
Deconstructing the Big Valley
Search Space Hypothesis

Gabriela Ochoa and Nadarajen Veerapen

Computing Science and Mathematics, University of Stirling, Scotland, UK.

Abstract. The big valley hypothesis suggests that, in combinatorial
optimisation, local optima of good quality are clustered and surround
the global optimum. We show here that the idea of a single valley does
not always hold. Instead the big valley seems to de-construct into several
valleys, also called ‘funnels’ in theoretical chemistry. We use the local
optima networks model and propose an effective procedure for extracting
the network data. We conduct a detailed study on four selected TSP
instances of moderate size and observe that the big valley decomposes
into a number of sub-valleys of different sizes and fitness distributions.
Sometimes the global optimum is located in the largest valley, which
suggests an easy to search landscape, but this is not generally the case.
The global optimum might be located in a small valley, which offers a
clear and visual explanation of the increased search difficulty in these
cases. Our study opens up new possibilities for analysing and visualising
combinatorial landscapes as complex networks.

1 Introduction

In the mid 1990s, it was conjectured that the search space of travelling salesman
instances had a “globally convex” or “big valley” structure, in which local op-
tima are clustered around one central global optimum [3]. This globally convex
structure has subsequently been observed in other combinatorial problems such
as the NK family of landscapes [7, 8], graph bipartitioning [13], and flowshop
scheduling [21]. Under this view, there are many local optima but they are easy
to escape from, with the coarse level gradient leading to the global optimum
(see Fig. 1). This hypothesis has become generally accepted and has inspired
the design of modern search heuristics.

We argue that this view of combinatorial search spaces is not complete. We
challenge the existence of a single valley, and present compelling and visual
evidence of examples where the big valley de-constructs into several valleys, also
called ‘funnels’ in the study of energy surfaces in theoretical chemistry [14, 9].
The multi-funnel concept implies that local optima are organised into clusters,
so that a particular local optimum largely belongs to a particular cluster.

Using the travelling salesman problem (TSP) as a case study, we found that
this decomposition into clusters does not only occur near the global optimum as
has been observed recently [6, 19]. It occurs earlier on in the search process, even
among local optima tours with relatively high costs. This finding improves our



X

f(X)

Fig. 1: Depiction of the ‘big-valley’ structure.

understanding of search difficulty in combinatorial optimisation. It explains why,
when using current local search heuristics, random restarts are generally required
to consistently find globally optimal solutions. When trapped in a sub-optimal
funnel, a local search heuristic will not be able to escape even with relatively
large random perturbations. This insight will foster research into more informed
escaping and tunnelling mechanisms [24, 6, 17].

We use the local optima networks model to analyse and visualise the big
valley deconstruction. Local optima networks compress the whole search space
into a graph, where nodes are local optima and edges are transitions among them
with a given search operator [18, 20, 23]. Local optima are key features of fitness
landscapes as they can be seen as obstacles for reaching high quality solutions.
The local optima networks model emphasises the number, distribution and most
importantly, the connectivity pattern of local optima in the underlying search
space. They are therefore an ideal tool for modelling and visualising the big
valley structure.

We propose a new and effective sampling procedure for extracting the net-
work data of large instances. Local optima and escape edges are collected from
several runs of Chained Lin-Kerninghan, a state-of the-art TSP heuristic [12].
This data is gathered to construct the local optima networks.

The remainder of this article is organised as follows. The next section gives an
overview of Chained Lin-Kerninghan. Section 3 defines the local optima network
model considered, and describes the procedure for extracting the data and con-
structing the networks. Section 4 describes the TSP instances studied. Section 5
presents the analysis and visualisation of the extracted local optima networks.
Finally, Section 6 summarises our main findings and suggests directions of future
work.

2 Chained Lin-Kernighan

Lin-Kernighan (LK) [10], is a powerful and well-known heuristic for solving the
TSP. For about two decades, it was the best local search method, and nowadays it
is a key component of state-of-the-art TSP solvers. LK search is based on the idea
of k-changes: take the current tour and remove k different links from it, which



are then reconnected in a new way to achieve a legal tour. A tour is considered to
be ‘k-opt’ if no k-change exists which decreases its length. Fig. 2a illustrates a 2-
change move. LK applies 2, 3 and higher-order k-changes. The order of a change
is not predetermined, rather k is increased until a stopping criterion is met. Thus
many kinds of k-changes and all 3-changes are included. There are many ways to
choose the stopping criteria and the best implementations are rather involved.
Here, we use the implementation available in the Concorde software package [1],
which uses do not look bits and candidate lists.

i i + 1

j
j + 1

(a) 2-change

i i + 1

j

j + 1

k
k + 1

l

l + 1

(b) Double-bridge

Fig. 2: Illustration of tours obtained after 2-change and double-bridge moves.

The overall tour-finding strategy using LK-search was to repeatedly start the
basic LK routine from different starting points keeping the best solution found.
This practice ended in the 1990s with the seminal work of Martin, Otto and
Felten [12], who proposed the alternative of kicking (perturbing slightly) the LK
tour and reapplying the algorithm. If a better tour is produced, we discard the
old LK tour and keep the new one. Otherwise, we continue with the old tour
and kick it gain. This simple yet powerful strategy is nowadays best known as
iterated local search [11]. It was named Chained Lin-Kernighan (Chained LK)
by Applegate et al. [2], who also provided an improved implementation to solve
large TSP instances.

The kick or escape operator in Chained-LK is a type of 4-change, named
double-bridge by Martin et al. [12] (drawn in Fig. 2b). It consists of two improper
2-changes, each of which is a ‘bridge’ as it takes a legal, connected tour into two
disconnected parts. The combination of both bridges, must then be chosen in
order to produce a legal final tour.

3 Local optima networks for TSP

To construct the networks we need to define their nodes and edges. The definition
is closely linked to the methodology for extracting the network data, which
is based on a number of runs of the Chained-LK algorithm described above.



