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Abstract. This article extracts and analyzes local optima networks for
the permutation flow-shop problem. Two widely used move operators
for permutation representations, namely, swap and insertion, are incor-
porated into the network landscape model. The performance of a heuris-
tic search algorithm on this problem is also analyzed. In particular, we
study the correlation between local optima network features and the per-
formance of an iterated local search heuristic. Our analysis reveals that
network features can explain and predict problem difficulty. The evidence
confirms the superiority of the insertion operator for this problem.

1 Introduction

The number and distribution of local optima in a combinatorial search space are
known to impact the search difficulty on the corresponding landscape. Under-
stating these features can also inform the design of efficient search algorithms.
For example, it has been observed in many combinatorial landscapes that lo-
cal optima are not randomly distributed, rather they tend to be relatively close
to each other (in terms of a plausible metric) and to the known global opti-
mum; clustered in a “central massif” (or “big valley” if we are minimizing) [4,
11, 18]. Search algorithms exploiting this globally convex structure have been
proposed [4, 18].

A recently proposed model of combinatorial fitness landscape local optima
networks, captures in detail the distribution and topology of local optima in
a landscape. The model was adapted from the study of energy landscapes in
physics, which exist in continuous space [21]. In this network view of energy sur-
faces, vertices are energy minima and there is an edge between two minima if the
system can jump from one to the other with an energy cost of the order of the
thermal energies. In the combinatorial counterpart, vertices correspond to solu-
tions that are minima or maxima of the associated combinatorial problem, but
edges are defined differently, and are oriented and weighted. In a first version,
the weights represent an approximation to the probability of transition between
the respective basins in a given direction [6, 16, 23, 25]. This definition, although
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informative, produced densely connected networks and required exhaustive sam-
pling of the basins of attraction. A second version, escape edges was proposed in
[24], which does not require a full computation of the basins. Instead, these edges
account for the chances of escaping a local optimum after a controlled mutation
(e.g.1 or 2 bit-flips in binary space) followed by hill-climbing. This second type
of edges has, up to now, only been explored for binary spaces [24]. Also, previous
work on networks with both basin and escape edges considered a single move
operator on the corresponding search space.

This article extracts, analyzes and compares local optima networks of the
Permutation Flow-shop Problem considering two types of move operators com-
monly used for permutation representation, namely, insertion and exchange. The
article goes further and studies correlations among network features and the per-
formance of an iterated local search heuristic.

2 Methods

2.1 Permutation Flow-Shop Problem

This section describes the optimization problem, solution representation, and
move operators considered in this study.

Problem formulation. In the Permutation Flow-shop Problem (PFSP), a flow
of n jobs has to be scheduled for processing on m different machines in sequen-
tial order. Each of the n jobs will start at machine 1 and end at machine m.
Concurrency and preemption are not allowed. In other words, job i can not start
on machine j + 1 until machine j has completed it, and execution must run to
completion once started. For any operation, job i will require a given processing
time dij on machine j. Hence, a solution to the PFSP is a job processing order π,
i.e. a permutation of the sequence of n jobs, where π(i) denotes the ith job in the
sequence. The objective is to find the permutation πbest yielding the minimum
makespan, Cmax, which is defined as the earliest completion time of its last job,
πbest(n), on the last machine m.

Search operators. Several methods for solving the PFSP have been pro-
posed [19], many of which are based on local search heuristics. For those, the
choice of a move operator determines the topology of the search space [10].
We consider here two widely used operators for permutation representation.
Namely, the swap (or exchange) operator, and the the shift (or insertion) opera-
tor. Exchange(x, y) simply swaps the job at positions x and y, while Insert(x, y)
selects a job at position x and inserts it into position y, shifting all others jobs;
this operator is known to work well on the PFSP [22].

2.2 Local Optima Networks

This section overviews relevant definitions for building Local Optima Networks
with Escape Edges in the presence of a neutral fitness landscapes.
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A fitness landscape [20] is a triplet (S, V, f) where S, a search space, is the
set of all admissible solutions, V : S −→ 2|S|, a neighborhood structure, is the
function that assigns to every s ∈ S a set of neighbors V (s), and f : S −→ R is
a fitness function that maps the quality of the corresponding solutions.

Given a fitness landscape (S, V, f), a local optimum (LO), which is taken
to be a maximum here, is a solution s∗ such that ∀s ∈ V (s), f(s) ≤ f(s∗).

In our study, the search space is composed of job sequences π of length
n, therefore |S| = n!. The neighborhood is defined by the two selected move
operators, consequently |V (π)| = n(n − 1)/2 under the exchange operator and
|V (π)| = (n− 1)(n− 1) under the insertion operator. Finally, f(π) = −Cmax(π)
that is to be maximized.

