test rutignstance withK = 16 and
3 instances withi' = 17 were not solved. This theoretical limita-
tion could be overcome by performing as many random ressart a
to cover the whole search space, but such a solution is ofeléhi

probability distribution of the numbe¥ — 1 of failures before the
first successRernoulli trials)



Table 1: Group averages of all the observed variables, agggated by the epistasids of the corresponding N K -landscape. Standard
deviations are given in subscriptsnv = number of vertices (Local Optima),lo = average shortest path to reach the global optimumly

= average path length ¢;; = 1/w;;), fnn = Spearman coefficient for the nearest-neighbors fitness-fiess correlation,wii = average
non-normalized weight of self-loops¢c global clustering coefficient,zout = average out-going degreey2 = average weight disparity
for out-going edges knn = degree assortativity,ets = estimated time to succeed.

aggregate nv lo Iv fnn wii cc zout y2 knn ets (0%)
K =2 4308 33.514 18751 0.7030.19 10511 0.4250.0s6 6.91.8 0.3920.075 0.1550.4 2.163.3
K =4 22139 53.712 21445 0.5870.07 83.93 0.2630.013 14.3; 0.2190.016 —0.5360.13 8.397.74
K =38 166973 76.69.1 17119 0.4310.025 53.30.8s  0.1590.0012  35.70.57 0.07690.002 —0.8560.022 51.861.1
K =10 3148110 90.7s.4 1661 .o 0.3420.016 40.70.78  0.1430.00085 47.20.57 0.04910.0011 —0.9040.011 81.570.6
K =12 5270104 10812 1700.64  0.2550.015 30.80.35 0.1330.00054 57.80.39  0.03340.00046 —0.9280.0093 276544
K =14 8100121 12586  18los 0.190.011 23.50.25 0.1280.00032 66.90.33  0.02450.00022  —0.9440.0063 300288
K =16 11688101 14611 197042 0.1430.0073 18.20.11  0.1250.00023 74.60.17  0.01967.8c—05 —0.9480.0055 414632
K =17 1380174 15612 2050.42 0.1330.01 16.10.06 0.1250.00021 78.20.13 0.0179.5¢—05 —0.9440.0063 793844

practical interest for large problems. In the present stthdy suc-
cess performance has been estimated on all the instan¢dsatha
been solved at least once.

The benchmark set consists dfK -landscapes withv = 18
andK € {2,4,6,8,10,12, 14,16, 17}. Those are the largest pos-
sible parameter combinations for which we could afford tke e
haustive extraction of the local optima networks. In oraemini-
mize the influence of the random generation of landscegies)-
dependent problem instances are considered for each catialnin
of N and K, which accounts for a total df70 instances in the
problem set. The function-evaluations limit is set {5 of £S5, i.e.
FEpmaz ~ 5.2-10*, success ratg, and running time of successful
runsT, are estimated oB00 random restarts per instance.

3. RESULTS

3.1 Descriptive Statistics

they become the more and more uncorrelated iitapproaching
N — 1 (see columnfnn). In general, it is expected that a high and
positive fnn correlation would help the search process.

Columnuwii reports the average number of perturbations that re-
main in the same basin of attraction, which is a proxy for thsiin
size. The larger the basins, the more difficult it is to esdapen.
Table 1 shows that average value decreases with the landscape
ruggedness.

Column e, reports theclustering coefficienfl5], which mea-
sures the ratio of connected triples in the LON graph. In dasoc
network, this coefficient measures the probability for erfaends
to be friends among each other. In the LO networks, it pravide
an index of topological locality for the transitions betwedecal
optima. Table 1 suggest that values decrease steadily with in-
creasingK’, but so does the LON density [24] and that might be the
reason.

Column zout counts the number of transitions departing from
a given LO. It is relevant to know whether all the transitidrave

Table 1 summarises the LON metrics. Results are grouped ac-the same rate, or if there is a preferred direction. To this, #e

cording to theK value of the corresponding K -landscapes, and
present averages and standard deviations 8¥éndependent re-
alizations per group. The number of local optima, is a metric
familiar to any description of a rugged landscape. The othet-
rics are particular to the complex-network perspectivevioled by
the LON model [15].