Clearly, a full enumeration of the local optima for TSP instances of non-trivial
size becomes unmanageable. Therefore, the networks are based on a sample
of high-quality local optima in the search space. We first provide some basic
definitions, below, before describing the sampling algorithm.

3.1 Definitions

Definition 1. A tour is a local optimum if no tour in its neighbourhood is
shorter than it. The neighbourhood is imposed by LK-search, which considers
variable values of k. The local optimality criterion is, therefore, rather stringent.
Only a small proportion of all possible tours are LK-optimum. The set of local
optima is denoted by LO.

Definition 2. Edges are directed and based on the double-bridge operator.
There is an escape edge from local optimum LOi to local optimum LOj , if
LOj can be obtained after applying a double-bridge kick to LOi followed by
LK-Search. The set of escape edges is denoted by Eesc.

Definition 3. The local optima network, LON, is the graph LON = (LO,Eesc)
where nodes are the local optima LO, and edges Eesc are the escape edges.

3.2 Gathering network data

To extract the network data, we instrumented the Chained-LK implementation
of Concorde (see Algorithm 1). We simply store, in LO, every unique local optima
obtained after an LK application, and create and store, in Eesc, an edge between
the starting and end optima after a double-bridge move.

Data: I, a TSP instance
Result: LO, the set of local optima,

Eesc, the set of edges between local optima
n← numberOfCities(I); LO ← {}; Eesc ← {}
for i← 1 to 100 do

s← initialSolution()
s← LK(s)
LO ← LO ∪ {s}
for k ← 1 to n do

sstart ← s
send ← applyKick(s)
send ← LK(send)
LO ← LO ∪ {send}
Eesc ← Eesc ∪ {(sstart, send)}
if fitness(send) < fitness(sstart) then s← send

end

end
Algorithm 1: Local optima network sampling for 100 runs of Chained-LK.



A hundred independent runs of Chained-LK are executed. We chose to use
two different starting mechanisms, one producing “better” solutions, the other
“worse” solutions, to have a broader picture of the search space. Half of the runs
start from a relatively good solution, built using the Quick-Bor̊uvka method.
The latter is the default initialisation for Concorde’s Chained-LK and is based
on the minimum-weight spanning tree algorithm of Bor̊uvka [15]. The other half
starts from a random solution.

Each run performs n kicks, where n is the size of the tour (number of cities).
The default kicking procedure in Concorde is used: the edges involved in the
double bridge are selected using random walks along connected vertices.

Since nodes and edges are collected from a combination of several runs, it is
possible that each of them is found more than once. Therefore, weights could be
associated to edges indicating the number of times they were encountered. We
recorded such weights, but chose to analyse unweighted networks. Future work
will consider this information in the analysis.

4 Selected TSP instances

Our study considers four TSPLIB [22] instances of a few hundred cities belonging
to different types (see Table 1). By exploring and comparing the local optima
networks of instances of similar size, we aim to discover structural differences
distinguishing the hard from the easy to solve instances.

Table 1: Selected TSP instances

Property
Instances

att532 u574 rat575 gr666

Cities 532 574 575 666

Edge Weight Type ATT EUC-2D EUC-2D GEO

Description US cities Drilling problem Rattled grid World cities

Optimum 27686 36905 6773 294358

Concorde run time (s) 8.9 3.8 18.9 6.5

Concorde B&B nodes 5.2 1.7 17.7 3.2

Chained-LK success rate 0.06 0.47 0.01 0.04

The types of edge weights are as follows. EUC-2D refers to the Euclidean
distance of points in a 2D plane rounded to the nearest integer. ATT refers to
a pseudo-Euclidean distance: the sum of the squares is divided by 10 and the
square root of this value is then rounded to an integer. GEO refers to the integer



geographical distance computed from latitude and longitude coordinates on the
surface of a sphere representing an idealized Earth.

The bottom portion of Table 1 gives information on the solving difficulty of
each instance. Specifically, we report the mean run time and the mean number
of branch-and-bound nodes required by Concorde (interfaced with IBM ILOG

CPLEX 12.6) to solve the instances to optimality on a 3.4 GHz Intel Core i7-
3770 CPU across 10 runs. Although Concorde is an exact solver, the means are
computed since randomised heuristics, including Chained-LK, are used. This
leads to different execution times and branch-and-bound trees. The last row
reports the success rate of the 100 Chained-LK runs used for extracting the
network data (described in Section 3.2). By success rate, we mean the ratio of
runs that found at least one global optimum. According to this information, the
easiest instance to solve is u574 (by far) and the hardest is rat575.

5 Results

When extracting local optima networks from large instances, it is important to
decide which sample to consider. We chose here to analyse two sets: (i) the whole
set of local optima collected with the procedure described in Section 3.2, and
(ii) the subset containing the best 10 % local optima according to fitness. For
each TSP instance in Table 1, we consider the two sets and construct the local
optima networks as defined in Section 3.

Results are presented in the following two subsections, which conduct a net-
work analysis and a fitness distance correlation analysis, respectively.

5.1 Network analysis and visualisation

Over the years, an extensive set of tools – mathematical, computational, and
statistical – have been developed for analysing and understanding networks [16].
We select here a set of network features (see Table 2) which we consider relevant
to search dynamics.

Table 2: Main local optima network features.

Feature Description

nv Total umber of vertices (local optima)
ne Total number of edges
ngo Number of different global optima
nc Number of connected components (or clusters)
cgo Cluster containing the global optimum (or optima), where the clusters

are ordered by decreasing size.

We argue that the decomposition into clusters (connected components) is
one of the most relevant features impacting search. Indeed, we hypothesise that



Table 3: Network metrics (as described in Table 2) for the four TSP instances
and the two local optima samples:all and best 10%.

att532 u574 rat575 gr666

all best 10 % all best 10 % all best 10 % all best 10 %

nv 35,512 3,678 37,780 3,842 41,536 4,805 46,021 4,611
ne 37,730 4,435 40,161 4,660 44,643 5,842 47,939 5,039
ngo 2 2 4 4 2 2 2 2
nc 6 7 8 5 69 47 53 25
cgo 1 2 1 1 60 8 4 2

the notion of multiple funnels, originally studied in theoretical chemistry [14, 9],
and more recently also in combinatorial optimisation [6, 17], is captured by the
connected components in the networks studied. Specifically, funnels correspond
to connected components. Once trapped in a connected component, it is not easy
for the search process to hop to another component. There are no connections
among components with the underlying escaping mechanism. We, therefore, ex-
plore in detail the connected components decomposition of the studied networks.

