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Abstract

An important decision to make when design-
ing a GA is how to set the evolutionary pa-
rameters. Among these parameters, the mu-
tation rate has been acknowledged as the
most sensitive one. All approaches so far
for a near-optimal setting of the mutation
rate have intrinsic limitations. A promising
guideline is, however, the heuristic suggest-
ing pm = 1/L where L is the string length.
This paper is a first attempt to explore the
scope and limitations of this heuristic on GAs
with bit-string representation. Specifically,
we select two real-world domains as test prob-
lems and explore (i) whether optimal mu-
tation rates change with time; and (ii) the
interactions between the mutation rate and
other evolutionary parameters. Results sug-
gest that a constant mutation rate of 1/L is
useful for a GA with a controlled ‘moderate’
selection pressure. It should be, however, re-
vised for a weak or extremely strong selection
pressure, and for a small population size.

1 INTRODUCTION

It has been suggested that the most sensitive of GA
parameters is the mutation rate [Schaffer et al., 1989,
Bäck, 1996]. Several studies in the literature look for
‘optimal’ mutation rates, or optimal schemes for vary-
ing the mutation rate over a single run [Fogarty, 1989,
Davis, 1989, Bäck, 1991, Mühlenbein, 1992,
Julstrom, 1995, Tuson and Ross, 1998].

We believe that the most useful guideline so far
for an effective and general setting of the mutation
rate in GAs is the heuristic suggesting pm = 1/L
(per bit), where L is the string length. This fig-

ure has appeared several times in the evolutionary
computation literature. The earliest appearance we
can trace back was due to [Bremerman et al., 1966]
as quoted by [Bäck, 1996]. Also, in his dis-
sertation [DeJong, 1975] suggested this value as
quoted by [Hesser and Männer, 1991]. The work of
[Mühlenbein, 1992] states that pm = 1/L is optimal
for general unimodal functions. This setting has also
produced good results for several NP-hard combinato-
rial optimization problems such as the multiple knap-
sack problem [Khuri et al., 1994], the minimum vertex
cover problem [Khuri and Bäck, 1994], the maximum
independent set problem [Bäck and Khuri, 1994],
and others [Bäck and Khuri, 1994]. The work of
[Smith and Fogarty, 1996] found 1/L as the best fixed
setting for the mutation rate, giving results compa-
rable to their best self-adaptive method. Other au-
thors have found a dependence of effective mutation
rates upon the string length L, although they had not
explicitly suggested pm = 1/L [Schaffer et al., 1989,
Hesser and Männer, 1991, Bäck, 1992, Bäck, 1993].

Thus, there may well be some true principle underly-
ing this heuristic. In previous work, we argued that
this principle is related to the notion of error thresh-
old from molecular evolution [Ochoa et al., 1999,
Ochoa et al., 2000]. The error threshold is the min-
imal replication accuracy that still maintains genetic
information in the population.

This paper is a first attempt to explore the scope and
limitations of the 1/L heuristic on GAs with bit-string
representation. Specifically, we select two real-world
domains as test problems and explore (i) whether op-
timal mutation rates change with time; and (ii) the
interactions between the mutation rate and other evo-
lutionary parameters (the selection pressure and the
population size).

The remainder of this document is organized as fol-
lows. Section 2 describes the test problems used in



this paper: a combinatorial optimization problem —
the Multiple Knapsack problem, and an engineering
problem — the design of an optimal aircraft Wing-
Box. Sections 3 and 4 describe our methods and results
respectively, and, finally, Sections 5 and 6 summarizes
our findings.

2 TEST PROBLEMS

Two real-world domains were selected for study,
namely, a combinatorial optimization problem — the
Multiple Knapsack problem, and an engineering prob-
lem — the design of an optimal aircraft Wing-Box.
The Multiple Knapsack is a maximization problem,
whereas the Wing-Box is a minimization problem.
This selection is somewhat arbitrary, but is consis-
tent with the following criteria. First, both are com-
plex problems: the Wing-Box is an engineering design
problem based on real data and constraints, and the
Multiple Knapsack is a highly constrained combina-
torial optimization problem known to be NP -hard.
Second, both problems were available and relatively
easy to implement, and third, both have a natural
bit string encoding which was a requirement for the
present study. Additionally, these two problems are
completely unrelated, so common results have a good
chance to convey some generality. It is worth noting,
however, that other real-world problems may have very
different characteristics from these two test problems.