From left to right in the tablelo represents the average length
of the shortest paths that reach the global optimum staftomg
any other local optimum. The cost associated to an églgé the
LON graph, isd;; = 1/ws;. This measure can be interpreted as
the expected number of random perturbations for escapig
and entering exactly the basin 80;. lv gives the average path
length for the whole graph, which accounts for the weightetd n
work characteristic length lo is intuitively more directly related
to the search difficulty. Indeedyp increases steadily with the land-
scape ruggedneds, whilst the trend withiv is less clear. As a
possible explanation, the network growth in terms of nodeghin
be counteracted by a growth in nodes connectivity: the nurobe
weighted outgoing transitions from a givérp, i.e. its out-degree
in the LON, increases wit (cf. columnzout in Tab. 1).

disparity scorey2 gauges the weight heterogeneity of out-going
edges [2]. When all connections; leaving a givenLO; have the
same probabilityw;;, the disparity will be close to the inverse of
the out-degreé /zout; otherwise it will be higher than this value.
Columny2 shows that the disparity monotonically decreases with
increasingK. From the point of view of a metaheuristic dynamic,
a low disparity means that transitions are almost equigriebd he
LON topology does not preferentially guide the search ttajey,
which makes the search process harder.

Columnknn, reports the nearest-neighbors degree correlation or
assortativity a classical description of the mixing pattern of nodes
in a network. The assortativity measures the affinity to emhn
with high or low-degree neighbors. The LONs®&fK-landscapes
are strongly disassortative, i.e. LO with few connectiogsdt to
link to others with many, and conversely. The implicatiofshis
observation on the search difficulty are worth further itigegion.

The last column in Table 1 gives the values of the succesermperf
mance indicatof(7") detailed in Sec 2.3, which we abbreviate to
ets in the following. Clearly, the expected running time inges
with the landscape ruggedness (problem non-lineafity)n order

Column fnn measures the correlation between the fitness of a to analyze the inter-correlations between all the studiedrins,

node and the weighted average of the fithess of its nearegti-nei
bors [2]. This is relevant as the ILS acceptance criteriiesahe
fitness values of LO into account. With respect to this mef¥ié -
landscapes behave at the LO level as they do at the solutieh le

Figure 1 displays &orrelogramof the whole data set. The figure
depicts any possible pairing among the observed variabiisav
scatter plot in the panel below the diagonal, and the cooredipg
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correlation coefficient in the upper panel. Table 1 corresigao
the first column of the correlation matrix, i.e. the one shayhow
the different network metrics shape against the episfasis

We are mostly interested in the correlations with the penorce
metricets. Thus, the most relevant scatter plots are those in the last
row of Figure 1 together with the respective Pearson coefftsiin
the last column. By inspecting these values, the highestiypms
correlation is with the average length of the shortest phthbing
to the global optimumi((ets, lo) ~ 0.52). and with the total num-
ber of LO (-(ets, nv) ~ 0.50). This observation seems reasonable:
the more rugged the landscape (i.e. the larger its LON), itjieeih
the number of hops through the LON to reach the global optimum
and thus the longer the expected running time of a restalting
cal search. Conversely, the larger the LO basins, and tthehtge
nearest-neighbors fitness-fitness correlation, the sttbgeunning
time ((r(ets, wii) ~ r(ets, fnn) ~ —0.40)). The catch here, is
that those metrics are in turn correlated among themsekes (
r(fnn,wii) ~ 0.92), which prevents one from drawing relation-
ships of causality from simple pair-wise correlations.

The last column plots also suggest a strong non-linearitphef
performance estimator w.r.t. the LON metrics. In order tadffer
analyze these relationships, Figure 2 zooms on the relescatt
ter plots, and displays the logarithm efs as a function of the
considered landscape measures. The log-transformatmmsatio
approach linearity, highlighting and confirming the resuit the
last column of Figure 1. Namely, the relationships betwegrand
all the metrics bufv appear clearly. The picture suggests a posi-
tive exponential trend witbo andzout, and a negative exponential
trend with fnn, wii, cc, andy2. In the case ofw, the relation
could also be close to power-law.

