
Partial Neighborhoods of the Traveling Salesman Problem

Darrell Whitley
Department of Computer Science

Colorado State University
Fort Collins, CO 80524 USA

whitley@cs.colostate.edu

Gabriela Ochoa
School of Computer Science

University of Nottingham
Nottingham, NG81BB, UK

gxo@cs.nott.ac.uk

ABSTRACT
The Traveling Salesman Problem (TSP) is known to display
an elementary landscape under all k-opt move operators.
Previous work has also shown that partial neighborhoods
may exist that retain some properties characteristic of ele-
mentary landscapes. For a tour of n cities, we show that the
2-opt neighborhood can be decomposed into ⌊n/2 − 1⌋ par-
tial neighborhoods. While this paper focuses on the TSP, it
also introduces a more formal treatment of partial neighbor-
hoods which applies to all elementary landscapes. Tracking
partial neighborhood averages in elementary landscapes re-
quires partitioning the cost matrix. After every move in the
search space, the relevant partitions must be updated. How-
ever, just as the evaluation function allows a partial update
for the TSP, there also exists a partial update for the cost
matrix partitions. By only looking at a subset of the partial
neighborhoods we can further reduce the cost of updating
the cost matrix partitions.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search

General Terms
Theory, Algorithms

Keywords
Fitness Landscapes, Elementary Landscapes

1. INTRODUCTION
The fitness landscape for a combinatorial problem instance

is defined by a triple (X, N, f). The objective function f
maps f : X 7→ R and without loss of generality we can
define f so as either to be minimized or maximized over X.

We define a neighborhood operator as a function N that
maps candidate solutions in X to subsets of X. Given a

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’11, July 12-16, 2011, Dublin, Ireland
Copyright 2011 ACM 978-1-4503-0557-0/11/07 ...$10.00.

candidate solution x ∈ X, N(x) is the set of points reachable
from x in one application of the neighborhood operator.

Elementary landscapes are a special class of fitness land-
scapes. For all elementary landscapes it is possible to com-
pute f̄ , the average solution evaluation over the entire search
space. It is also possible to compute avg{f(y)}y∈N(x), the
average value of the fitness function f evaluated over all of
the neighbors of x:

avg{f(y)}
y∈N(x)

=
1

|N(x)|

X

y∈N(x)

f(y)

Grover [5] originally showed that it is possible to compute
avg{f(y)}y∈N(x) without actually evaluating the neighbors
of x. He showed there exists neighborhoods for the Trav-
eling Salesman Problem, Graph Coloring, Min-Cut Graph
Partitioning, Weight Partition, as well as Not-all-equal-Sat
(NAES) where this calculation is possible. Stadler [7] named
this class of problems“elementary landscapes”and he showed
that for these problems the objective function f is an eigen-
function of the Laplacian of the graph induced by the neigh-
borhood operator. Other researchers have explored various
properties of elementary landscapes [1] [2] [3] [4] [6] [8].

Whitley and Sutton [9] introduced another explanation of
elementary landscapes. Elementary landscapes have objec-
tive functions that are a linear combination of components.
Typically, the objective function uses a cost matrix to assign
costs to edges in a graph. For any candidate solution, the
“components” that make up the cost matrix can be decom-
posed into those that contribute to a solution x and those
that do not contribute to the evaluation of f(x). The compo-
nents that do not contribute to the evaluation of solution x
appear with uniform frequency in the neighborhood around
x. The components that appear in solution x also appear
with a uniform frequency in the neighborhood around x.

But we can take this idea one step further. Can the neigh-
borhood be partitioned in such a way that we can explicitly
calculate in an efficient manner which components of the
cost matrix will be sampled in the various partitions of the
neighborhood? In general the answer is yes. We show how
the component model can be used to derive conditions un-
der which there will exists partial neighborhoods of elemen-
tary landscapes that retain some of those properties that
characterize elementary landscapes. In the next section we
briefly review basic mathematical properties of elementary
landscapes. Next we review the “component model” for ele-
mentary landscapes. The remainder of the paper illustrates
partial neighborhoods for the Traveling Salesman Problem.

2. ELEMENTARY LANDSCAPES
Let X be a set of solutions, f : X → R be a fitness func-

tion, and N : X → P(x) be a neighborhood operator. We
can represent the neighborhood operator by its adjacency
matrix

Axy =

(

1 if y ∈ N(x)

0 otherwise

In this paper, we will restrict our attention to regular neigh-
borhoods, where |N(x)| = d for a constant d for all x ∈ X.

