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Abstract The course timetabling problem is one of the most difficult combinatorial
problems, it requires the assignment of a fixed number of subjects into a number of time
slots minimizing the number of student conflicts. This article presents a comparison
between state-of-the-art hyper-heuristics and a newly proposed iterated variable
neighborhood descent algorithm when solving the course timetabling problem. Our
formulation can be seen as an adaptive iterated local search algorithm that combines
several move operators in the improvement stage. Our improvement stage not only uses
several neighborhoods, but it also incorporates state-of-the-art reinforcement learning
mechanisms to adaptively select them on the fly. Our approach substitutes the adaptive
improvement stage by a variable neighborhood descent (VND) algorithm. VND is an
ingredient of the more general variable neighborhood search (VNS), a powerful
metaheuristic that systematically exploits the idea of neighborhood change. This leads
to a more effective search process according course timetabling benchmark results.
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1 Introduction

The timetabling problem is a common and recurring problem in many organiza-
tions. This paper focuses on a variant of the timetabling problem, named Course
Timetabling Problem (CTTP). The CTTP, commonly seen at every university,
works with the assignment of a fixed number of events into a number of timeslots.
The main objective of this problem is to obtain a timetable that minimizes the
number of conflicts for a student [9]. Many possible conflict types exist in CTTP,
but the principal conflicts are usually time-related i.e. one student with two or more
subjects assigned to the same time period.

Like most timetabling problems, the CTTP is known to be NP-Complete [10, 26].
Due to this complexity and the fact that course timetables are still often constructed by
hand, it is necessary to automate timetable construction in order to improve upon the
solutions reached by the human expert [25]. Unfortunately, the automation of a time-
table construction is not an easy task, it requires a deep knowledge of the problem. This
is the principal reason for the high popularity of hyper/metaheuristic solvers for the
CTTP. Hyper-heuristics represents a novel direction on the heuristic optimization field,
these algorithms aim to provide generic frameworks to solve differents problems. The
advantage of this approach is that once we had a hyper-heuristic algorithm with rea-
sonably good performance, that algorithm could be applied to similar problems without
more changes that the update of a pool of low level (and problem dependent) operators.
Hyper-heuristics can be defined as (meta) heuristics that choose or generate a set of low
level heuristics to solve difficult search and optimization problems [4]. Hyper-heuristics
aim to replace bespoke approaches by more general methodologies with the goal of
reducing the expertise required to solve a problem [22]. In most of the previous studies
on hyper-heuristics, low-level heuristics are uniform, i.e. they are either constructive or
perturbative (improvement) heuristics [4, 6]. We use perturbative heuristics only.

Hyper-heuristics can be designed to select or construct heuristics when solving a
problem. In this work we use hyper-heuristics that select the most promising heuristics
to guide the search process. In order to create this kind of hyper-heuristics, a high level
heuristic chooser is needed. In this work we use as high level chooser a hybrid
ILS-VND algorithm. Iterated local search (ILS) is a simple but successful algorithm
[13]. It operates by iteratively alternating between applying an operator to the
incumbent solution and restarting local search from a perturbed solution. Variable
neighborhood descend (VND) is a powerful component of variable neighborhood
search (VNS), this simple strategy applies a set of hierarchically ordered heuristics to
an incumbent solution, expecting that less perturbative heuristics are used more fre-
quently than complex operators. The main contribution of this work is a newly pro-
posed iterated variable neighborhood descent algorithm as a high level heuristic
chooser when solving the course timetabling problem.

The paper is organized as follows. Section 2 defines the problem and some
important concepts. Section 3 presents the solution approach and its justification.
Section 4 contains the experimental set-up, results, their analysis and discussion.
Finally, Sect. 5 gives the conclusions and describes some future work.



Iterated VND Versus Hyper-heuristics ... 689

2 Main Concepts

In this section, the generic representation (methodology of design) is briefly
explained. We also give a brief description of hyper-heuristic algorithms and high
level choosers. Our base algorithms: ILS and VND are also detailed here.