A neutral neighbor of s is a configuration x ∈ V (s) with the same fitness
value f(x) = f(s); the size of the set Vn(s) = {x ∈ V (s) | f(x) = f(s)} gives
the neutral degree of a solution, i.e. how many neutral neighbors it has. When
this number is high, the landscape can be thought of as composed of several
sub-graphs of configurations with the same fitness value. This is the case for the
fitness landscape of PFSP [14].

A neutral network (connected sub-graph whose vertices are neutral neigh-
bors), also called a plateau, is a local optimum neutral network if all of its
vertices are local optima.

Algorithm 1: Stochastic Best-Improvement Hill-Climber

Choose initial solution s ∈ S ;
repeat

randomly choose s′ from {z ∈ V (s)|f(z) = maxx∈V (s) f(x)};
if f(s′) ≥ f(s) then

s← s′;

until s is in a Local Optimum Neutral Network ;

Since the size of the landscape is finite, we can mark the local optima neutral
networks as LONN1, LONN2, . . . , LONNn. These are the vertices of the local
optima network in the neutral case. In other words, we have a network whose
nodes are themselves networks.

Algorithm 1 finds the local optima and defines their basins of attraction [16].
The connections among optima represent the chances of escaping from a LONN
and jumping into another basin after a controlled move [24]. But in a neutral
landscape, the partition of solutions into basins of attraction is not sharp: Al-
gorithm 1 is a stochastic operator h and ∀s ∈ S there is a probability pi(s) =
P (h(s) ∈ LONNi). Therefore, the basin of attraction of LONNi is the set
bi = {s ∈ S | pi(s) > 0} and its size is

∑
s∈S pi(s) [25]. If we perturb a solu-

tion s ∈ LONNi by applying D random moves, we obtain a solution s′ that
will belong to another basin bj with probability pj , i.e. with probability pj ,
h(s′) will eventually climb to LONNj . The probability to go from s to bj is then
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p(s→ bj) =
∑

s′∈bj p(s→ s′)pj(s
′), where p(s→ s′) = P (s′ ∈ {z | d(z, s) ≤ D})

is the probability for s′ to be within D moves from s and can be evaluated
in terms of relative frequency. Escaping from LONNi to the basin bj after
such a perturbation thus happens with probability wij = p(LONNi → bj) =

1
]LONNi

∑
s∈LONNi

pi(s)p(s→ bj). Notice that wij might be different from wji.

The Local Optima Network (LON) is the weighted graph G = (N,E)
where the nodes are the local optima neutral networks, and there is an arc
eij ∈ E with weight wij = p(LONNi → bj) between two nodes i and j if
p(LONNi → bj) > 0.

3 Local Optima Network Analysis

This section overviews the main topological features of the permutation flow-
shop local optima networks. Networks were extracted for instances with n = 10
jobs and m ∈ {5, 6, 7, 8, 9, 10} number of machines. Instances of the unstructured
(random) class were generated using the problem generator proposed by Watson
et al [26], which is based on the well-known Taillard benchmark [22]. For each
combination of n and m, 30 instances were generated and results are presented
through box-and-whiskers plots, to illustrate the distribution of the different
metrics.

Four LON models are considered, namely, combining two neighborhoods:
exchange and insertion, with two values of edge-escape distances: D = 1 and D =
2. For building the models, local optima are obtained using Algorithm 1 with,
respectively, exchange and insertion moves, whereas the escape-edges consider
the exchange move for the 4 models. The Algorithms were implemented in C++

using the “ParadisEO” library [5]; data analysis and visualization use R [17] with
the appropriate packages for network analysis and statistical computing.

Network size: Figure 1a shows that the number of local optima for all LON
models increases with the number of machines. This is consistent with the ob-
servation that increasing the number of machines (number of constraints) makes
the problem harder to solve. The number of optima does not depend on the
edges model (D = 1, D = 2), therefore, the two subplots in Figure 1a are ex-
actly the same. Figure 1a also indicates that the exchange LON model has a
larger number of nodes as compared with the insertion model, which confirms
that insertion is a better operator for the PFSP.

Figure 1b shows the density of edges, defined as the ratio of the LON number
of edges to such number in a complete graph. As expected, the LON models with
D = 2 are more dense. The density decreases with the number of machines for
all models, and it is higher for the insertion LONs.