When a neighborhood is regular, the Laplacian operator
can be defined as

∆ = A − dI

where

∆f(x) =
X

y∈N(x)

(f(y) − f(x)) (1)

Stadler defines the class of elementary landscapes where
the fitness function f is an eigenfunction of the Laplacian [8]
with a constant offset of b; usually b = f̄ , the mean fitness
value in X. In particular, Grover’s wave equation can be
written as

∆f + k(f − f̄) = 0

where k is a positive constant. If we assume that function
f is normalized such that f̄ = 0 then it follows that

∆f + k(f − f̄) = ∆f + kf = 0 and therefore ∆f = −kf

When f does not have zero mean, we can use this equation

∆f(x) = kf̄ − kf(x)

to calculate the average fitness across the neighborhood of
any given candidate solution x. Using equation 1, we calcu-
late this average fitness as follows:

avg{f(y)}
y∈N(x)

=
1

d

X

y∈N(x)

f(y)

=
1

d

0

@

X

y∈N(x)

f(y) − f(x)

1

A + f(x)

=
1

d
∆f(x) + f(x)

= f(x) +
k

d
(f̄ − f(x))

2.1 Components and Partial Neighborhoods
Given a point x, and its evaluation f(x) and the mean fit-

ness f̄ , we will compute avg{f(y)}y∈N(x) based on the sam-
pling rate of the components that make up the cost function.
We need to define the set of components, denoted by C, that
are used to construct the cost function. Typically the com-
ponents are weights in a cost matrix, and every solution is
a linear combination of components.

One of the things we want to do is to sum over all compo-
nents. Furthermore in an elementary landscape there exists
a ratio which we will denote by 0 < p3 < 1 such that

f̄ = p3

X

c∈C

c and therefore
X

c∈C

c = f̄/p3

Intuitively p3 is the proportion of the total components in C
that contribute to the cost function for any randomly cho-
sen solution. It follows from this observation that all com-
ponents are equally represented across the entire space of

solutions under this model of elementary landscapes. Also,
p3 is independent of the neighborhood size.

In addition, there are ratios 0 < p1 < 1 and 0 < p2 < 1
that are used in the following equations.

avg{f(y)}
y∈N(x)

= f(x) − p1f(x) + p2((
X

c∈C

c) − f(x))

= f(x) − p1f(x) + p2(((1/p3)f̄) − f(x))

where p1 is the proportion of components in x which change
when a move occurs, relative to the total number of compo-
nents that contribute to f(x). Similarly, p2 is the proportion
of components in C − x which change when a move occurs,
relative to the total number of components in C−x. Both p1

and p2 can be expressed relative to d, the size of the neigh-
borhood. The following theorem was proven by Whitley and
Sutton [9].

Theorem 1. If p1, p2 and p3 can be defined for any reg-
ular landscape such that the evaluation function can be de-
composed into components where p1 = α/d and p2 = β/d
and

f̄ = p3

X

c∈C

c =
β

α + β

X

c∈C

c

then the landscape is elementary.

Note that

p1 + p2 = p2/p3 = k/d and k = α + β

where d is the size of the neighborhood and k is a constant.
By simple algebra, one can show

avg{f(y)}
y∈N(x)

= f(x) − p1f(x) + p2((1/p3f̄) − f(x))

= f(x) +
α + β

d
(f̄ − f(x))

The key insight of this paper is that when α > β the com-
ponents in x are changing at a higher frequency than the
components in (C − x). When this is the case, the neigh-
borhood can be subdivided; how the neighborhood is sub-
divided is not important, as long as the ratio p1 still holds
and all of the components that make up solution x are uni-
formly sampled (included or removed) in each partial neigh-
borhood. Furthermore, the ratio α/β measures how many
partial neighbors exist if the partial neighborhoods are uni-
form in size. In the TSP for example, when the number of
cities denoted by n is odd, α/β = ⌊n/2− 1⌋ yields the exact
number of partial neighborhoods where p1 holds. When n
is even, there is one degenerate partial neighborhood.

While these partial neighborhoods uniformly sample the
components in x, they sample only a subset of the com-
ponents of C − x. The question then becomes whether the
sampling of C−x is regular enough to be concisely described.
So how the neighborhood is subdivided becomes important.

While this paper focuses on the Traveling Salesman Prob-
lem as an example, the insights are general and can be ap-
plied to all elementary landscapes. This paper also pro-
vides a model and a framework for understanding how par-
tial neighborhoods can be identified and described in other
elementary landscapes.

3. THE TSP
Whitley and Sutton use the component model to show

that the Traveling Salesman Problem (TSP) is elementary
when the neighborhood is generated using 2-opt.

Let C denote the set of costs (weights) associated with
edges between cities (vertices) in the graph. Let wi,j be
the weight (or distance) associated with edge ei,j . Note
that the number of weights in the cost matrix is given by
|C| = n(n − 1)/2, which is the number of components in a
lower triangle square matrix of dimension n.

There are n edges in a given solution and there are n(n−
1)/2 edges in the cost matrix that are uniformly sampled
over all possible solutions. Therefore:

p3 =
n

|C|
=

n

n(n − 1)/2
=

2

n − 1

f̄ = p3

X

c∈C

=
2

n − 1

X

ei,j∈C

wi,j

where
P

ei,j∈C wi,j counts each edge only once.