2.1 Problem Definition

The CTTP, part of the Constraint Satisfaction Problems (CSP), considers its main
variables as events to be scheduled according to a given curricula and its constraints
as time-related restrictions (e.g., specific events to be assigned into specific
timeslots). CTTP formulation consist of several sets [9]: a set of events (courses or
subjects), E = {el, €2, ..., en} are the basic element of a CTTP. In addition, there
are a set of time-periods, T = {f1, 12, ..., ts}, a set of places (classrooms) P = {p],
p2, ..., pm}, and a set of agents (students registered in the courses) A = {al, a2, ...,
ao}. Each member e € E is a unique event that requires the assignment of a period
of time ¢ € T, a place p € P and a set of students S C A, so that an assignment is a
quadruple (e, ¢, p, S). A timetabling solution is a complete set of n assignments, one
for each event, which satisfies the set of hard constraints defined by each university
or college. This problem is known to be at least NP-complete [10, 19].

The CTTP has been studied intensively, from early solution approaches based on
logic programming [2, 5, 14] to metaheuristic schemes such as Tabu-list [16],
Genetic Algorithms [28], Ant Colony [17], PSO [12], Variable Neighborhood
Search [3] and Bee Algorithms [20]. In the same way, a great number of surveys of
metaheuristics solution schemes that have been used to solve the CTTP problem are
available [7, 8, 15, 18]. In addition, in recent years Hyper-heuristic frameworks has
been applied with encouraging results [22, 23]. Almost all of this research used the
ITC2007 [1] important benchmark in order to gather evidence about the efficiency
of each proposed approach. This paper takes hyper-heuristics from the state of the
art and applies them to ITC2007 instances.

2.2 Methodology of Design for the Course Timetabling
Problem

In the literature it can be seen that a problem with the diversity of course time-
tabling instances exists due different university policies. This situation directly
impacts on the reproducibility and comparison between course timetabling algo-
rithms [21]. The state of the art indicates some strategies to avoid this problem; for
example, a more formal problem formulation [15], as well as the construction of
benchmark instances [1]. These schemes are useful for a deeper understanding of
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the university timetabling complexity, but the portability and the reproducibility of
a timetabling solver in another educational institution is still in discussion [21]. In
this sense, we use a context-independent layer for the course timetabling solution
representation. This layer, named ‘Methodology of Design’, has been used previ-
ously with encouraging results for CTTP [23]. In addition it has been defined
formally on Soria-Alcaraz et al. [24].

When using this layer, a heuristic algorithm only needs to choose a pair
(timeslot—classroom) for each event e from a previously defined structure, as seen
on Fig. 1. The construction of this structure of valid assignations exceeds the scope
of this paper; for further information, please consult [22-24].

The solution representation used by any heuristic algorithm that uses this
methodology can therefore be seen as an integer array with length equal to the
number of variables (events/subjects). The objective is then to search in this space
for a solution that minimizes student conflicts given by Egs. (1) and (2). One
example of this representation can be seen in Fig. 1.

k
Min(FA) = Y “FAy, (1)
i=1
(M‘/ﬂ*l My, —s
FAy, = (Aj_ys/\Aj‘Hl) (2)
s=1 =1
where
FA Student conflicts of current timetabling.
Vi Student conflicts from “Time slot” i of the current Timetabling.
AjsNAjs4; students that simultaneously demand subjects s and s+ 1 inside the
timeslot j.
A student that demands subject s in timetabling j.
Fig. 1 Representation used ¢ L
8am-B Bam-A|7am-B | 7am-A 2 Event0
9am-C | 9am-A 1 Eventl
7am-C|7am-B |7am-A 2 Event2
9am-B
10am-APam-A|8am-A | 7am-A 0 Eventn
LPH X LPA Solution

Representation
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2.3 Hyper-heuristics

The term “hyper-heuristics” is relatively new, having first appeared as a strategy to
combine artificial intelligence methods. The un-hyphenated version of the term
initially appeared in Burke et al. [4] describing hyper-heuristics as “heuristics to
choose heuristics” in the context of combinatorial optimization. Hyper-heuristics
can be designed in a wide variety of ways, but in general they are constructed to
achieve two objectives [4]: heuristic selection or heuristic generation. This work
focuses on heuristic selection. Selection hyper-heuristics generally use a meta-
heuristic to choose, from a pool of low-level heuristics, the best possible
heuristic/operator to be applied to a problem instance to guide the search effec-
tively. The basic scheme for the selection of hyper-heuristics can be seen in Fig. 2.