Clustering coefficient: the clustering coefficient of a network is the average
probability that two neighbors of a given node are also neighbors of each other.
In the language of social networks, the friend of your friend is likely also to be
your friend. The standard clustering coefficient [15] does not consider weighted
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(c) weighted clustering coefficient
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(d) weight of self-loops
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(h) distance to the global optimum

Fig. 1. Box-and-whiskers plots giving the distribution of LON features. Boxes comprise
the 0.25 and 0.75-quantiles, with a thick black line at the median value (i.e. the 0.50-
quantile). Whiskers extend for 1.5 times the inter-quantile range and define “outliers”
values, depicted as black dots.
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edges. We thus use the weighted clustering coefficient, CCw proposed by [3]. In a
random graph, the probability for links to form transitive closures would be the
same as the probability to draw any link. Therefore, the clustering coefficient
(CC) would be the same as the graph link density (De) [15]. By comparing the
LONs weighted clustering coefficients CCw on Figure 1c with their density of
edges on Fig. 1b, we see that CCw is higher on average than De. This suggests
that the LONs have a local structure. Moreover, by looking at the clustering
coefficient of un-weighted graphs (not presented here to save place), we notice
that the weighted clustering coefficient CCw is higher than the un-weighed co-
efficient, an evidence that high-probability transitions are more likely to form
triangular closures than low-probability transitions.

Transitions between optima: Figure 1d reports the average transition prob-
abilities of self-loops (wii) within the networks. For all LON models, this metric
decreases with the number of machines, and it is higher for the exchange oper-
ator. For all LON models, wii is on average higher than wij,j 6=i (not presented
here). This suggests that a hill-climber after a perturbation from LONNi is more
likely to remain in the same basin than to escape it and reach another basin.

Link heterogeneity: Figure 1e shows the LON’s average out-degree kout, i.e.
the average number of edges eij leaving a node i. As expected, the more dense
LON models (with D = 2) have higher out degree. For all models, this metric
increases with the number of machines.

Figure 1e shows the disparity measure Y2(i), which gauges the weight het-
erogeneity of the arcs leaving a node [3]. For all models, this metric deviates
from what would be expected in a random network, suggesting that the LON
out-going edges are not equiprobable, but instead have predominant directions.

Path lengths: Figure 1g reports the LON’s average path length. The length
associated to a single edge eij , is dij = 1/wij , which can be interpreted as the
expected number of random perturbations for escaping LONNi and entering
exactly the basin of LONNj . The length of a path, then, is simply the sum of all
the edge lengths in it. For all models, the path length increases with the number
of machines. Path lengths are longer for the exchange LON with D = 1. The
other LON models show short path lengths, specially for the insertion operator.
Additional evidence supporting the advantage of this operator.

Figure 1h shows the average length of shortest paths that reach the global
optimum starting from any other local optimum. This measure is clearly rele-
vant to search difficulty. Shortest paths to the optimum reveal easy to search
landscapes. Again, the insertion operator induces shortest distances, specially
when coupled with an escape intensity D = 2.

Mixing patterns: Figure 2a reports on the tendency of LON nodes to con-
nect to nodes with similar degree. Specifically, figure shows the Newman’s r
coefficient, a common measure of assortativity roughly equivalent the Pearson
correlation between the endpoints degree of all the existing links [15]. Degree
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(b) fitness correlation

Fig. 2. (a) Newman’s r coefficient of assortativity; (b) Spearman ρ correlation between
the fitness of a node and the weighted average of its neighbors’ fitness.

mixing is known to a have strong influence on the dynamical processes happen-
ing on complex network [2].

More interesting is to investigate mixing patterns with respect to the nodes
fitness values. Figure 2b shows the Spearman correlation coefficient between the
fitness of a LONNi and the average value of its neighbors LONNj fitnesses,
weighted by the respective transition probabilities wij,j 6=i. This measure is less
reliable on the small and dense LONs extracted from the insertion landscape,
but on the exchange LONs, it suggests a positive fitness-fitness correlation that
tends to increase with the number of machines. This might suggest that good
solutions tend to be clustered within the search space.

More general and more pronounced is the positive correlation, measured by
Spearman’s ρ statistic, between the fitness value of a node and the sum of the
weights of its incoming transitions. Considering all instances, ρ is in the 95%
confidence interval (0.78, 0.81), indicating that the higher the fitness of a LONN ,
the easier it is to reach it. This is consistent with results on other combinatorial
spaces displaying a positive correlation between fitness and basin size [7].