To compute p1 note there are n edges in any solution, and
2-opt changes exactly 2 edges. Across the entire neighbor-
hood all edges in x are uniformly removed. Therefore

p1 = 2/n =
2(n − 3)/2

n(n − 3)/2
=

α

d

To compute p2 note there are |C| − n edges in C with the
edges in f(x) removed, and 2 new edges are uniformly picked
from these edges. Therefore

p2 =
2

n(n − 1)/2 − n
=

2

n(n − 3)/2
=

β

d

Adding the terms to the component model yields:

avg{f(y)}
y∈N(x)

= f(x) +
n − 1

n(n − 3)/2
(f̄ − f(x))

where k = n−1 and the neighborhood size is d = n(n−3)/2.

3.1 Decomposing the TSP
Whitley and Sutton show that some neighborhoods of el-

ementary landscapes can be decomposed into partial neigh-
borhoods such that average can still be efficiently computed
for those partial neighborhoods. But they did not explain
why such decompositions exist, and (as we will see) they
also failed to see that the neighborhood under 2-opt for the
Traveling Salesman Problem is highly decomposable.

The key question is this: how can we partition the 2-opt
neighborhood so that in a given partition every component
of x is uniformly represented? It is easier to answer a compli-
mentary form of this question: how can we select a subset
of 2-opt moves that uniformly removes edges from x? If
edges are uniformly removed, they will also be uniformly
represented in the partial neighborhood.

The answer is to group all of the 2-opt moves according
to the length of the segment that is reversed. For example,
we can group together all of the 2-opt moves that reverse
a segment of length 3. This works because we can reverse
a segment starting at city 1, then at city 2, then at city 3
and so on until we reverse a segment at city n. Therefore
every edge in solution x is cut exactly twice: when we cut at
location i we also cut at location i + 3 and our index wraps
around the TSP tour (Hamilton circuit).

For n > 7 the partial neighborhoods over 2-opt moves of
length 3 must be of size n in our example if we wish for the
sampling rate of the edges in solution x to be uniform in the
partial neighborhood. This means we must apply a reversal
starting at each of the n cities. This also means that all of
the edges in solution x are found in the partial neighborhood
n − 2 times. To see that this is true, imagine we construct
the neighbors by making n copies of x: each edge occurs n
times in the duplicate partial neighborhood. Then we cut
(remove) two edges from x in each copy, removing every
edges exactly twice in the partial neighborhood. Thus, if
the segment length is 3, then the ratio p1 is still calculated
using p1 = 2/n in the partial neighborhood.

The same logic applies to all segments of length i < n/2.
(i = n/2 turns out to be a special case). When reversing
2-opt segments, the minimal segment length that can be
meaningfully reverse is of length 2. Also, note that when a
segment of length i is identified, there is also a corresponding
segment of length n− i. Reversing either segment yields the
same 2-opt move, so we will only consider segments of length
i ≤ ⌊n/2⌋.

3.2 An Illustration
Assume we have a 7 city TSP where the tour is represented

by a permutation of integers.
The current solution x is: 1 2 3 4 5 6 7 . A reversed

segment will be denoted by <1 2> . In general, since there
are 7 cities, there are exactly 7 reversals of length l < n/2.
We first consider all of the 2-opt moves that reverses a seg-
ment of length 2. We next look at all of the reverses of length
3 using the same notation. All of the moves are generated
by first shifting the permutation, then reversing the first 2
or 3 cities.

length 2 moves length 3 moves

--------------- ---------------

<2 1> 3 4 5 6 7 <3 2 1> 4 5 6 7

<3 2> 4 5 6 7 1 <4 3 2> 5 6 7 1

<4 3> 5 6 7 1 2 <5 4 3> 6 7 1 2

<5 4> 6 7 1 2 3 <6 5 4> 7 1 2 3

<6 5> 7 1 2 3 4 <7 6 5> 1 2 3 4

<7 6> 1 2 3 4 5 <1 7 6> 2 3 4 5

<1 7> 2 3 4 5 6 <2 1 7> 3 4 5 6

It is critical to note that all of the length 2 moves form
a partial neighborhood, and that all of the length 3 moves
form a different partial neighborhood. While they introduce
different sets of new edges, they break exactly the same set
of edges: every edge in the solution x is broken twice. Thus,
the calculation of p1 = 2/n remains constant for the partial
neighborhoods.

We will construct an triangle matrix M where the entry
at location mij can simultaneously describe both edges in
the neighborhood and segments of the tour. We will assume
row and column indices i and j correspond to the position of
the cities in the current tour. When describing segments, an
entry at location mi,j corresponds to a segment that is cut
immediately after city i and is cut immediately after city j

and then is reversed. Note that this also creates a new edge
in the resulting neighbor, since city i and j are now adjacent
after the segment is reversed. Thus, an entry at location mi,j

represents both the segment that is reversed and a new edge
ei,j that is created by 2-opt. We can therefore assign this
new edge to a partial neighborhood. What we will actually
store at location mi,j is the name of the partition to which
that edge belongs. Note that when j = i + 1 the segment
is of length 1, and the move generates a duplicate of the
current solution. Therefore, when j = i + 1 the entry mi,j

corresponds to an edge ei,j in the current solution x. Also
note that when edge ei,j is created by a 2-opt move, so
is edge ei+1,j+1. But since (j + 1) − (i + 1) = (j − i), if
the distance between cities i and j is p then the distance
between cities (i + 1), (j + 1) is also p. Therefore, all of the
edges that belong to a particular partial neighborhood will
lie one of two diagonals in the matrix.