The high level heuristic chooser must decide what heuristic is the most promising
one to continue the search at a given point. Obviously these algorithms need to have
some desired characteristics including a fast and consistent response to changes in the
current state of the problem, a mechanism to select heuristics previously not common
selected and a mechanism to identify whenever the current operator has more
potential to be discover by further applications. The domain barrier prevents the high
level chooser from being problem dependent, i.e. having a low level knowledge of
the problem. In practice, this means that the high level chooser only knows the last
fitness improvement product of the last heuristic applied. This domain barrier ensures
the generality of the whole model. Low level heuristics are another important part of
the hyper-heuristic framework, this pool of operators receive a signal from the high
level chooser whenever they must in order to produce a change in the current state of
the problem instance and they return the fitness improvement of its application (if
any). Finally, the problem instance state changes dynamically thought the successive
application of low level heuristics to an optimal state.
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2.4 Iterated Local Search High Level Chooser

Iterated local search is a relatively simple yet powerful strategy. It operates by
iteratively alternating between applying a move operator to the incumbent solution
(perturbation stage) and restarting the local search from the perturbed solution
(improvement stage). The term iterated local search (ILS) was proposed in [13].

A number of adaptive variants of multi-neighborhood iterated local search have been
recently proposed with encouraging results in other problem domains [27]. If several
options are available for conducting perturbation and improvement, a mechanism needs
to be provided to choose between them. The idea is to use online learning to adaptively
select the operators either at the perturbation stage or the improvement stage, or both.
These approaches inspired the algorithm implemented in this article, which can be seen
in Algorithm 1 and 2. In this implementation, the perturbation stage (step 4 in Algorithm
1) applies a single fixed move operator to the incumbent solution. This move operator
(Simple Random Perturbation) simply selects uniformly at random a single variable and
substitutes it for another variable in the range selected uniformly at random. Learning is
then applied to the improvement stage (Algorithm 2), in which a perturbation operator is
applied to the incumbent solution (steps 4 and 5 in Algorithm 2).

Algorithm 1 Iterated Local Search (ILS)
1: SO= GeneratelntialSolution()

2: S*= ImprovementStage(S0)

3: while !StopCriteria() do

4: S’ = SimpleRandomPerturbation(S*)
5:  S* = ImprovementStage(S’)

6:if f(S**) better than f(S*) then

7: S* =8*’

&: end if

9:end while

11: return S*

Algorithm 2 Improvement Stage

1: Is = IncumbentSolution()

2: §*= ImprovementStage(S0)

3: while !LocalStopCriteria() do
4:  hi= Select Heuristic()

5:  Is* = apply(hi,ls)

6: if f(Is*) better than f(Is) then
7: Is = Is*

8 end if

9: end while

11: return Is
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2.5 Variable Neighborhood Descent

Variable neighborhood search (VNS), developed by Hansen and Mladenovic [11]
in 1996, is a metaheuristic for solving combinatorial and global optimization
problems. Unlike many metaheuristics where only a single operator is employed,
VNS systematically changes different operators within a local search. The idea is
that a local optimum defined by one neighborhood structure is not necessarily the
local optimum of another neighborhood structure, thus the search can systemati-
cally traverse different search spaces, which are defined by different neighborhood
structures. This potentially leads to better solutions, which are difficult to obtain by
using single neighborhood based local search algorithms [11]. The basic principles
of VNS are simple in execution, since parameters are kept to a minimum. Our high
level chooser is based on variable neighborhood descent search (VND), a variant of
the VNS algorithm. VND algorithm differs from VNS in that VND needs a hier-
archically ordered list of operators; this ordering is commonly made by putting
simpler and less perturbative heuristics at the beginning of the ordering, so more
complex and perturbative heuristics appear latter in the ordering. The main idea is
to choose in higher proportion heuristics that act as local search and when no further
improvement can be achieved from this heuristics, to choose more complex oper-
ators in order to scape from the local optima. Algorithm 3 details our implemen-
tation of this algorithm. Lines 5-9 from Algorithm 3 detail the behavior of our
VND-based heuristic chooser.