4 The Performance of Iterated Local Search

The network metrics studied in the previous section, suggest that the insertion
operator is preferable over the exchange operator, and that an escape distance
of 2 (D = 2) induces an easier to search landscape. In order to corroborate these
predictions, this section studies the performance of a heuristic search algorithm,
specifically, iterated local search, when running on the modeled PFSP instances.
Moreover, we show that it is possible to predict the running time of ILS using
multi-linear regression model based on LON features.

Iterated local search is a relatively simple but powerful strategy, which oper-
ates by alternating between a perturbation stage and an improvement stage. This
search principle has been rediscovered multiple times, within different research
communities and with different names. The term iterated local search (ILS) was
proposed in [12]. Algorithm 2 outlines the procedure.



8 F. Daolio, S. Verel, G. Ochoa and M. Tomassini

Algorithm 2: Iterated Local Search

s0 ← Choose random initial solution s ∈ S;
s∗ ← LocalSearch(s0, op); // hill-climber using move operator op
repeat

s′ ← Perturbation(s∗, D); // D-moves of random swap

s′∗ ← LocalSearch(s′, op); // hill-climber using move operator op
if f(s′∗) > f(s∗) then

s∗ ← s′∗; // accept if better

until FE ≤ FEmax;

The LocalSearch procedure in Algorithm 2, corresponds to the stochastic
hill-climber given in Alg. 1. In our implementation, the two operators studied:
insertion and exchange can be used in this stage. The perturbation stage uses
only the exchange operator but with two different intensities of one or two op-
erator applications. Notice that Alg. 2 follows closely the structure of basins of
the search space, and thus, the LON models should explain the performance of
such ILS. Specifically, four ILS implementations are tested, namely, using inser-
tion and exchange in the local stage, and using one or two applications of the
exchange operator in the perturbation stage, which we denote D = 1 and D = 2.

Experimental setup: The same instances studied in Section 3 are considered,
i.e. unstructured (random) instances with n = 10 jobs and m ∈ {5, 6, 7, 8, 9, 10}
number of machines. The four variants of ILS (Algorithm 2 described above) are
tested. The maximum running time is set to FEmax = 0.2|S| = 0.2·10! = 725760
function evaluations. On each instance, independent runs are randomly restarted
1000 times upon termination, which occurs either on finding the global optimum
or on exhausting the FE budget.

For assessing the algorithms’ performance, we use the expected number of
function evaluations to reach the global optimum (Run-Length [9]), considering
independent restarts of the ILS algorithms [1]. This accounts for both the success
rate (ps ∈ (0, 1]) and the convergence speed. After (N − 1) unsuccessful runs
stopped at Tus-steps and the final successful one running for Ts-steps, the total
run-length would be T =

∑N−1
k=1 (Tus)k +Ts. Taking the expectation and consid-

ering that N follows a geometric distribution (Bernoulli trials) with parameter

ps, it gives: E(T ) =
(

1−ps

ps

)
E(Tus) + E(Ts), where E(Tus) = FEmax, the ratio

of successful to total runs is an estimator for ps, and E(Ts) can be estimated by
the average running time of successful runs.

Comparing the performance of ILS variants: Figure 3 compares the per-
formance of the four ILS variants. Figure 3a reports the estimated probability of
success, which is clearly superior for ILS variants with perturbation strength of
2 (D = 2). In this case the ILS algorithm solves all instances to optimality in the
median. For one perturbation (D = 1, in Fig. 3a), success rates are much lower,
specially for the exchange operator, where they decrease with increasing number
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(b) run-length with restarts

Fig. 3. Performance of Iterated Local Search: (a) success probability, (b) run-length.

of machines. A closer look at the performance of the ILS variants is appreciated
in Figure 3b, showing the estimated run-lengths. Run-lengths are much higher
for ILS variants with a single exchange (D = 1). For both D = 1 and D = 2,
the insertion operator produce shorter running lengths, although differences are
greater when a single perturbation is used. Finally, for all ILS variants, the run-
ning length tends to increase with the number of machines. These performance
observations, are consistent with the search difficulty predicted by the LON
metrics in Section 3.

Table 1. Spearman’s ρ statistic for the correlation between the estimated run-length of
ILS variants and the LON metrics by the respective move and perturbation. Nv nb of
local optima, CCw avg weighted clustering coeff., Fnn neighboring nodes fitness-fitness
corr., knn neighboring nodes degree-degree corr., r Newman’s assortativity, Lopt avg
shortest distance to the global optimum, Lv avg path length, Fsin fitness-strength(in)
corr., wii avg weight of self-loops, Y2 avg disparity of (out)links, kout avg (out)degree.