In the following example, we will assign the symbol X to
a matrix location to indicate that an edge in the current
solution (i.e., when i = j + 1). The symbol A marks the
edges in the partial neighborhood corresponding to length
2 moves, and the symbol B marks the edges in the partial
neighborhood corresponding to length 3 moves.

Assume the currently solution is

x = 1 2 3 4 5 6 7

The matrix M then has edges found in the following po-
sitions belonging to partial neighborhoods denoted by the
labels A and B.

1 2 3 4 5 6 7

--|-------------------

1 | X A B B A X

2 | X A B B A

3 | X A B B

4 | X A B

5 | X A

6 | X

The patterns which emerges can also be generalized. If
j − i = 1 then the corresponding edges in the sorted cost
matrix will belong to the current solution x. If j − i = l and
1 < l < n/2 then the corresponding edges in the sorted cost
matrix correspond to a partial neighborhood defined over n
edges where the reversed segment is of length l. If j − i = l
and l > n/2 then n − l is the shorter of the two segments
which can be reversed to yield the same move, so we classify
this as a move of length n − l. This is why each partial
neighborhood is distributed along diagonals of the matrix.

When n is odd, every partial neighborhood is defined by
exactly n edges in matrix M. This is because every possible
segment length from 2 to (n− 1)/2 produces a unique 2-opt
move for every possible edge (i, j) where i < j.

When n is even, our observation as to what happens when
j − i = l and l < n/2 or l > n/2 still holds, but it does not
cover the case where l = n/2. Consider the case when n = 8.
In this example, the symbols A and B represent segments of
length 2 and 3 respectively, and C denotes segments of length
4.

Given the tour x = 1 2 3 4 5 6 7 8 we obtain the
following matrix.

| 2 3 4 5 6 7 8

--|-------------------

1 | x A B C B A x

2 | x A B C B A

3 | x A B C B

4 | x A B C

5 | x A B

6 | x A

7 | x

When l = n/2 there are only n/2 unique 2-opt moves of
length l. When n is even there is one partial neighborhood
of size l = n/2. This subset corresponds to a single diagonal
of matrix M that lies at a centered diagonal in the matrix.
We formalize these ideas in the following theorem.

Theorem 2. Let M correspond to an new upper triangle
matrix where the indices of M also index a permutation x
representing a tour in a Traveling Salesman Problem. When
interpreted as edges, M corresponds to all of the edges in the
cost matrix. Each edge in M where j = i + 1 corresponds to
an edge found in x. Each edge in M where j 6= i + 1 corre-
sponds to an edge found in the 2-opt neighborhood of x that
is not found in x, since if they are not in x they are edges in
the set (C - x). If j−i = l or j−i = n−l then the 2-opt move
that generated edge ei,j was produced by reversing a segment
of length l. This means the diagonals where j − i = l or
j − i = n− l corresponds to a partial neighborhood that uni-
formly samples edges in solution x. Each edge on a diagonal
appears twice in the corresponding partial neighborhood.

PROOF:

Since there are exactly n pairs where j = i + 1, this must
cover all of the edges in x and therefore all other edges in M
must be in the set (C-x). When j 6= i+1, a segment of length
l = j − i exits that corresponds to a 2-opt move. When
l < n/2 there must be exactly n such edges, since these
edges must lie on one of two diagonals in matrix M. The
neighborhood size for 2-opt is d = n(n − 3)/2, which is also
the number of edges in matrix M that are not in solution x
(the size of the matrix is n(n−1)/2 and there are n solutions
in x). When n is odd there are d/n = (n − 3)/2 = α/β
partial neighborhoods. When n is even there is an additional
partial neighborhood of size n/2, and therefore there are
(d − n/2)/n = (n(n − 3)/2 − n/2)/n = (n − 4)/2 partial
neighborhoods of size n. This accounts for all of the elements
in the matrix M.

Technically, the matrix M only counts the edge ei,j which
is the“leading”edge that is introduced by 2-opt. When edge
ei,j is created by a 2-opt move, so is edge ei+1,j+1 which we
will describe as a“following”edge. But since (j+1)−(i+1) =
(j − i), if the distance between cities i and j is d then the
distance between cities (i+1) and (j+1) is also d. Therefore
M only accounts for the “leading” edges. But note that M
exactly covers each edge in the set (C - x) once. In the full
2-opt neighborhood, we know that p2 = 2

d
which means that

2-opt touches each edge in the set (C - x) twice.
Therefore, each edge in M appears once as a “leading”

and once as a “following” edge under 2-opt. Therefore, the
classification of edges in M applies equally to the sets of
leading and following edges. 2

3.3 Averages Over Partial Neighborhoods
Assume we have a solution x and we would like to calculate

the averages over all partial neighborhoods. Our goal is to
ask if some partial neighborhood has a lower average than
another, and therefore can we guide search toward more
promising partial neighborhoods.