Since data are far from being normal bivariate, a more robust
measure of association would be the rank-based Spearpstats-
tic, reported in Table 2. These results complement the vigua
spection of scatter plots and confirm the previous obsemsti

Table 2: Spearman’sp statistic for the correlation betweenets
and the LON metrics (p-value < 2.2e — 16 for all pairings).

knn
—0.850

zout
0.885

wii
—0.883

fn
—0.830

Iv
0.006

lo
0.915

nv
0.885

cc
—0.875

y2
—0.883

3.2 Statistical Modeling

Figures 1 and 2, along with Table 2, address already some of
the research questions asked in Section 1, but do not pravide
explanatory model for the algorithm performance as a fonctif
the landscape features. To this end, we perform a multipksali
regression on the data, which has the general form:

Yi = Po + B1xi1 + BoTi2 + -+ BpTiyp + € (1)

where the response varialjan our case would bets andp dif-
ferent predictorg:; are to be chosen among the LON metricss
the usual random noise term.

The least square regression produces estim@td@r the g;
model coefficients; the difference between the predictésbgaand
the actual, observed values, are the regression residuals:

Yi — Ui = Yi — B1wi1 — Boxiz — -+ — BpTip.

The difficulty of this analysis is that there are several fiss
explanatory variables, which are in turn intercorrelatéd.con-
sequence, some of them could have a confounding effect on the
regression. In general, when confounders are known, madalsur
and measured, it is a good practice to include them in the mode

We, therefore, start by fitting the following formula:
log(ets) = Bo+ B1k+ B2 log(nv)+ B2lo+- - -+ Broknn+e (2)

where, w.r.t the general expression 1, the response andfdhe o
predictors have been log-transformed in order to bettercauh
linearity, as seen in Figure 2. Moreover, the varidbie qualitative
and enters the model as a fixed effect, which translates iapm®-
priate dummy variable foreach class= 2, K = 4,..., K = 17.
The summary statistics for this model are reported in Table 3
In the table caption, the multipl®? represents the proportion of
variance explained by the linear regressidt?. would be equal to
1 if all observed data points were lying on the regression glan
When comparing models with a different number of predictthrs
adjustedR? should be used instead. THe statistic is the ratio
of the variance explained by the parameters in the modeheo t
residual or unexplained variance. Th&alue is the probability of
achieving arF' that large under the null hypothesis of no effect [4].
The estimated coefficient; and their estimated standard error
¢; are given in the™® and3™® columns, respectively. Their ratio
is thet-statistic ¢! column) that is used to calculateavalue for
the significance of the estimation (last column).

Table 3: Summary statistics of the linear regression model
on all variables. Residual standard error: 0.8702 on 248 de-
grees of freedom { observations deleted due to missingness).
Multiple R-squared: 0.8585, Adjusted R-squared: 0.8488. F-
statistic: 88.52 on 17 and 248 DF, p-value: < 2.2e¢ — 16.

summary Estimate  Std. Error ¢ value Pr(xt|)

(Intercept)  16.06966 7.39640 2.1726  3.08e — 02
k4 0.01542 0.63987 0.0241 9.81e — 01
ké —1.08926  1.39976 —0.7782 4.37¢ — 01
k8 —3.14529 2.46616 —1.2754 2.03e — 01
k10 —5.67316 3.76828 —1.5055 1.33e — 01
k12 —8.19327 5.04638 —1.6236 1.06e — 01
k14 —10.34765 6.17715 —1.6751 9.52e — 02
k16 —12.85523 7.14074 —1.8003 7.30e — 02
k17 —13.40456  7.59325 —1.7653 7.87¢ — 02
log(nv) —1.91370  1.12656 —1.6987 9.06¢ — 02
lo 0.04882 0.00499 9.7919 2.37¢ — 19
Iv 0.00198 0.00376 0.5265  5.99¢ — 01
fnn 0.54148 0.89574 0.6045  5.46e — 01
wi —0.00302 0.02739 —0.1104 9.12¢ — 01
cc —7.22853 5.00042 —1.4456 1.50e — 01
zout 0.29514 0.15838 1.8636  6.36e — 02
y2 —3.46837 5.00914 —0.6924 4.89¢ — 01
knn —0.88961 0.49062 —1.8132 7.10e — 02

In this initial model, the average length of paths to the glob
optimum/o is the only predictor with a regression coefficient that
is statistically-significant at th@.05 threshold (;,, = 0.04882,
p-value =2.37e — 19).

Therefore, we proceed to perform a step-wise model sefebtio
backward eliminatiorf23]. From the initial formula, at each step
we compute what change in the fit could be produced by dropping
each predictor in turn, and then we eliminate the one thaimimes
the AIC score of the resulting model [21]. By iterating urail
predictors become significant, we obtain the final model:

log(ets) = Bo+ Biolo+ Bzoutzout + By2y2 + Bennknn+e (3)
which is detailed in Table 4.