Algorithm 3 Variable Neighborhood Search (VND)

1: Is = IncumbentSolution()

2: Hy = getHierarchicallyOrderedOperators()
3:1=0

4: while !LocalStopCriteria() do

5:  1s* =apply(H,,ls)

6:  if f(Is*) better than f(Is) then
7 Is =1Is*

8: i=0

8: else

9 =i+l

10: end if

11: end while
12: return Is
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2.6 Low Level Heuristic Pool

An important design decision in any hyper-heuristic algorithm is the selection of a
pool of neighborhood structures or heuristics. We used as a base the successful
operators proposed in [23] extending some of them by multiple applications in
order to have larger-scale neighborhoods. The base operators are briefly described
below.

¢ Simple Random Perturbation (SRP): uniformly at random chooses a variable
and changes its value for another one inside its feasible domain.

e Swap (SWP): selects two variables uniformly at random and interchanges their
values if possible. Otherwise leaves the solution unchanged.

e Statistical Dynamic Perturbation (SDP): chooses a variable following a
probability based on the frequency of variable selection in the last k iterations.
Variables with lower frequency will have a higher probability of being selected.

e Double Dynamic Perturbation (DDP): similar to heuristic SDP, it selects a
new variable with a probability inversely proportional to its frequency of
selection in the last k iterations. It differs from SDP in that it internally maintains
an additional solution (which is a copy of the first initialized solution) and
makes random changes to it following the same distribution.

e Best Single Perturbation (BSP): chooses a variable following a sequential
order and changes its value to that producing the minimum conflict.

Four additional neighborhoods were created by applying SRP two times, SWP
three times, SDP five times, and DDP five times. Therefore, a total of nine
neighborhood structures were considered in that order.

3 Solution Approach

3.1 Combining Methodology of Design
with Hyper-heuristics

As seen in Sect. 2, each high level chooser detailed so far utilizes a pool of low
level heuristics, this pool is defined in Sect. 2.6. In this section, we define the
codification and parameters used, as well as several details of each hyper-heuristic
configuration.

We use the methodology of design approach shown in Sect. 2.2 in order to
generalize the implementation of our metaheuristic over different CTTP instances.
For each instance, the valid moves structure is built (Fig. 1). The detailed con-
struction process for each of these lists is beyond the scope and purpose of this
article, but interested readers are referred to [22, 24]. In the same manner as dis-
cussed above, these lists ensure by design that every variable in our solution rep-
resents a feasible selection in terms of time-space constraints. The main
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optimization exercise is to minimize the student conflict by means of the permu-
tation of the events into time slots (i.e. integer values in our representation in
Fig. 1). The function to be minimized has been described in Sect. 2.2, Egs. (1)
and (2). Initially our algorithm starts from a random solution and then we use
Algorithm 1 to change the initial solution to a more promising one.

3.2 High Level Iterated Variable Neighborhod Decsent

In a hyper-heuristic framework with only ILS as the high level chooser the poll of
low lever heuristics are presented without a particular ordering [27]. In our pro-
posed approach, the improvement stage not only uses several neighborhoods, but it
also incorporates a hierarchically ordering as seen in Sect. 2.6. We propose an
hybridization of high level chooser, this hybridization takes the framework seen in
Algorithm 1 but also utilizes a list of ordering heuristics as Algorithm 3. Algorithm
4 details our approach.

Algorithm 4 Iterated Variable Neighborhood Decent (IVND)

1: S0 = GeneratelntialSolution()

2: S*= VND(S0) {Improvement Stage}
3: while !StopCriteria() do

4: S’ = PerturbationStage(S*) {Using SRP Neighborhoods}
5:  S§* =VND(S’) {Improvement Stage}

6: if f(S*’) better than f(S*) then

7: S* =S*’

8 end if

9: end while

11: return S*

The approach proposed here (IVND, Algorithm 4), takes as a base the ILS
hyper-heuristic framework, but substitutes the adaptive improvement stage by a
variable neighborhood descent (VND) algorithm. if an improvement to S is not
possible using the first neighborhood H; then it is changed to H, and so forth with
subsequent neighborhoods. As soon as an improvement is found with the current
neighborhood, the sequence is restarted and H; is used again. This is a desired
behavior since less perturbative heuristics are positioned at the beginning of the
operator ordering.
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4 Experiments and Results

In this section, several experiments are performed in order to find evidence about
the performance of our approach against the CTTP state of art. We describe each
experiment together with the characteristics of the benchmarks adopted.