By using inverted indexing schemes we would calculate
the averages over all partial neighborhoods in O(n2) by as-
signing each weight in the cost matrix to some partial neigh-
borhood. However, just as we can do a partial update to the
function f(x) when computing f(y) where y ∈ N(x), we can
also use partial updates to calculate how partial neighbor-
hoods change.

We again consider some key examples. Assume we con-
sider a 3-opt move of length 3 in a 7 city problem.

We can shift the tour x so that the segment to be re-
versed is at the beginning of the tour. Now, if the length of
the 2-opt is l we only need the first l rows of matrix M to
determine how the assignment of edges to partial neighbor-
hoods change. We identify the reversed segment using the
notation < > in the columns and > in the rows.

4 5 6 7 1 2 3 <6 5 4> 7 1 2 3

-------------------- ---------------------

4 | X A B B A X 6>| X A B B A X

5 | X A B B A 5>| X A B B A

6 | X A B B 4>| X A B B

We can calculate the change in the averages of the par-
tial neighborhoods by direct observation. Actually, we will
compute the sum of weights in lieu of the average. Let SA

denote the sum of the weights in the partial neighborhood A

before the move and let SA∗ denote the sum of the weights
in the partial neighborhood A after the move. Similarly, we
will use SB and SB∗ to denote the partial neighborhood B

before and after the move.

SA∗ = SA + w2,6 − w2,4 + w1,4 − w1,6

SB∗ = SB − w2,6 + w2,4 − w1,4 + w1,6

− w4,7 + w4,3 − w3,6 + w6,7

Clearly there must be a conservation of edges when a move
occurs. Edges are exchanged between sets A and B, as well
as between B and X. These exchanges form cycles, so we can
look at which subsets of edges are exchanged in a cycle and
group them accordingly.

E1 =w4,7 − w4,3 + w3,6 − w6,7

E2 =w2,6 − w2,4 + w1,4 − w1,6

SA∗ =SA + E1 and SB∗ = SB − E1 − E2

f(y) =f(x) + E2

Let S be the sum over all the weights in the cost matrix.
Since the solution x and the partial neighborhoods A and B

fully partition the entire cost matrix, it follows that when
we move from solution x to solution y that:

S = f(x) + SA + SB = f(y) + SA∗ + SB∗

Therefore if we calculate the change in weights in SA∗ we
can subsequently calculate SB∗ = S−f(y)−SA∗ in one step.

Note that when the length of the segment being reversed
is 3, only 2 columns and rows of the matrix change. This
is because the middle row acts as a pivot row that does not
move. Therefore updating the sums over the partial neigh-
borhoods for a segment of length 2 and a segment length 3
has similar costs.

We can generalize this for all segments of length l. If l
is even, then the cost of updating the sums of the cost ma-
trix for the partial neighborhoods associate with segments
of length l and l+1 is similar, because l+1 is odd and there
will be pivot row in the cost matrix that does not change
when all segments of length l + 1 are reversed.

While this 7 city example has produced useful insight,
there are only moves of length 2 and length 3. We next
consider a 12 city example. Now we have segments of length
2, 3, 4, 5 and 6.

1 2 3 4 5 6 7 8 9 10 11 12

1 | X A B C D E D C B A X

2 | X A B C D E D C B A

3 | X A B C D E D C B

4 | X A B C D E D C

5 | X A B C D E D

6 | X A B C D E

7 | X A B C D

8 | X A B C

9 | X A B

10| X A

11| X

For now, we will only look at 2-opts of length 3 and 5.
In the following matrices, only those entries in the matrix
that correspond to a change in the partial neighborhood are
shown. In this case, we will use the first 5 rows to illustrate
how multiple 2-opts can be related. Both the length 3 and
length 5 2-opts will use row 3 as the pivot row. Edges that
are not affected by the 2-opt are replaced by the * symbol,
including the pivot row.

2-opt of length 3

1 <4 3 2> 5 6 7 8 9 10 11 12

1 | x * B * * * * * * * *

4>| * * B C D E * C B A

3>| * * * * * * * * *

2>| x A B C * E D C

5 | * * * * * * *

2-opt of length 5

<5 4 3 2 1> 6 7 8 9 10 11 12

5>| * * * * D E D * B A x

4>| * * * C D E * C B A

3>| * * * * * * * * *

2>| * A B C * E D C

1>| x A B * D E D

We will refer to the average before the updates as

SA, SB , SC , SD, SE

and the average after the updates as follows:
For length 3 the labels are: SA3, SB3, SC3, SD3, SE3