Table 3 reports the main network features for each instance and local optima
sample. All instances have more than one global optima, and all decompose
into several clusters. Indeed, several components are found on both samples,
indicating that the deconstruction occurs not only among solutions near the
global optima, but early on in the search process (solutions with higher costs).
The last row in the table (cgo) shows that global optima are not always found
in a large connected component.

It is interesting to note that for the hardest instance studied, rat575 (see
the bottom of Table 1 for an indication of search difficulty), the global optima
were not found in any of the 5 largest connected components. They are located
in cluster number 60 when considering the whole sample and cluster 8, when
considering the best 10 % local optima. On the other hand, for the easiest in-
stance, u574, the global optima are found in the largest connected component for
both samples. Table 4 reports sizes (as percentages) of the 5 largest connected
components for each instance and local optima sample. Bold fonts indicate the
component containing the global optima. As mentioned before, global optima
are not found in the top 5 connected components of instance rat575, they are
located in the 8th component, which contains only 2.67 % of the local optima
sample.

A useful approach to explore the structure of networks is to visualise them.
Software for analysing and visualising networks is currently available in various
languages and environments. Here we use the R statistical language together
with the igraph package [4]. The graph layout algorithm used is the Fruchterman
and Reingold method [5], which is based on exploiting analogies between the
relational structure in graphs and the forces among elements in physical systems.
The heuristic is concerned with drawing graphs according to some generally



Table 4: Sizes (as percentages) of the top 5 connected components for the four
TSP instances and the two local optima samples: all and best 10%. Bold fonts
highlight the connected component containing the global optima. For instance
rat575, the global optima are located in the 8th component, which contains only
2.67% of the local optima sample

att532 u574 rat575 gr666

all best 10 % all best 10 % all best 10 % all best 10 %

c1 93.62 50.33 58.56 85.84 17.55 33.47 17.20 29.75
c2 2.17 48.15 15.97 11.63 4.93 7.62 7.12 13.42
c3 1.12 1.20 10.30 1.54 4.89 3.79 7.05 12.67
c4 1.04 0.19 8.72 0.60 2.03 3.33 6.22 6.66
c5 1.04 0.08 3.20 0.39 2.01 2.93 3.90 4.49

accepted aesthetic criteria such as a) distribute the vertices evenly in the frame
(a circle in this case), b) minimise edge crossings, c) make edge lengths uniform,
and d) reflect inherent symmetry [5].

In order to have manageable images, we plotted the networks corresponding
to the subset containing the best 10 % local optima. We also pruned some of
the nodes of degree one, and removed self-loops for improved visibility. Figure 3
shows the local optima for instances att532 and u574, and Figure 4 shows the
networks for rat575 and gr666. Nodes are LK-search local optima and edges
represent escape transitions according to double-bridge moves.

We decorated the network images according to the two most relevant features
impacting search dynamics: fitness and connectivity. The fitness of a solution is
reflected by its node size, with size inversely proportional to tour cost (so the
best solutions are larger in size). The connected components are distinguished
with different colours: red shows the largest connected component, blue the 2nd

largest and so on, as indicated in the legends of Figures 3 and 4. Global optima
nodes are highlighted with a yellow outline.

The networks show strikingly different structures. In instance att532 (Fig. 3,
top), the two largest connected components (red and blue) show similar sizes,
with the remaining components having small sizes (see also Table 4 for percent-
ages). The two global optima are located in the blue component. In instance
u574 (Fig. 3, top), the largest component (red) clearly dominates, containing
the four global optima and many good local optima as indicated by the node
sizes. This is consistent with the fact that u574 is the easiest instance to solve,
as indicated in the bottom of Table 1.

In the first two instances considered (Fig. 3), the two largest components (red
and blue) dominate the network images. This is not the case for instances rat575
and gr666 (Fig. 4), where the smaller connected components are more visible. In
rat575, the global optima are not found in the top 5 components. Instead, the
two global optima are located in component number 8, visualised in dark green



●

●

●
●

●

●

●

●

●

●

●

● ●

●

● ●

●

●

●

●

● ●

●●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●●

●

●

●

●
●

●
●

●

●

●

●

●●
●

●

●
●

●
●

●

●

●

●●
●

●
●

●

●
●

●

●
● ●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●●
● ●

● ●

●

●

●

●

●

●
●

●

●

●

●

● ●
●

●

●

●

●●

●

●

●

●
●

●

●

●●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●
●
●●

●
●

●

●

●
●

●

●

●
●●

●

●● ●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●●●
●

●

●

●

●
●

● ●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●● ●●
●

●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●
●

● ●●

●
●

●
●

●
● ● ●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

● ●

●● ●
●

●

●
●●

●

●

●
●

●

●
● ● ●

●

●
●

●

●
●

●●

●
● ●

●
●

●

●
●

●

●
●

● ●

●
●

●

●

●
●

●

●
●

● ●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

● ●
●

●

●

●

●

●

●

●
●

●
●

●

●● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●
●

●

●

●

●

●

●

●

●● ●
●

●●

●

● ●

● ●

●

●

●

●

●

●
●

●

●

●
●

● ●
●

●

●
●

●
●

●

●

● ●

●
●

●

●

●

●
●●

●

●●●
●

●

●

●

●
●●

●●
●

●

●

●

●

●
●

● ●

●
●

●

●
●

●●●
●

●

● ●●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●●
●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●
●
● ●