2.1 THE WING-BOX PROBLEM

The Wing-Box problem was formulated as part of
the Genetic Algorithms in Manufacturing Engineer-
ing (GAME) project at COGS, University of Sussex
1. An industrial partner, British Aerospace, provided
data from a real Airbus wing box.

A common problem faced in the design of aircraft
structures, is to define structures of minimum weight
that can withstand a given load. Figure 1 sketches the
elements of a wing relevant to this problem. The wing
is supported at regular intervals by slid ribs which run
parallel to the aircraft’s fuselage. On the upper part
of the wing, thin metal panels cover the gap separat-
ing adjacent ribs. The objective is to find the num-
ber of panels and the thickness of each of these panels
while minimizing the mass of the wing and ensuring
that none of the panels buckle under maximum op-
erational stresses. More details, and the equations
for calculating the fitness function, can be found in
[McIlhagga et al., 1996].

1http://www.cogs.susx.ac.uk/projects/game/
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Figure 1: Relevant elements of a wing. Wing dimensions
are fixed. The variable elements are the number of ribs
and the thickness of the top panels.

A full description of a potential solution to the Wing-
Box problem requires the definition of the number of
ribs N and the thickness of the N − 1 panels. There
is a constraint on the thickness of these panels which
is that adjacent panels should not differ in thickness
by more than 0.25 mm. The simplest way to accom-
plish this, is to encode the differences in thickness be-
tween adjacent panels rather than the absolute thick-
ness of the panels. If we know the difference in thick-
ness δth(i) between panels i and i+1 for i ∈ (1, N−1),
the absolute thickness of the first panel is enough to
define everything else.

Originally, the Wing-Box parameters were encoded fol-
lowing the order described by Figure 2. For the exper-
iments in this paper we fixed the number of panels in
50 (i.e N = 51 ribs, since the number of ribs is 1 +
the number of panels), thus our genetic encoding is
the same, but excluding the first gene. The thickness
of the first panel was allowed to vary between 10 and
15 mm by steps of 10−3 mm. This requires 5 × 103
values which can be represented with a minimum of
13 bits. For all subsequent N − 2 panels the differ-
ence in thickness with the previous panel is encoded.
According to manufacturing tolerance considerations,
only five values were allowed for these differences in
thickness: {−0.25,−0.125, 0.0, 0.125, 0.25}. Three bits
are needed to encode these five values. Notice that a
change in δth(i) leads to changes in the thickness of
panel i+ 1, and of all subsequent panels up to the tip
of the wing. Notice also that in both the encoding of
the first section, and the remainder N − 2 sections,
there is an amount of redundancy in the genotype to
phenotype mapping. To sum up, the number of bits
needed for encoding an individual is 13 for the first



panel, and 3 for each of the others 49 panels, that is
13 + 3× 49 = 160.

N:   Number of ribs

th(i): Thickness of i    panelth

th(2)-th(1) th(N-1)-th(N-2)
. . .. . . ∆ ∆th(i)= th(N-2)=

th(i+1)-th(i)
th(1)=∆

N th(1)

Figure 2: Genetic representation of the wing parameters.

2.2 THE MULTIPLE KNAPSACK
PROBLEM

The combinatorial optimization problem described
here, called the 1/0 multiple knapsack problem, follows
the specifications given by [Khuri et al., 1994]. This
problem is a generalization of the 0/1 simple Knap-
sack problem where a single knapsack of capacity C,
and n objects are given. Each object has a weight
wi and a profit pi. The objective is to fill the knap-
sack with objects producing the maximum profit P .
In other words, to find a vector x = (x1, x2, . . . , xn)
where xi ∈ {0, 1}, such that ∑n

i=1 wixi ≤ C and for
which P (x) =

∑n
i=1 pixi is maximized.