For length 5 the labels are: SA5, SB5, SC5, SD5, SE5

We will take advantage of the fact that the changes in
edges are symmetric. We will again assume that the tour
has been shifted so that the first l cities to be reversed are
in the first l positions. First, all of the edges in the first
l columns involve symmetric changes; thus we only need
to consider edges starting at row l + 1. When the edge at
(r, l+g) moves between partitions, so do edges at (r, n+1−g)
and at (l + 1 − r, l + g) and at (l + 1 − r, n + 1 − g). For
convenience, we assume that (r, l + g) are the two smallest
indices. If the edge at (r, l + g) belows to partition K and
the edge at (r, n + 1 − g) belows to partition Z, then the
edges at (l + 1 − r, l + g) will belong to Z and the edge at
(l + 1 − r, n + 1 − g) will belong to K. This creates a cycle.
This means that all movement of edges between partitions
can be grouped into sets of four edges. Two edges move into
a partition, and two edges move out. We next formalize and
prove these ideas.

Theorem 3. Assume a 2-opt move of length l reverses
the first l cities. When the edge at (r, l + g) moves between
partitions, so do edges at locations (r, n + 1 − g) and at
(l+1−r, l+g) and at (l+1−r, n+1−g). Assume partitions
are numbered so that the partition corresponding to length s
moves is numbered s − 1. Let Partition(i, j) be a function
that return the partition number associate with matrix loca-
tion mi,j . Then for rows r = 1 to r = ⌊l/2⌋, and for columns
c = l + 1 to c = ⌊(n − l)/2⌋ the following assignments track
all possible exchanges of edges between partitions:

Partition(r, l+g) = Partition(l+1−r,n+1−g) = z+ l−r

Partition(l+1−r, l+g) = Partition(r, n+1−g) = z+r−1

In special cases this must be adjusted: if the value for the
partition is ⌈(n−3)/2+2⌉+ j where j > 0 then the adjusted
value is ⌈(n − 3)/2 + 2⌉ − j.

PROOF

Assume we have a 2-opt that reverses a segment of length
l. This impacts only the first l rows of matrix M. We can
divide matrix M into 5 regions.

Region 0. In the first l rows and columns of M, the seg-
ment is reversed. Within this region index (i, j) is remapped
to index(l + 1− i, l + 1− j) to reverse the relevant rows and
columns. Note that all j − i = c are on a diagonal and
therefore are assigned to the same partition. Also, note that
j − i = (l + 1 − i) − (l + 1 − j) = c. Therefore, none of the
assignments of edges to partitions change in this region.

Region 1. This region includes the first ⌊l/2⌋ rows and
those columns numbered from l+1 to ⌊l+(n−l)/2⌋. When n
and l is even, this region is 1/4 of the remaining elements in
the first l rows of matrix M excluding region 0. This creates
4 regions. When n − l is odd, we remove a pivot column
which lies between the regions. When l is odd, we remove a
pivot row between the regions.

After removing any pivot column or row, Region 1 is 1/4
of the remaining elements in the first l rows of matrix M
excluding region 0. We index Region 1 using (r, l + g). The
other 3 regions will be defined relative to (r, l+g) and Region
1.

Region 2 is indexed by (l + 1 − r, l + g).
Region 3 is indexed by (r, n + 1 − g).

Region 4 is indexed by (l + 1 − r, n + 1 − g).
We first consider the case where l ≤ ⌈(n − 3)/2⌉. In this

case, all of the partition numbers found in any column or row
of Region 2 and 3 are monotonically increasing or decreas-
ing. We will assume all partition numbers are monotonically
increasing or decreasing, and will compute a correction when
this is not the case.

Note that row 1 and row l can be used as reference vectors
to compute the other partitions for any given location. In
row 1 we will count backwards from column n; the partition
numbers are monotonically increasing starting with parti-
tion 0 for ⌊(n− l)/2⌋ steps (those positions in Region 3). In
row l in region 2, starting at column l + 1 the partitions are
monotonically increasing starting with partition 0, again for
⌊(n − l)/2⌋ steps (those positions in Region 2).

When Partition(l, l+ g) = Partition(1, n+1− g) = z we
obtain the following result.

Partition(l+1−r, l+g) = Partition(r, n+1−g) = z+r−1

Partition(r, l+g) = Partition(l+1−r, n+1−g) = z+ l−r

Since the columns in Region 1 are numbered from l + 1
to ⌊l + (n − l)/2⌋ the maximal value for z is ⌊(n − l)/2⌋ − 1
(the first partition X has number zero). The minimal value
for r is 1. Therefore, the maximal partition number is ⌊(n−
l)/2⌋ + l − 2.

In some cases (e.g., when l/2 > ⌈(n− 3)/2⌉) there can be
a few partitions that are out of bounds in the sense that the
partition numbers are no longer monotonically increasing or
decreasing. However, the partition number can be at most
⌈(n − 3)/2⌉. When the partition number is out of bounds,
the partition numbers repeat in reverse order. Therefore, if
the calculated value for the partition is ⌈(n−3)/2⌉+j where
j > 0 then the correct partition is ⌈(n − 3)/2⌉ − j. 2

Note that the out-of-bound partition numbers occur in
predictable locations (e.g. the upper right corner of Region
1).