●
●

●

●

●

● ● ●

●

●

● ●

●
●

●

●●

●

●
●

●

●

●

● ●

●
●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●
● ●

●

● ●

●
●

●
●

●

●

●

●
● ●

●
●

●
●

●●
●

●

● ●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

● ●

●
●

● ●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●●●
●

●
●

● ●

●

●

● ●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●● ●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

● ●

●

●●
●

●●
●

●

●

●

●

●

●

●
●

●

●

●

● ●

●
●

●

●

●
●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●
●

● ●

●

●
●

● ●

●

●

●

●

●

● ●

● ●
● ●

●

●
●

●

●
●

●

●
● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●
●

●
●●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●

●
●

●
●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●●

●●●
●

●

●

●

●

●

●

●

●

●

●

●●

●
●●

●●

●
●

●
●

●

●
●

●
●

●

●

●

●
●

●

●●

●
●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●
●

●

●

●●

●
●

●

●

● ●

●

●

●

● ●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●●

●

●●
●

●●

●

●
●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●
●

●

●

●

●

●

●●
●

●

●
●

●

●
●

●

●

●
●●

●

●
●

●
●

●

● ●
●

●

●

●

●
●

●
●

●

●

● ●
● ●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●●
●●

●

●

●

●●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●
●

● ●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●●

●

●

●
●

●

● ●
●

●

●

●

●

●
●

●

●

●
● ●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

● ●

●

●
●

●●

●

●
●

●●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●●
●

●● ●

●

●

●

● ●

●

●

●

● ●

●
●

●

●

●

●

●

●●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

● ●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

● ●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

● ●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●●

●

●

●
●

●

●

●●
●

●●
●

●

●

●

●

●

●

●●

●●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●
●

●
●

●

●

●

● ●
●

●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

● ●●

●●

●●

●

●

●
●

●

●
● ●●

●

●

●
●
●

●

●

●
●

●

●

● ●

●

●

●

●
●

●

●

●

● ●

●

●
●

●
●

●

●

●

●

●

●

●
●

● ●
● ●

●●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

● ●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●●

●

●
●●●●

●

●

●

●

●●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●
●

● ●

●

●
●

●
●

●
●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●
●

●
●

●

●● ●
●

●

●
●

●
●

●

● ●

●
●

● ●

●

●

●

●

●

●

●

●

●
●

●

● ●
●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●
●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

● ●
●

●

●
●

●

●

●●

●

●

●

●

● ●

● ●

●●

●●
●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●● ●
●

●

●

●

●

●

●● ●
●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●●
●

●
●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

● ●
●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●
●

●

●

●

●

● ●
●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

● ●
●●

●

●●

●

●

●

●

●●

●
●

●

●
●

●

● ●

●●

●

●

●

●
●

●

●
●

● ●

●●

●

●

●

●

●

●

●

●

●●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●
● ●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●●●

●

●

●

●
●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●● ●

●
●

●

●
●

●

●
●

●
● ●

●●
●
●

●
●●
●

●

●●
●

●
●

●
●

●

●
●●●

●
●

●●
●

● ●

●●
●●

●
●

●

●

●

●
●

●

●

●

● ●

●

●●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●
●

● ●

●

●●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

● ● ●

●

●
●

●●

●

●

●

●

●

●

●

●●

●

●

●
●

●

● ●

● ●
●

●

●

●●
●

●

●●

●

●

●●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●
●
●● ●

●

●

●

●●
●

●●
●

●
●

●●
●

●

●

●

●

●

●

●●

●

●

●

●
●

●
●

●

●

●

●

●

●

●●

●●

●

●

●

●
●

● ●

●

●

●

●
●

●●

●
●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●●

●

●

●
●●

●

● ●

● ●
●

●
●

● ●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●
●

●

●

●

●

● ●●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●●

●

● ●●

●
●

●

●

● ●

●

●
●

●

●
●

●

●

● ●

●●
●

● ●

●

●

●

●

●
●●

●

● ●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●

●

●

●

●●

●

●

●
●●

●

●●
●

●

●

●
●

●

●

●
●

●●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●● ●

●
●

● ●

●
●

●

●
●

●

●

●

●
●

●
● ● ● ●

●●

●

● ●
● ●

●●●●

●

●

●

●●●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●
● ●

●

●

●
●

Node in largest component

Node in 2nd largest component

Node in 3rd largest component

Node in 4th largest component

Node in 5th largest component
Global Optimum

Fig. 3: Local optima networks for att532 (top) and u574 (bottom). Nodes are
LK-search local optima, and edges represent escape transitions according to
double-bridge moves. Node colours identify connected components as indicated
in the legend, while node sizes are inversely proportional to tour cost (so the
best solutions are larger in size). Global optima nodes are highlighted with a
yellow outline.