The multiple version consists of m knapsacks of
capacities c1, c2, . . . , cm and n objects with profits
p1, p2, . . . , pn. Each object has m possible weights:
object i weighs wij when considered for inclusion in
knapsack j (1 ≤ j ≤ m). Again, the objective is
to find a vector x = (x1, x2, . . . , xn) that guaran-
tees that no knapsack is over-filled:

∑n
i=1 wijxi ≤ cj

for j = 1, 2, . . . ,m; and that yields maximum profit
P (x) =

∑n
i=1 pixi.

This problem leads naturally to a binary encoding.
Each string x1x2 . . . xn represents a potential solution.
If the ith position has the value 1 (i.e. xi = 1) then the
ith object is in all knapsacks; otherwise, it is not. No-
tice that a string may represent an infeasible solution.
A vector x = (x1, x2, . . . , xn) that over-fills at least one
of the knapsacks; i.e., for which

∑n
i=1 wijxi > cj for

some 1 ≤ j ≤ m, is an infeasible string. Rather than
discarding infeasible strings and thus ignore infeasible
regions of the search space, the approach suggested by
[Khuri et al., 1994] is to allow infeasible strings to join
the population. A penalty term reduces the fitness of
infeasible strings. The farther away from feasibility,
the higher the penalty term of a string. Thus, the fol-
lowing fitness function was defined (s is the number of
over-filled knapsacks):

f(x) =
n∑

i=1

pixi − s × max(pi) (1)

Hence, the fitness function uses a graded penalty term
max(pi). The number of times this term is subtracted
from the fitness of a infeasible solution is equal to the
number of over-filled knapsacks that the solution pro-
duces.

A Multiple Knapsack instance, taken from the litera-
ture (termed Weish 30), was used as test problem. It
has 90 objects and 5 sacks. This (and several other)
problems are available online from the OR-library by
[Beasley, 1990]. Weish 30 is among the biggest and
more complex Multiple Knapsack instances available
in the library.

3 METHODS

For estimating optimal mutation rates in GAs we need
to define what an optimal or near-optimal mutation
rate is. The working definition used here is: an op-
timal mutation rate is that producing optimal perfor-
mance. But then, we need a good way of measur-
ing GA performance. Given the randomized nature of
GAs, conclusions can never be drawn from a single run.
Instead, the common practice is to consider statistics
from a sufficiently large number of independent runs.
So, the standard performance measures for GAs are
the average and best fitness values attained after a
prefixed termination criterion, averaged over several
runs. Within a given run, the best fitness could be
either the current best in the population, or the best
fitness attained so far. These measures are considered
after a fixed termination criterion, or over fixed inter-
vals throughout the GA run. For the experiments in
this paper, we will consider the best fitness attained
so far after a fixed termination criterion. This crite-
rion will be carefully selected in each case to be long
enough to stabilize the best and average fitness of the
population. The average of several runs will be con-
sidered (typically 50) and the standard deviation will
be shown in most cases. The first empirical section,
however, studies the time dependency of the mutation
rate. In this case best-so-far fitness values are reported
at fixed intervals.

To study the applicability of the 1/L heuristic, we ex-
plore the effect of modifying some relevant evolution-
ary parameters on the magnitude of optimal mutation
rates. Specifically, we explore the effects of modify-
ing the selection pressure and population size. Unless
otherwise stated, experiments use a generational GA



with tournament selection (tournament size = 2), a
population of 100 members, and both mutation and
recombination (two-point with a rate of 1.0). Table
1 summarizes these default settings. Further details
on the experiments and departures from the default
settings are given in the respective results subsections.

Population replacement Generational
Selection scheme Tournament (T. Size = 2)
Population size 100
Recombination rate 1.0
Recombination operator Two-point
Termination criterion 2,000 Generations
Number of runs 50

Table 1: GA default parameters used in the experiments.

4 RESULTS

Three groups of experiments were performed with the
aim of exploring: (i) the time-dependency of the mu-
tation rate, (ii) the effect of modifying the selection
pressure, and (iii) the effect of modifying the popula-
tion size. Experiments were run on both test prob-
lems (Wing-Box and Knapsack). For analyzing the
results, it is worth remembering that the Wing-Box
is a minimization problem whereas the Knapsack is a
maximization problem.