We have shown that if edge (r, l + g) belows to partition
Q then edge (l +1− r, n +1− g) also belows to partition Q.
And if edge (l +1− r, l + g) belows to partition R then edge
(r, n + 1 − g) also belows to partition R. If R 6= Q then an
exchange of four edges happens between partition Q and R.
We denote the exchange of edges by E.

E = wr,l+g + wl+1−r,n+1−g − wl+1−r,l+g − wr,n+1−g

This means that all exchanges of edges can be organized
into groups of 4 edges. One of these groups will correspond
to the update to the evaluation function, because partition
0 corresponds to the set X that corresponds to the current
solution.

Returning to our example, when 2-opt reverses a segment
of length 5 in a 12 city problem, we obtain the following
updates. Let Ei denote a set of edges that change together
as a group.

E1 =w2,6 + w4,6 − w2,12 − w4,12

E2 =w2,7 + w4,11 − w2,11 − w4,7

E3 =w2,8 + w4,10 − w2,10 − w4,8

E4 =w1,6 + w1,12 − w5,6 − w5,12

E5 =w1,7 + w1,11 − w5,7 − w5,11

E6 =w1,8 + w1,10 − w5,8 − w5,10

E3 is already computed by the fitness update for f(y) for
the length 5 2-opt move.

f(y) =f(x) + E4

SA5 =SA + E1 − E5

SB5 =SB + E2 − E6

SC5 =SC − E1 + E3

SD5 =SD − E2 − E4 + E6

SE5 =SE − E3 + E5

We can next update the edges for the nested 3-opt move.
We will need one addition set of four edges. Because we
have not shifted the matrix relative to the length 3 move but
instead relative to the length 5 update, the computation is
calculated relatively to the position r, l + g = 2, 5 and thus
(l + 1− r), (n + 1− g) = 13, 4 = 1, 4 (due to the mod effect:
13 = n + 1 = 1).

E7 = w2,5 + w1,4 − w1,2 − w4,5

f(y) =f(x) + E7

SA3 =SA + E1

SB3 =SB − E7 + E2

SC3 =SC − E1 + E3

SD3 =SD − E2

SE3 =SE − E3

We will use this example to make 2 observations.
First, using this method, reversing shorter segments re-

sults in a lower cost for updating the averages of the partial
neighborhoods. We can compute the maximal number of
edges that can move.

Second, even when long segments are reversed, there can
be sequences of moves that reduce the cost of updating the
partial neighborhood. Suppose we decide to reverse the seg-
ment <1 2 3 4 5> as an improving move, and immediately
after this we check the segment <2 3 4> and find that it is
also an improving move. We then update the partial neigh-
borhood after making 2 2-opt moves. This means that even
fewer edges must be updated, as the following illustrates
(those position marked by * do not move).

<5 <2 3 4> 1> 6 7 8 9 10 11 12

5>| x * B * D E D * B A x

2>| * * B * * * * * * *

3>| * * * * * * * * *

4>| x * * * * * * *

1>| x A B * D E D

The updates after the nested set of 2-opt moves for the 12
city problem is as follows:

SA∗ =SA − E5

SB∗ =SB − E6 + E7

SC∗ =SC no change

SD∗ =SD + E6 − E4

SE∗ =SE + E5

Recall that E7 and E4 are needed to update the evaluation
function, so only E5 and E6 (8 edges) must be updated in
this case. In general, Region 1 includes only ⌊n−5/2⌋ edges.
Nevertheless, this kind of situation is surely unusual.

4. A COST BENEFIT TRADE OFF
Another approach to reducing computation costs is to ag-

gregate the partitions; with fewer partitions, there will be
less movement between partitions. Because of the bias in
the update costs, we can keep more partitions for shorter
lengths, and aggregate partitions associated with long length.
This may also make sense, if most improving moves are as-
sociated with reversing shorter segments. Also, note that an
update to the partition information is only required after an
improving move is accepted. In our example, we might keep
information about partition A and B and aggregate the rest
(C and D and E) into a partition Z. Then, we can compute
the sum of weights in the partitions as follows:

f(y) =f(x) + E4

SA5 =SA + E1 − E5

SB5 =SB + E2 − E6

SZ =
X

w∈C

w − f(x) − SA5 − SB5

Of course, the sum over all the weights in the cost matrix
need only be done once. This kind of update can be done in
constant time if we bound the number of partitions that we
wish to track.

Theorem 4. Assume that we wish to track the sum of
weights in partitions associated with the g shortest lengths
of 2-opt moves, where g is fixed. At most 2(g(g + 1)) edges
must be tracked.