●

●

●

●

●
● ●

●

●
●

●

●

●
●

●
●

●
●

●
●●●

●
●

●
●

●
● ●

●●

●●
●

●
●

●
●

●
●●

●

●
●

●
●

●

●

●

●

●

●
●

● ●
●●

● ●● ●●
●

● ●

●

●

●
● ●

●
●●

●
●● ●

●●

●
●
●

●

●
●

●

●
●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●
●

●
●●●●

●

●

●●
●

●
●

●

●

●

●

●
●

●
● ●
●
●●

● ● ●

●

●
●●

●
●

●
●●

● ●
●

● ●

●●
●

●
●

●●

●

●
●
●
●● ●

●

●● ●
●

●
●

●

●

●

●

●

● ●
●

●

●
●

●

●
●

●
●

●

●

●

● ●
●●

●
●

●
● ●
●

●

●● ●

●

●
●

●
●●●

●

●
● ●

●
●

●

●

●
●

●

●
● ●

●

●
●

●●

●

●
●

● ●●

●●●
●

●
●

●
●●●
●

●
●

●

●

●

●

●

●●
●

● ●

● ●

●

●

●

●●

●
●

●

●

●

●

●

●●
●

●
●●
●

●
●
●

●

●●
●

●
●●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●
●

●

●

●
●●

● ●

●
●

●
●●

●

● ●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●● ●
●

●
●

●
●

●●

●

● ●

●

●

●

●

●

●

●

●

●●

●

● ●
●

●

●

●

●
●

●
●

●
●

●
●

●

●

●
●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●
● ●

●
●

●
●

●●

●

●●

●

●●

●

●●●

●
●●

●
●

●

●

● ●

●
●

●

●
●

●

●●●
●●

●

●

●
●

●
●

●

●
●

● ●

●
●

●●●●●●
●
● ●

●
●

●
●

●
●

●
●

●
●

●

●●
●●

●

●●
●

●
●

●
●

●

●
●

●●

●
●

●

●
●

●

●

●
●

● ●

●
●

●●●

●
●

●

●
●

●
●

●

●

●

●●●
●

●
●

●
●

●
●
●
●

●

●

●
●

● ●
●

● ●

●
●

●
●

● ●
●

●●●

●

●
●

●

●

●

●
● ●

●
●

● ●

●

●

●●

●
●

●
●

●

●

● ●

●

●
● ●

●●

●

●

●

●

●●

●

●

●
●

●● ●
●

●●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●
●

● ●

●●

●
●

● ●

● ●
● ●

●
●

●
●

●
●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●
●

●
●●

●
● ●

●● ●
●

●
●

●
●

● ● ● ●● ●
●

●

●
●

●
●
●

●

●
● ●

●●●●

●

●

● ●
●

●●
●●

●
●
●

●●●
●

●
●

●
●

●
●●

●

●

●
●

●

●
●

●

●
●●

●
●

●

●
●●

●●

●

●
●●

●●
●

●

●

●
●

●

●

●

●
●

●●●

●
●●

●●●

●

●
●

●

●●●
●

●●●●●●
●● ●

●●
●●

● ●
●

●●●●

●
●

●

●

●

●

●

●

●

●

●●

●

●●

●

●
●

●
●

●

●
●

● ●

●
●

●

●
●●

●●
●

●

●

●●● ●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

● ●
● ●

●

● ●
●

●
●

●
●
●

●

●

●

●
●

●
●●

● ●

●

●
●

●
●●

●
●●●

●
●

●●● ●● ●

●

● ●
●

●● ●
●

●
●

●●●●
●

●

●

●
●

●

●●
●●

●

●
●

●●
●●

●
●

●
●

● ●
●●

●
●

●

●
●

●

●●
●

●
●

●
●

●

●
●

●
●

●

●

●
●

●

●

●

● ●

●

●

●

●

●●
●
●

●

●

●●
●

●

●

●
●●

●
●

●
●●

●

●

●

●
●●

●

●
●

●

●

●
●

●

●

●
●

●

●

●
●
●
●

●
●

●
●

●
● ●

●
●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●
●

●●●
●

●●●●
● ●
●● ●

●

●
●●●

●

●
●

●●●●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●●

●

●

● ●
●

●

●
● ●

●
●

● ●
●

●

●

●
●

●
●●

●

●●
●

●
●

●

●●

●
●

●

● ●

●
●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●
●

●●

● ●

●

●

●

●
● ●

●

●
●

●

●

●

●

●● ●

●●

●

● ●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●
●●

●

●

●

●

●
●

●

●
●

●

●

●
●

●
●

●

●

●

●

●
●

● ● ●

●
●

●

●
●●●●●

●
●●
●

●

● ●
●

●

●

●
● ●●

●

●

●

●●

●

●

●
●

●
●
●

●●
●●
●

●
●
●

●
●

●
●

● ●
●

●

●
●

●

●

●

●

●

●

●

●

●

● ●
●

● ●

●

●

●

●

●

●

●

●●
●●

●

●

●

● ●
●

●●
●

●●
●

●

●

●
●

●

●
●

●

●
●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●
●

●

●

●
●

●
●

●

●

●
●

●
● ●

●
●

●

●

●

●

●
●

●

●

●
●

●
●● ●

●

●

●
●

●

●
●

●
●

●

●
●●

●
●
●

●

●

●
●

●
●

●

●
●

●●
●

● ●

●

●

●

●

●
●

●

●
●

● ●

●●●

● ● ●

●

● ●
●

●

●

●
●

●
●
●

●
●

●

●
●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●
● ●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●
●

