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ABSTRACT
Evolvability metrics gauge the potential for fitness of an in-
dividual rather than fitness itself. They measure the local
characteristics of the fitness landscape surrounding a solu-
tion. In adaptive operator selection the goal is to dynam-
ically select from a given pool the operator to apply next
during the search process. An important component of these
adaptive schemes is credit assignment, whereby operators
are rewarded according to their observed performance. This
article brings the notion of evolvability to adaptive opera-
tor selection, by proposing an autonomous search algorithm
that rewards operators according to their potential for fit-
ness rather than their immediate fitness improvement. The
approach is tested within an evolutionary algorithm frame-
work featuring several mutation operators on binary strings.
Three benchmark problems of increasing difficulty, Onemax,
Royal Staircase and Multiple Knapsack are considered. Ex-
periments reveal that evolvability metrics significantly im-
prove the performance of adaptive operator selection, when
compared against standard fitness improvement metrics.The
main contribution is to effectively use fitness landscape met-
rics to guide a self-configuring algorithm.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search—Heuristic methods

General Terms
Algorithms, Design.

Keywords
Combinatorial optimization, evolutionary algorithms, evolv-
ability, fitness landscapes, hyper-heuristics, adaptive opera-
tor selection, self-* search
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1. INTRODUCTION
Adaptive operator selection [7, 13, 18, 21], hyper-heuristics

[4] and adaptive memetic algorithms [16] are amongst recent
terms describing search methodologies that autonomously
configure themselves on the fly when solving a given in-
stance of an optimisation problem. This is related to the
more general topic of adaptive evolutionary algorithms [14]
but is restricted here to the process of dynamically selecting
(perturbation) search operators. These methods acknowl-
edge that the usefulness of specific search operators can
vary dynamically across the search process, and therefore
are complementary to automatic parameter tuning or algo-
rithm configuration tools, which use offline learning [3, 8]
or meta-evolutionary algorithms [10] on a set of training in-
stances to establish the (static) configuration to solve new
instances. These two complementary types of approaches
share the goal of increasing the effectiveness and general-
ity of search methodologies, and thus reduce the role of the
human expert in their design and configuration.

This article deals with adaptive operator selection (AOS)
in the context of evolutionary algorithms. Two cooperating
mechanisms are required in this process: operator selection,
which defines how the next operator to be applied should
be chosen according to its estimated quality; and credit as-
signment, which defines how to estimate operators quality
based on the impact brought by their most recent applica-
tion. The most common way of assigning credit is to account
for the fitness improvement brought by the operators. That
is, the fitness difference of the generated offspring with re-
spect to a reference value, which is generally taken as the
parent. Other mechanisms in the literature have considered
diversity metrics for credit assignment [13, 21].

Our proposal is to use metrics based on local characteris-
tics of the fitness landscape surrounding a solution to mea-
sure the impact of operators, and incorporate these metrics
into the credit assignment mechanism. In order to measure
landscape local characteristics, we consider evolvability met-
rics. Evolvability is loosely defined as the capacity to evolve,
i.e. the ability of an individual to generate fitter variants
than any yet existing [1, 17]. Therefore, it is more closely
linked with the potential for fitness rather than with fitness
itself; two individuals with equal fitness can have different
evolvabilities [17].

Little work so far has considered the use of fitness land-
scape metrics to dynamically guide the search. An example
is the use of neutrality and evolvability metrics to escape



plateaus when solving the flow shop scheduling problem [12].
To the best of our knowledge evolvability metrics have not
been implemented specifically for adaptive operator selec-
tion, although this idea may be related to the the concepts
of look ahead [5] and delayed reward [22] in meta and hyper-
heuristics. To prove the concept and allow comparisons, we
select the algorithmic framework (high-level search strat-
egy and relevant parameter settings) used in recent work
on adaptive operator selection [7]. Three benchmark prob-
lems with binary representation are considered. Namely,
the simple Onemax problem (also used in [7]), the more
elaborate Royal Staircase family of functions; and a more
realistic combinatorial optimisation problem, the Multiple
Knapsack problem. The goal is both to determine whether
operators’ evolvability metrics produce a performance ad-
vantage over fitness improvement metrics, and to study the
adaptive dynamics of operators selected according to each
type of metric.

The next section describes evolvability and how to mea-
sure it. The proposed approach is described in section 3.
Section 4 describes the empirical setup, while section 5 re-
ports and analyses the experimental results. Finally, section
6 summarises our findings and suggests directions for future
work.

2. EVOLVABILITY
Evolvability loosely refers to the capacity of an individual

or population to evolve. The first formalisation of this no-
tion is attributed to Altenberg [1] who defined evolvability as
“the ability of the genetic operator/representation scheme to
produce offspring that are fitter than their parents.” This is
clearly necessary for adaptation in natural and artificial sys-
tems and therefore relevant to adaptive operator selection.
Within evolutionary algorithms, evolvability was initially
considered as a measure of performance. More specifically,
“as the most local or finest-grained scale for measuring per-
formance in an evolutionary algorithm” [1]. Later on, Smith
et al. [17] linked evolvability to the notion of fitness land-
scapes. They developed a notion of evolvability based on the
fitness distribution of the offspring of sampled solutions. By
averaging evolvability over a set of equal fitness solutions,
fitness evolvability portraits of a landscape were constructed
and shown to describe general features of ruggedness, modal-
ity, and neutrality. Moreover, the study showed that some
features of the fitness evolvability portraits for real evolu-
tionary electronics search spaces are linked to the ease of
finding good solutions.