PROOF:

To compute an upper bound, we will assume g < l/2.
Between the g row and the l−g rows are all the partitions

that are numbered greater than g. Assume all partitions
greater than g are assigned to a single partition Z. Between
the l + 1 + g column and the n + 1 − g are all columns
assigned to partition Z. This cuts the counting problem
into 4 symmetric cases that fall in Regions 1, 2, 3 and 4.
We can then count the number of updates in Region 1; by
symmetry, the same count applies to Regions 2, 3 and 4.
There are g distinct partitions in row 1 (including X), there
are g − 1 in row 2, etc. Therefore there are

g(g + 1)/2 =

g
X

i=1

i

distinct partitions when g < l/2.

This means the total number of updates that must be
made is 4(g(g+1)2) = 2(g(g+1)). This result is independent
of problem size, and if g ≤ l/2 then the result is exact and
independent of the length of the segment reversed by 2-opt.
When g > l/2 the updates number of updates is less than
2g(g + 1) due to overlap in the counted rows.

When g > l/2 the exactly number of updates that must
be make in one region is given by

g
X

i=1

i −

g−l/2
X

i=1

i = (g(g + 1)/2 − ((g − l/2)(1 + g − l/2)/2)

which is clearly less than g(g + 1)/2 for each of the four
Regions. 2.

This means that if we wish to track partitions correspond-
ing to 2-opt reversal of length 2, 3, 4 and 5 we need to track-
ing changes to at most 5(6)2 = 60 edges. If we wished to
track all reversals up to length 10, this would require track-
ing at most 10(11)2 = 220 edges. Thus, these computations
represent an O(1) update that is independent of problem
size.

5. DISCUSSION AND CONCLUSIONS
The main contribution of this paper is to show that when

α > β in an elementary landscape, the neighborhood can be
decomposed such that the components that make up x are
not only uniformly represented across all of the neighbors of
x, the components that make up x are also uniformly dis-
tributed across a set of partial neighborhoods. This means
that some of the properties that hold over the full neighbor-
hood still hold for the partial neighborhood.

We can compute neighborhood averages over partial neigh-
borhoods if we can still efficiently compute how the partial
neighborhood samples the set C − x. Tracking the averages
over all of the partial neighborhoods for the Traveling Sales-
man Problems requires O(n2) time in the worst case. Note
that we only need to track the averages after a new candidate
solution is accepted. But if we only wish to track the av-
erages of partial neighborhoods corresponding to moves up
to length g, the complexity is only O(g2). As we have just
seen, when g = 10, the computational cost involves tracking
only 220 edges, which is reasonable for large problem sizes.

It would seem likely that this information could be used
to guide a local search strategy. However, we have not yet
tested this idea. And any particular implementation would
be only one way of utilizing partial neighborhoods. The
more fundamental point, however, is that this work reveals
a new structure that is common to all elementary landscapes
where α > β. There could be many different ways that this
information might be exploited by local search heuristics on
different problems displaying elementary landscapes.

6. ACKNOWLEDGMENTS
Dr. Whitley would like to thank the School of Computer

Science at the University of Nottingham for support during
his sabbatical visit. This research was also sponsored by the
Air Force Office of Scientific Research, Air Force Materiel
Command, USAF, under grant number FA9550-08-1-0422.
The U.S. Government is authorized to reproduce and dis-
tribute reprints for Governmental purposes notwithstanding
any copyright notation thereon.

7. REFERENCES
[1] J. W. Barnes, B. Dimova, and S. P. Dokov. The theory

of elementary landscapes. Applied Mathematics Letters,
16(3):337–343, April 2003.

[2] B. Codenotti and L. Margara. Local properties of some
NP-complete problems. Technical Report TR 92-021,
International Computer Science Institute, Berkeley,
CA, 1992.

[3] Bruce Colletti and J. Wesley Barnes. Linearity in the
traveling salesman problem. Applied Mathematics
Letters, 13(3):27–32, April 2000.

[4] B. Dimova, J. Wesley Barnes, and E. Popova. Arbitrary
elementary landscapes & ar(1) processes. Appl. Math.
Lett., 18(3):287–292, 2005.

[5] Lov K. Grover. Local search and the local structure of
NP-complete problems. Operations Research Letters,
12:235–243, 1992.

[6] Andrew Solomon, J. Wesley Barnes, Steftcho P. Dokov,
and Raul Acevedo. Weakly symmetric graphs,
elementary landscapes, and the tsp. Appl. Math. Lett.,
16(3):401–407, 2003.

[7] Peter F. Stadler. Toward a theory of landscapes. In
R. Lopéz-Peña, R. Capovilla, R. Garćıa-Pelayo,
H. Waelbroeck, and F. Zertruche, editors, Complex
Systems and Binary Networks, pages 77–163. Springer
Verlag, 1995.

[8] Peter F. Stadler. Landscapes and their correlation
functions. Journal of Mathematical Chemistry, 20:1–45,
1996.

[9] Darrell Whitley and Andrew M. Sutton. Partial
neighborhoods of elementary landscapes. In Proceedings
of the Genetic and Evolutionary Computation
Conference, Montreal, CA, July 2009.