●

●
●

●
●

●

●

●●
●

●

●

● ●

●

●

●

●
●

●
●

●●
●

●

●
●●●

●

●
● ● ●

● ●
● ●

●
●

●

●
●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

● ●●

●

●
●

●

●
●

●

●

●
●

●
●

●

●
●
●

●
●

●

●

●
●

●
●

●

●

●

●

●
●
●

●
●

●●

●
●

●

●●
●

●
●

●

● ●

●

●

●

●

●

●●
●

●

●

●

●

●
●

●

●
●

●

●

●

●●

●

●

●
●

●

●
●

●

● ●

●●

●

●

●

●

●

●

●

●
●

●

● ●
●

●

● ●
●

●

●
●

●●

●

●●●●
●●

●

●

●
●

●
●

●

●

●

●
●

● ●

●
●

●
●

●●●
●

●

●

●
●●

●
●

●
●

●

●

●

● ●

●

●
●●

●

●

●
● ●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●
●

●●
●

●

●

●
●

●

●
●

●●

●

●

●
●

●

●

●●
●

●
● ●

●

●

●

●●
●

●
●

●

●

● ● ●
●
●●

●
●

●

●

●

●
● ●

●

●
●

●

●
●●

●
●●

●

●●
●

●

●
●
● ●

●

●
●

●
● ●

●●●
●

●
●

●

●
●

●

●●
●● ●

●

● ●
●●
●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●
●
●

●
●

●

●●

●

●

●
●

● ●

●

●

●●

●
●

● ●●
● ●

●●

●

●

●
●

●

●
●

●
●

●●

●
●

●

●

●

●

●●
●●

●

●
●

●

●
●

●

●

●

●

●●

●

●

●

●
●●

●

●

●

●●
●

●

●

●

●
●

● ●

●

●
●

●
●

●

●

●

●

●
●●

●
●

●
●

●
● ●

●
●

●●
●

● ●
●● ●

●

●

●
●
●

●
●●●

●
●

●

●●

●
●

●

●

●

●

●

●
●

●
●

●
● ●

●

●

●

●

●

●

●

●
●

●
●●

●
●

●

●

●

●

●

●

●●

●

●

●●

●

●

●
●●

●

● ●●
●

●
●

●

●
●

●
●

●

●
●

●

●
●
●

●

●

●

●

●
●

●
●

●●

●

●
●

●
●

●●●●

●●

●
●

●
●

●

●

●

● ●

● ●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●●

●

●

●

●
●

●

●

●

● ●

●
●

●●

●
●

●
●

●

●
●

●●

●
●

●

●

●
●●

●

●
●

●

●

●●●

●

●

●

●●
●●

●

●
● ●

●

●
●●

●
●
●

●
●

●

●
●
●

●
●

●
●

●

●

●
● ●

●

●

●

●

●

●
●

●

●

●
●

●
●

●
●

●
●

●●

●

●
●

●

●

●

●●
●

●

●

●●

●
●

●
● ●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
● ● ●

●
●

●
●

● ●●●
●

●
●

●

●

●●

●

●

●
●

●

●

●

●

●

●●●
● ● ●● ●

●

●●
●

●●

●
●

●

●

●
● ●

●

●● ●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●●●

●
● ●

●
●
●

● ●
●

●
●

●
●

●

●

●
●

●
●

●
●

●
●

●
●

●

●

●

●

●
●

●

●● ●
●

●
●

●
●

●

●

●

●
●

●

●

●
●

●
●

●
●

●
●

●
●

●

●

●●
●
●

●

●
●

●

●

●
●
● ●

●

●
●●

● ●

●

●● ●

●

●

●

●

●

●
●

●

●
●
●
●

●●
●

●●●● ●

●●

●

●
●

●●

●

●
●

●

●

●

● ●

●

●●

●

● ●
●

●
●

●

● ●
●

●

●

●
●

●

●
●

●

● ●

●

●

●

●

●
●

●

●
●●●●

●

●

●

●

●

●
●
●

●

●●

●

●

●●

●

●

●

● ●

●

●
●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●●●

●

●

●
● ●

●

●● ●

●
●●

●

●

●

●

●

●

● ●

●

●

●

●●

●

●

●
●

●

●
●

●

●

●

●

●
●

●
●●

●

●

●
●

●

●

● ●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●
●

●

●●

●

● ●

●

●●

●
●

●
●

●● ● ●●●●
●

●

●●
●

●
●

●

●

●●
●

●
● ●

●

●
●

●
●

●

●

●

●

●

●
●

● ●
●●

●
●
●

●

●●

●

●

●

● ●
●

●
●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●
●

●●●

●
●

●

●

●

●

●

●

●
●

●

●

●
●
●

●
●

●

●
● ●

●
●

●

●
●

●●●

●●
●

●

●

●
●

●

●

●

●
●

●
●

● ●

●

●

●

●●

●
●

●●

●● ●

●

●
●

●

●●

●
●●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

● ●

● ●
●

●

●
●
●

●

●

●
●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●●

●
●

●

●

●
●

● ●
●

●

●

●
●

●●
●●

●

●

●

● ●
● ●

●
●●

●
●
●

●●

●
●

●
●

●●
●

●
●
●

●● ●

●

●
●

●

●

●

●

●

●
●●
● ●●●●

●

●

●●●
●

●

●

●
●

●

● ●

●

●
●

●

●

●●●
●

●

●●

●●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

● ●

●●

●
●

●

● ●●●
●● ●●

●

●

●
●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●
●

●

●

●
●

●
●

● ●
●

●
●

● ●
●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●
●
●

●

● ●

●
●

●

●

●

●

●

●

●
●

●

●

●●

●
●

●

●

●

●
●

●●

●

●

●

●

●
●

●

●
● ●

●

●

●

●
●

●

●●
●

●

●

●

●●
●

●
●

● ●●●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

● ●

●

●

●

●

●

● ●

●

●

●

●
●

●●

●●
●

●
●

●

●

●

●
●●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●

●●

●

●

● ● ●
●

●●
●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●
●

●

●

● ●

●
●
●

●
● ●

●
●

●

●

●
●

●
●

●●

●
●●

●

●

●

●

●

●

●

●

●
● ●

●

●

●
●

●
●

●
● ●

●

●●

●

●●
●

●

●
●

●●

●

●

●

●●
●●●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●●
●●●

●
●

●
●●

●

●

● ●

●
●

●

●

●

●

●
●

●
●

●
●

●
●

●
●

●

●● ●

●
● ●

●
●
●
●● ●

●

● ●●
●

●

●
●

●

●

●
●

●

●●

●

●

●

●

●

●

● ●

●

●

● ●

●●
●

●
●

●
●

●
●

●

●
●

●

●

●
●

●

●
●●

●
● ●

●

●

●

●
●

●
●

● ●●
●

●

●

●●

●
●

●
●

●

●

●
●

●

●

●

● ●

●●
● ●●

●

●

●

●

●

●
●

●

●
●

●
●

●

●●

●

●
●

●
●

●

●

●

●

● ●

●

●

●

●

●
● ●●●

●

●

●

●

● ●

●●
●

●

●

●

● ●

●

●
●

●
●

●
●

●

●

● ●

●
●

●●

●

●

●

●

●
●
●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●●

●●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●●

●●
●

●

●

●
●

●

●

●
●

●

●

●

●

● ●

●

●
●

●
●

●
●

●

●

● ●
●●

●
●

●

●

●

●

●

●

●●

●
●

●

●

● ●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●●

●

●

●

●

●

●
●

●

●

●
● ●●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●
●

●

●

●●
●

●

●
●

●
●

●

●

●

●

●
●

●

●
●

● ●

●

●

●●
●

●

●

●
●

●
●

●

●

●

●

●

●

●●●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●●

●

●

●
●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●
●

●

●

●
●

●

●

●

●●

●

●

●
●

●
●

●

●

●

●● ●

●

●●●

●

●

●

●
●

●

●
● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

● ●●
●

●

●
●

●
●

●
●

●

●

●
● ●

●

●
● ●

●

●

●

●●

●

●

●●
●

●

●

●

●

●

●●

●

●

●

●

●

●●
●

●

●

●

●

●
●

●

●

●

●
●

●
● ●

●

●
●

● ●

●

● ● ●

●

●

●

●

●
●

●

● ●

●
●
●

●

●●
●

●

●●

●
●

●

● ●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●●
●●

● ●●

●

●

●

●

●

●

●
●

●
●
●

●●

●

●
●

●●

●
●
●

●●

●
●

●

●

●

●●● ●

●

●

●

●

●
●●

●

●●
●

●

●
●

●
●

●

●
●

●
●

●

●
●

●

●

●
●

●
●

●
●

●

●

Node in largest component

Node in 2nd largest component

Node in 3rd largest component

Node in 4th largest component

Node in 5th largest component

Node in any remaining component
Global Optimum

Node in a smaller component
containing global optimum

Fig. 4: Local optima networks for rat575 (top) and gr666 (bottom). Nodes are