4.1 Test Instances

The methodology of design allows the solution of diverse problem formulations it is
merely necessary that each instance be expressed in terms of the generic structures
(MMA, LPH and LPA). A well-known CTTP benchmark from the second inter-
national timetabling competition, PATAT ITC2007 Track 2 [1], is used for com-
parison between sequential and parallel approaches. This benchmark has 24
instances with main characteristics as follows:

Patat 2007

A set of n events that are to be scheduled into 45 timeslots.

A set of r rooms, each which has a specific seating capacity.

A set features that are satisfied by rooms and required by events.

A set of S students who attend various different combination of events.

The hard constraints are:

No student should be required to attend more that one event at the same time
In each case the room should be big enough for all the attending students
Only one event is put into each room in any time slot.

Events should only be assigned to time slots that are pre-defined as available *
Where specified, events should be scheduled to occur in the correct order. *

The soft constraints are:

Students should not attend an event in the last time slot of a day.
Students should not have to attend three or more events in successive timeslots.
e Student should not be required to attend only one event in particular day.

4.2 Experimental Design

Experimental conditions used throughout this section resemble those of the inter-
national timetabling competition (ITC) 2007 track 2 (post-enrollment course
timetabling). A total of 24 instances are available [1]. The objective function
minimizes the sum of hard and soft constraint violations. For the post enrolment
track, the number of hard constraint violations is termed the ‘distance to feasibility’
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metric, and it is defined as the number of students that are affected by unplaced
events. In general, the cost of a solution for each timetabling problem is denoted
using a value, sv, where sv and sv are the sum of soft constraint violations, In this
paper, we only record results with a value of 0 Hard violations. Following the
ITC2007 rules, 10 independent runs per instance were conducted, and results are
reported as the average of sv. The stopping condition for each run corresponds to a
time limit of about 10 min, according to the benchmark algorithm provided in the
competition website. Finally, these instances range from 400 to 600 events.
Experiments were conducted on a CPU with Intel i7, 8 GB Ram using the Java
language and the 64 bits JVM.

4.2.1 Results

Table 1 shows the best results (out of 10 runs, as this was the experimental setting
used in the competition). The last column correspond to the proposed IVND, the
results from the competition winner (Cambazard) are taken from the ITC-2007

Table 1 Results experiments ITC2007

Instance Cambazard Ceschia Lewis Jat and Yang ILSHH itVND
1 571 59 1166 501 650 677
2 993 0 1665 342 470 450
3 164 148 251 3770 290 288
4 310 25 424 234 600 570
5 5 0 47 0 35 30
6 0 0 412 0 20 10
7 6 0 6 0 30 15
8 0 0 65 0 0 0
9 1560 0 1819 989 630 620
10 2163 3 2091 499 2349 1764
11 178 142 288 246 350 250
12 146 267 474 172 480 450
13 0 1 298 0 46 30
14 1 0 127 0 80 68
15 0 0 108 0 0 30
16 2 0 138 0 0 20
17 0 0 0 0 0 0
18 0 0 25 0 20 10
19 1824 0 2146 84 360 299
20 445 543 625 297 150 150
21 0 5 308 0 0 0
22 29 5 X 1142 33 15
23 238 1292 3101 963 1007 892
24 21 0 841 274 0 0
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website and the other columns from recent articles as indicated. The comparison
was conducted using the 2007 competition rules and corresponding running time.
Since all solutions are feasible, the values in the table correspond to the soft
constraint violations, i.e. have zero hard constraint violation (except those marked
with an x).

5 Conclusions and Future Work

This paper has presented a comparison between state-of-the-art hyper-heuristics and
a newly proposed IVND algorithm when solving the course timetabling problem.
Our approach substitutes the adaptive improvement stage by a VND algorithm with
encouraging results over ITC 2007 track 2 instances.

Results indicate that the conceptually simpler IVND outperforms the recently
proposed adaptive hyper-heuristic, and it shows competitive results against more
complex state-of-the-art approaches.

Future work will study the extent to which the simpler and deterministic VND
mechanism compares against more sophisticated reinforcement learning counter-
parts within and outside the competition setting. We will also explore whether
applying multiple neighborhoods and adaptation to the perturbation stage in addi-
tion to (or instead of) the improvement stage provides improved results.
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