4.1 TIME-DEPENDENCY

The first set of experiments studies the behavior of
different mutation values over the generations of a GA
run. The evolutionary parameters used are those sum-
marized in Table 1. Results are presented in three
stages. First the “interesting” part of the search, from
generation 100 to generation 2,000 (Figure 3). Then,
the first stage of the search, the first 100 generations
(Figure 4); and, finally, the last stages of the search,
from generation 2,000 to 5,000 (Figure 5). The plots
show the average best-so-far fitness attained over fixed
intervals throughout the GA run on both test prob-
lems (the Wing-Box and Knapsack problems). Four
mutation values were explored: 0.5, 1.0, 2.0, and 3.0
mutations per genotype. Standard deviations are not
shown in these plots for the sake of clarity.

For the intermediate stage of the search, on the Wing-
box problem the mutation rates of 1/L and 2/L pro-
duced the best results and performed similarly (Figure
3, top). On the Knapsack problem, a mutation rate
of 1/L seems to produce the best performance in this
stage (Figure 3, bottom).
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Figure 3: Comparing the performance of different mu-
tation rates over a GA run on both test problem. The
curves show the average best-so-far fitness over fixed in-
tervals throughout the GA run for various mutation rates
(expressed as mutations per genotype).

The initial stage of the search is rather similar for
both test problems (Figure 4, recall that the Wing-Box
problem is a minimization problems whereas the Mul-
tiple Knapsack is a maximization problem) . All the
mutation values explored performed similarly. How-
ever, the mutation values of 0.5 and 1.0 mutations per
genotype seem to produce the best results in this stage.

Again, the final stage of the search is rather similar for
both test problems. A mutation rate of 1/L produced
the best performance in both cases (Figure 5).



Wing-Box Problem, First 100 Generations
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Knapsack Problem, First 100 Generations
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Figure 4: Comparing the performance of different muta-
tion rates over a GA run on both test problems for the first
100 generations. The curves show the average best-so-far
fitness over fixed intervals throughout the GA run for vari-
ous mutation rates (expressed as mutations per genotype).

4.2 SELECTION PRESSURE

This subsection explores the effect of increasing the
selection pressure on the magnitude of optimal muta-
tion rates. The experiments use tournament selection
because this scheme allows the selection pressure to
be explicitly controlled. A common tournament size
is 2, but selection pressure increases steadily for grow-
ing tournament sizes. Two tournament sizes, 2 and 4,
were tested. Additionally, on the Knapsack problem,
results using proportional selection are also presented
for the sake of comparison. Figure 6 compares optimal
mutation rates (per genotype) on the two selected test

Wing-Box Problem, Final Stages of the Search
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Knapsack Problem, Final Stages of the Search
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Figure 5: Comparing the performance of different muta-
tion rates over a GA run on both test problems for the final
stages of the search (from generation 2,000 until 5,000).
The curves show the average best-so-far fitness over fixed
intervals throughout the GA run for various mutation rates
(expressed as mutations per genotype).

problems. The strength of selection had a noticeable
effect on the magnitude of optimal mutation rates: on
the Wing-box problem and for a tournament size of 2,
the optimal mutation rate was around 1.0 − 2.0 mu-
tations per genotype, whereas for a tournament size
of 4 it was around 2.5 − 3.0 mutations per genotype.
Similarly, on the Knapsack problem the optimal mu-
tation values were around 1.5/L for tournament size
of 2; and around 2.0 − 3.0 for tournament size of 4.
Moreover, the curve using proportional selection on
the Knapsack problem (Figure 6, bottom), strikingly
shows the difference in magnitude of optimal mutation



rates for a weak selection pressure. In this case, the
optimal mutation rate was as low as 0.05 mutations
per genotype.
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Figure 6: Comparing optimal mutation rates (per geno-
type) for different selection pressures on the two test prob-
lems. Tournament selection with two tournament sizes (2
and 4) was tested. Additionally, proportional selection was
tested on Knapsack problem. The curves show the aver-
age best-so-far fitness attained after 2,000 generations for
various mutation rates.