LK-search local optima, and edges represent escape transitions according to
double-bridge moves. Node colours identify connected components as indicated
in the legend, while node sizes are inversely proportional to tour cost. Global
optima nodes are highlighted with a yellow outline.



at the bottom right of the network plot. This is a small component containing
only 2.67 % of the local optima sample: this provides a clear visual indication of
the increased search difficulty of this instance. For the gr666 instance, the global
optima are located in the 2nd largest connected component (blue) visualised
at the bottom left portion of the image. This component contains 13.42 % of
the local optima, suggesting an easier to search instance despite having a larger
number of cities.

This study only considers instances where the number of connected compo-
nents was less than the number of runs. Yet, the maximum number of com-
ponents that could be discovered by the sampling method corresponds to the
number of runs if no local optimum is repeated in any two runs. It is neverthe-
less possible that some instances actually have many more components than this
number. It is also important to note that the sampling mechanism, including the
parameter values for the number of kicks and runs, introduces a bias generating
an approximation of the search space and not the complete picture.

5.2 Fitness-distance analysis

While the network analyses provide insight into the connected nature of the
search space, it is also useful to examine the landscapes through more traditional
tools. In particular, we now look at the relationship between fitness and bond
distance [3]. The latter is defined as the difference in the number of common
edges, or bonds, between two tours. It is computed by subtracting the number
of common edges from the number of cities. We specifically consider the distance
between a single randomly chosen global optimum and the other local optima.
Let us note that the global optima for each instance share the overwhelming
majority of their edges. The bond distances between the global optima are 2 for
att532, {2, 4, 6} for u574, 3 for rat575 and 13 for gr666. It is thus logical for them
to appear within the same component.

Figure 5 presents the fitness-distance plots for the best 10% sub-sampling
that is represented in the local optima networks and reuses the same colour-
component correspondence. Each of the 5 largest components is plotted in a
separate facet. When the global optima are found in a smaller component, the
points of the latter have their own facet. Any remaining components are grouped
in one final facet. Each plot also displays all the local optima across components
in the background.

Figure 6 provides a similar view of the local optima but considers (almost)
complete samples. Points with fitness above the 95th percentile are not plotted
because they are very spread out and thus interfere with visualisation. Compo-
nents, however, are computed with respect to all the points in the all sample.
Points in common with those in Figure 5 are highlighted with the same colour
scheme, with the aim of exploring the correspondence of clusters between the
two studied samples.

In the best 10% sampling, smaller components containing a few solutions are
artefacts of the arbitrary threshold and actually form part of larger distinct clus-
ters. For att532, even though this is not visible due to points overlapping, all the



(a) att532

(b) u574

(c) rat575

(d) gr666

Fig. 5: Fitness-distance plots for the best 10 % sampling. All facets show the full
set of solutions of the sampling in the background. Facets 1 to 5 display the
overlay of the largest five connected components. Facet G shows the component
containing the global optima (when it is not among the first five, as in the case
of rat575). Facet R displays the remaining components if there are any.



(a) att532

(b) u574

(c) rat575

(d) gr666

Fig. 6: Fitness distance plots for the all sampling. In the background (light grey),
all facets show the set of sampled solutions below the 95th fitness percentile.
Points within specific components are coloured in darker grey in each facet.
Points in common with Figure 5 use the same colours. Facets 1 to 5 display the
overlay of the largest five connected components. Facet G shows the component
containing the global optima (when it is not among the first 5, such as in rat575).
Facet R displays the remaining components.



best 10% components are indeed at the bottom of a single massive component
in the all sampling.

We can observe that there is relatively little overlap between components
when the solution fitness is close to the best fitness (Fig. 5). This no longer
the case when the all sampling is observed. The components not containing the
global optima in instances att532 and u674, and to a lesser extent in gr666,
are relatively far away from the one with the global optima both in terms of
fitness and bond distance. In contrast, the best fitness values in the components
of rat575 are all within 4 units of the global optimum. Let us note that, for this
instance, the distribution of points appears to consist of distinct layers. This
is simply because the range of fitness values is very small and all values are
integers.

From Figure 6, it can be seen that the presence of distinct components does
not match the big valley hypothesis, but rather that there are multiple distinct
funnels. On some instances, looking at the bottom of these components, or fun-
nels, reveals further splits into basins within funnels (Fig. 5).

6 Conclusions

Our study suggests that there is not always a single valley in the fitness land-
scape of travelling salesman problems under LK-search and double-bridge escape
moves. Instead, local optima might decompose into a number of sub-valleys or
funnels, as illustrated in Figure 7 for two funnels, but more than two are generally
present. This decomposition occurs not only among solutions near in evaluation
to the global optimum, but it may also happen among solutions with higher
cost. In our local optima network model, the funnels are clearly identified and
visualised as the connected components of the networks.