ILS/LON Nv CCw Fnn knn r Lopt Lv Fsρ wii Y2 kout

insertion D1 0.46 −0.221 0.199 0.078 0.238 0.634 0.40 −0.101 −0.31 −0.41 0.479
insertion D2 0.54 −0.209 0.316 −0.165 0.117 0.691 0.45 −0.167 −0.476 −0.46 0.55
exchange D1 0.535 −0.506 −0.004 0.142 0.353 0.624 0.536 −0.102 −0.235 −0.473 0.448
exchange D2 0.408 −0.255 0.22 −0.111 0.165 0.527 0.353 −0.035 −0.272 −0.434 0.409

Performance prediction: This section explores the correlations between the
LON metrics from Section 3 and the ILS performance presented above. More
precisely, Table 1 reports the rank-based Spearman’s ρ statistic between each
LON metric and the ILS estimated run-length, considering the natural pairings
of move operator and perturbation intensity between ILS variants and LON
models. In all cases, the higher the number of local optima (Nv) and, even more
importantly, the longer the average lengths of paths to the global optimum
(Lopt), the longer it takes for the iterated search to solve an instance to opti-
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mality. Figure 4 shows such correlations, which are the highest observed. Other
scatter plots are less clear and are left out for reasons of space, but admittedly,
their interpretation would also be less straightforward.

D=1 D=2
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Fig. 4. Scatter plots of the estimated run-length versus different network metrics.

Finally, in order to investigate how the LON features could be used to predict
the search difficulty on the whole set of explored landscapes, we propose a set of
linear regression models having the estimated run-length as a dependent variable,
log-transformed after a preliminary analysis (log-likelihood of Box-Cox’s power
parameter). We perform an exhaustive search in the set of all possible regressors
subsets [13] and for each subset size we retain the best model according to
Mallow’s Cp statistic [8]. Results are given in Table 2. Interestingly, the number of
local optima Nv is never chosen; instead, the best single predictor is the average
length of the shortest paths to the global optimum Lopt, log-transformed, which
alone accounts for more than 57% of the observed run-length variance across the
PFSP instances under study.

Table 2. Exhaustive search among all regressors subsets for the multiple linear regres-
sion predicting the logarithm of estimated run-length as a function of the LON metrics.
For each number of predictors ]P , the best model in terms of Mallow’s Cp statistic is
given, along with its estimated regression coefficients and the resulting adjusted R2.

]P log(Nv) CCw Fnn knn r log(Lopt) log(Lv) Fsρ wii Y2 kout Cp adjR2

1 2.13 265.54 0.574
2 −5.18 1.43 64.06 0.675
3 1.481 0.895 −0.042 16.48 0.700
4 −2.079 1.473 0.540 −0.032 8.75 0.704
5 −2.388 −1.633 1.470 0.528 −0.030 5.97 0.706
6 −2.532 −1.722 1.469 0.472 −1.405 −0.028 3.75 0.707
7 −2.772 −1.986 1.461 0.427 −1.497 −0.408 −0.029 5.02 0.707
8 −2.748 −0.188 −2.078 1.464 0.452 −1.579 −0.515 −0.029 6.39 0.707
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5 Conclusions

This article extracts and analyzes, for the first time, the local optima networks of
the permutation flow-shop problem. The LON model with the so-called escape-
edges, which account for the chances of escaping a local optimum after a con-
trolled perturbation (1 or 2 random exchanges in our implementation), is ex-
tended to landscapes with neutrality. Two move operators, widely used for per-
mutation representations (exchange and insert), are considered and contrasted.

LONs induced by the insertion operator present fewer nodes (i.e. fewer local
optima), and shortest distances both among nodes and from any node to the
global optimum. This evidence supports the superior performance of the inser-
tion over the exchange move as reported in the literature. The LON models with
D = 2 produce shortest distances among nodes, and from any node to the global
optimum, compared to models with D = 1. Therefore a local search heuristic
using the insertion operator for adaptive walks and several kicks of the exchange
operator to escape local optima, should perform well on these PFSP instances.

Indeed, four iterated local search variants were implemented and tested,
which resemble the considered LON models. Among these, the ILS with insertion
in the improvement stage and two exchanges in the perturbation stage, produced
the best performance. This confirms the intuitions from the LON model metrics.
Actually, not only the LON metrics correlate with the search performance, but
also the ILS running time can be estimated using the LON features.

Future work will explore larger problems, which requires sampling to extract
the LON models, and additional permutation flow-shop instance classes, such as
machine-correlated and mixed-correlated instances [26]. The ultimate goal is to
derive easy-to-compute landscape metrics that can predict the performance and
guide the design of heuristic search algorithms when solving difficult combina-
torial problems. This article is an additional step in this direction.
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