Table 4: Summary statistics of the final linear regression mdel.
Residual standard error: 0.8751 on 261 degrees of freedom 4
observations deleted due to missingness). Multiple R-sqed:
0.8494, Adjusted R-squared: 0.8471. F-statistic: 368.1 on 4
and 261 DF, p-value: < 2.2¢ — 16.

summary  Estimate Std. Errort¢ value Pr(t|)

(Intercept) 10.3838  0.58512  17.75 9.2de — 47
lo 0.0439 0.00434  10.11 1.67e —20
zout —0.0306 0.00831 —3.68 2.8le — 04
y2 —7.2831 1.63038 —4.47 1.18e — 05
knn —0.7457 0.40501 —1.84 6.67e —02

This final model is able to explai®t.94% of the variance ob-
served inlog(ets) with a linear regression on four variables that
are all LON network metrics. Among these metrics, the lerajth
the paths to the global optimum, and the weight disparityehihe
highest relative importance [10].
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Figure 3: Top: residual plot, to asses the hypothesis of
zero-mean and constant-variance of the regression residu-
als (circle dots) around the fitted values (dotted line); no
visually-significant deviation appears (red smooth line). Bot-
tom: quantile-quantile comparison of the studentized reges-
sion residuals (circle dots) against the theoretical quaiies (red
thick line), to inspect the distribution of residuals; no signifi-
cant deviation from normality appears (confidence intervat as
dotted red lines).

Without a check on the model assumptions, this would remain a

observational study and could not be used to make predgtitm
this end, a combination of parametric tests (not reportedace
reasons) provided a positive confirmation [19]. Howeverisaal
diagnostics is more informative. In particular, Figure 3pketo
assess if the regression residuals follow a normal digtabwvith

zero mean and homogeneous variance, whereas Figure 4ydispla

the contributions to the model of each predictor in turnhhght-
ing possible violations of the linearity hypothesis [8].| Absump-
tions seem acceptable. Therefore, formula 3 could be usedke

inferences. In other words, formula 3 coefficients can berint
preted as conditional expectations for the average chante ire-
sponse when one predictor undergoes a unitary change, lahd al
others remain fix. Since the dependent variable is log-toamed,
this effect would be multiplicative.
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Figure 4: Component+residual plots for the linear regressin
model. Circle dots are, for each observation, the correspaf
ing residual error from the regression plus the value fitted ty
one explanatory variable alone, plotted against that variale
(see labels on x-axis). No significant deviation from linedty
appears (smooth green line against the red dotted line of the
partial regression).

The only important limitation of the proposed modelnmilti-
collinearity: due to the complex intercorrelations among LON met-
rics (cf. Figure 1), predictors are not really independ@ihis does
not invalidate the multiple linear regression analysig,ibinflates
the variance of its coefficients and makes it harder to disegie
their respective contributions [8].



4. CONCLUSIONS

This article explored correlations between local optimavioek
features and the performance of a stochastic local seagohithim
running on the underlying combinatorial optimization gesh. The
NK family of landscapes and the iterated local search metaistic
were considered. It has been shown in previous work e.g2&R,
that some features of the LON networks are related toNtie-
landscapes ruggedness, and thus to problem difficulty. Memeo
statistically testable model was presented. The contdbuf this
study was to investigate, with a statistically-sound apphy which
features of the LONs have a strong influence on the searcbrperf
mance, expressed as expected running times to successsIiits r
obtained through the use of a multiple linear regressionahsitbw
that some LON metrics are more important than others. These a
the average length of the shortest paths to the optimumytrage
out-degree, the average disparity, and the degree asg@tytathis
study confirms and provides significant evidence that LONehod
ing is a compressed-but-relevant view of the fitness larpsand
can be used to understand and predict search difficulty.

It is worth noticing that some network metrics can be estadat
without knowing the global optimum beforehand, such as tee-a
age out-degree, the fitness-fitness correlation, the aweliaparity
and assortativity. Using these metrics and an adequaististait
model, as we have done in this work, opens up exciting pdssibi
ties. With standard sampling methods, larger search smaces
be studied. Thereafter, using the performance model basdaeo
estimated LON metrics, the search heuristic parameters apk
erators can be off-line tuned, or even on-line controllece phan
to continue working in this direction and to extend this gsm to
other combinatorial problems such as QAP.
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