This has significant consequences in our understanding of iterated local search.
Once the search process is trapped in a sub-optimal funnel, it simply cannot es-
cape from it using the underlying escaping mechanism (double-bridge moves in
our study). Increasing the number of iterations will not improve the performance,
the search will stall, as transitions to other funnels are not possible. We foresee
that this observation will inspire new escaping and tunnelling mechanisms that
allow the search process to navigate among funnels.

X

f(X)

Fig. 7: Depiction of two funnels.



Future work will study the structure of larger, and more diverse TSP in-
stances and other combinatorial problems where the big valley has been ob-
served. More extensive sampling methods will need to be considered to confirm
or infirm our results. We will also look at search strategies to escape from sub-
optimal funnels. We also aim to produce improved and informative images of
fitness landscapes using the local optima network model.

Acknowledgements. Thanks are due to Darrell Whitley for relevant discus-
sions, encouraging comments, and suggesting the paper’s title. This work was
supported by the UK’s Engineering and Physical Sciences Research Council
[grant number EP/J017515/1].

Data Access. All data generated during this research are openly available
from the Stirling Online Repository for Research Data (http://hdl.handle.
net/11667/71).

References

1. Applegate, D., Bixby, R., Chvátal, V., Cook, W.: Concorde TSP solver (2003),
http://www.math.uwaterloo.ca/tsp/concorde.html

2. Applegate, D., Cook, W., Rohe, A.: Chained Lin-Kernighan for Large Traveling
Salesman Problems. INFORMS Journal on Computing 15, 82–92 (2003)

3. Boese, K.D., Kahng, A.B., Muddu, S.: A new adaptive multi-start technique
for combinatorial global optimizations. Operations Research Letters 16, 101–113
(1994)

4. Csardi, G., Nepusz, T.: The igraph software package for complex network research.
InterJournal Complex Systems, 1695 (2006)

5. Fruchterman, T.M.J., Reingold, E.M.: Graph drawing by force-directed placement.
Software Practice Exper. 21(11), 1129–1164 (Nov 1991)

6. Hains, D.R., Whitley, L.D., Howe, A.E.: Revisiting the big valley search space
structure in the TSP. Journal of the Operational Research Society 62(2), 305–312
(2011)

7. Kauffman, S., Levin, S.: Towards a general theory of adaptive walks on rugged
landscapes. Journal of Theoretical Biology 128, 11–45 (1987)

8. Kauffman, S.A.: The Origins of Order. Oxford University Press, New York (1993)
9. Klemm, K., Flamm, C., Stadler, P.F.: Funnels in energy landscapes. European

Physical Journal B 63(3), 387–391 (2008)
10. Lin, S., Kernighan, B.W.: An Effective Heuristic Algorithm for the Traveling-

Salesman Problem. Operations Research 21, 498–516 (1973)
11. Lourenço, H.R., Martin, O.C., Stützle, T.: Iterated Local Search. Handbook of

Metaheuristics pp. 320–353 (2003)
12. Martin, O., Otto, S.W., Felten, E.W.: Large-step markov chains for the TSP incor-

porating local search heuristics. Operations Research Letters 11, 219–224 (1992)
13. Merz, P., Freisleben, B.: Memetic algorithms and the fitness landscape of the graph

bi-partitioning problem. In: Proceedings of Parallel Problem Solving from Nature,
PPSN V. Lecture Notes in Computer Science, vol. 1498, pp. 765–774. Springer-
Verlag (1998)



14. Miller, M.A., Wales, D.J.: The double-funnel energy landscape of the 38-atom
Lennard-Jones cluster. Journal of Chemical Physics 110(14) (1999)

15. Nešetřil, J., Milková, E., Nešetřilová, H.: Otakar Bor̊uvka on minimum spanning
tree problem Translation of both the 1926 papers, comments, history. Discrete
Mathematics 233(13), 3–36 (Apr 2001)

16. Newman, M.E.J.: Networks: An Introduction. Oxford University Press, Oxford,
UK (2010)

17. Ochoa, G., Chicano, F., Tinos, R., Whitley, D.: Tunnelling crossover networks. In:
Proceedings of the Genetic and Evolutionary Computation Conference (GECCO).
pp. 449–456. ACM (2015)

18. Ochoa, G., Tomassini, M., Verel, S., Darabos, C.: A study of NK landscapes’
basins and local optima networks. In: Proceedings of the Genetic and Evolutionary
Computation Conference (GECCO). pp. 555–562. ACM (2008)

19. Ochoa, G., Veerapen, N., Whitley, D., Burke, E.: The Multi-Funnel Structure of
TSP Fitness Landscapes: A Visual Exploration. In: Proceedings of Artificial Evo-
lution, EA 2015. Lecture Notes in Computer Science, Springer (2015), to appear.

20. Ochoa, G., Verel, S., Daolio, F., Tomassini, M.: Local optima networks: A new
model of combinatorial fitness landscapes. In: Richter, H., Engelbrecht, A. (eds.)
Recent Advances in the Theory and Application of Fitness Landscapes, Emer-
gence, Complexity and Computation, vol. 6, pp. 233–262. Springer Berlin Heidel-
berg (2014)

21. Reeves, C.R.: Landscapes, operators and heuristic search. Annals of Operations
Research 86, 473–490 (1999)

22. Reinelt, G.: TSPLIB – A Traveling Salesman Problem Library. ORSA Journal on
Computing 3(4), 376–384 (1991), http://www.iwr.uni-heidelberg.de/groups/

comopt/software/TSPLIB95/

23. Verel, S., Ochoa, G., Tomassini, M.: Local optima networks of NK landscapes with
neutrality. IEEE Transactions on Evolutionary Computation 15(6), 783–797 (2011)

24. Whitley, D., Hains, D., Howe, A.: Tunneling Between Optima: Partition Crossover
for the Traveling Salesman Problem. In: Proceedings Genetic and Evolutionary
Computation Conference. pp. 915–922. GECCO ’09, ACM, New York, NY, USA
(2009)