4.3 POPULATION SIZE

This subsection explores the effect of modifying the
population size on the magnitude of optimal mutation
rates. Three population sizes: 10, 50, and 100, were
tested. The number of generations used as a stop cri-
terion varied according to the population size since
the smaller the population, the more generations were

needed for equilibrating the best-so-far fitness. So the
termination criteria used were 20,000, 4,000, and 2,000
generations for population sizes 10, 50, and 100 re-
spectively. Figure 7 shows results on the two selected
test problems. Optimal mutation rates tended to be
smaller, the smaller the population size, this tendency
was clearer on the Knapsack problem (bottom plot),
where optimal mutation rates were around 0.5−1.0/L
for a population size of 10, and around 1.0− 1.5/L for
population sizes of 50 and 100. Notice that for popu-
lation sizes of 50 and 100, differences in performance
for the various mutation rates tend to stabilize. This
was also the case for preliminary experiments on larger
populations.

5 DISCUSSION

This paper has been a first attempt to explore the va-
lidity of the heuristic suggesting a mutation rate of 1/L
for GAs with bit-string encoding. Two completely un-
related and complex real-world domains were selected
as test problems. Some common behaviors were found,
so these findings may convey some generality. Three
aspects were studied: (i) the time-dependency of the
mutation rate, and the effect (on the magnitude of op-
timal mutation rates) of modifying (ii) the selection
pressure, and (iii) the population size. Our main re-
sults are summarized below:

Time-Dependency: It has been suggested elsewhere
that mutation rates should not be constant, but should
decrease over the GA run. Results in this paper, how-
ever, suggest that a mutation rate of 1/L will produce
optimal or near optimal results throughout the whole
search process. So, on the specific but rather standard
GA settings used here (generational GA, population
size of 100, two-point recombination with a rate of
1.0, tournament selection of size 2, best-so-far fitness
as performance measure), a constant mutation regime
with a rate of 1/L would produce very competitive
results.

Selection pressure: The strength of selection had
a pronounced effect on optimal mutation rates. The
stronger the selection pressure, the higher the magni-
tude of optimal mutation rates. The use of propor-
tional selection (where there is no control over the se-
lection pressure) may produce much smaller optimal
mutation rates as compared to tournament selection.
An interesting observation is that for tournament se-
lection with tournament size of 2 (and a population
of size 100), optimal mutation rates occurred between
1.0 and 2.0 mutations per genotype, whereas for tour-
nament size of 4 they increased to 2.5 - 3.0 mutations
per genotype (Figure 6). This result suggests that se-
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Figure 7: Comparing optimal mutation rates for various
population sizes (see legends) on both test problems. The
curves show the average best-so-far fitness attained after
a fixed number of generations for various mutation rates.
These fixed number of generations varied according the
population size (20,000, 4,000 and 2,000 generations for
population sizes 10, 50, and 100 respectively).

lection pressure is an important component in deter-
mining the magnitude of optimal mutation rates.

Population size: The effect of population size on the
magnitude of optimal mutation rates was not found
to be marked. However, the evidence suggests that
optimal mutation rates are smaller, the smaller the
population size. These differences in the magnitude of
optimal mutation rates tend to stabilize for population
sizes of 50 and larger.

6 CONCLUSION

It is very difficult to suggest general principles for set-
ting evolutionary parameters. The evidence gathered
in this paper, however, suggest that for a controlled
selection pressure (tournament selection, with tourna-
ment size of 2), a mutation rate of 1/L throughout the
whole GA run, will be a good setting, producing op-
timal or near-optimal results. In general, we suggest
that mutation rates should be expressed as mutations
per genotype instead of as mutations per bit.

The heuristic of setting a mutation rate of one mu-
tation per genotype (1/L) has been proposed be-
fore within the evolutionary computation community.
However, results in this paper set bounds to the valid-
ity of this heuristic. A mutation rate of 1/L would be
sub-optimal in the following cases:

• a weak selection pressure,
• an excessively high selection pressure, and
• a very small population.
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