In order to use the notion of evolvability in an algorith-
mic setting, we need to measure it. More precisely, we are
interested in measuring the evolvability of specific search op-
erators. This is equivalent to measuring the potential of the
incumbent solution from the point of view of a given opera-
tor by considering the current solution’s fitness and that of
its neighbourhood according to the operator. Evolvability
then give us an estimate of how much we can achieve with
this pair operator-solution.

As discussed in a recent survey [11], several evolvability
metrics have been proposed in the literature. After a pre-
liminary wider exploration, we selected the two best per-
forming metrics for discrete search spaces proposed in [17].
Namely, Ea, the probability of the offspring fitness being
higher or equal to the parent fitness (Equation 1); and Eb,
the mean fitness of the offspring solutions (Equation 2).

We follow here the notation and definitions by Smith et
al. [17]. The fitness landscape can be considered as a di-
rected graph (V,E) with vertices V (solutions) connected
by edges E. There is an edge between two solutions if
one is generated from the other through a single applica-
tion of a given operator. Let the pair < h, k > denote
a solution of genotype h, and fitness value k. The set G
of offspring from a parent solution < h, k > is thus de-
termined by the vertices connected to the parent vertex:
G(< h, k >) = {g ∈ V : E(< h, k >) = g}

The fitness function F maps every solution to a single R
value. Then, we can define a set of offspring with fitness
F (g) greater than a given value:

G+
c (< h, k >) = {g ∈ V : E(< h, k >) = g, F (g) ≥ c}

Ea, is the probability of the offspring fitness being higher
or equal to their parent fitness. It is simply measured as the
ratio between the number of offspring with fitness higher or
equal to that of the parent, and the total number of offspring
(when sampling this is the size of the offspring sampling
size). More formally it is defined as:

Ea =
|G+

k (< h, k >)|
|G(< h, k >)| (1)

Eb, is the mean fitness of the offspring solutions (when
sampling this is the mean fitness of the sample offspring).
More formally it is defined as:

Eb =

∑
g∈G(<h,k>) F (g)

|G(< h, k >)| (2)

For practically calculating the evolvability metrics defined
above, a sampling methodology is required. A complete enu-
meration of the whole neighbourhood of the incumbent so-
lution for each available operator would require impractical
computational resources. We therefore consider estimated
rather that exact evolvability metrics. Sampling the search
space following a uniform distribution will give equal im-
portance to all points. As discussed in [20], many solutions
in the space may not be relevant from the point of view of
evolutionary search. A methodology that gives prevalence
to “important” points (i.e. those with higher fitness) is de-
sirable as they reflect the bias followed by evolutionary and
other heuristic search algorithms. As suggested in [20] for
calculating fitness clouds we use the Metropolis-Hastings al-
gorithm, which extends the standard Metropolis sampling
to non-symmetric stationary probability distributions.

For estimating the evolvability metrics, Ea and Eb, the
Metropolis-Hastings sampling method was used to collect
information about the offspring produced from the incum-
bent solution given a search operator. A sampling size of
7 (offsprings) was used in our experiments. This value was
found empirically to produce a good balance between fast
computation and good metric approximation. A larger size
would produce a more accurate estimate but would take
longer, impairing the use of evolvability as a competitive
metric for credit assignment.

3. TECHNICAL APPROACH
We investigate the use of the evolvability metrics described

above to guide the dynamic selection of mutation operators
in an evolutionary algorithm. An adaptive operator selec-



tion scheme consists of two components: (i) a credit assign-
ment mechanism, which associates a reward with each oper-
ator, modeling its predicted utility; and (ii) a selection rule,
which determines the operator to be used at each time step,
as a function of reward. It is within the credit assignment
that evolvability metrics are introduced as described in sub-
section 3.1. Subsection 3.2 describes the selection rules im-
plemented, while subsection 3.3 the high-level search strat-
egy used.

3.1 Evolvability based credit assignment
Most credit assignment methods compute operators’ credit

using the fitness of the new solution compared with that of
its parent [7, 18]. We use solutions’ evolvability instead of
their fitness values. The motivation is to have an enriched
view of the operator’s quality according to the local char-
acteristics of the fitness landscape surrounding the offspring
and parent solutions. We consider extreme values for as-
signing credits [7], which is based on the principle that large
(but possibly infrequent) credit improvements are more ef-
fective than small frequent improvements. It rewards oper-
ators which have had a recent large positive impact, while
consistent operators yielding only small improvements re-
ceive less reward. Rewards are updated as follows, when an
operator op is selected, it is applied to the current solution.
The evolvability value of this new solution is computed and
the change in evolvability is added to a list of size W. There-
after, the operator reward is updated to the maximal value
in the list. Table 1 reports the value used for this parameter
in our experiments, while Figure 2 gives some evidence of
the suitability of the selected value. The credit assignment
mechanism needs to be combined with a selection rule as
described below.

3.2 Selection rule
Operator selection probabilities are calculated from their

quality estimates following a selection rule. These rules
maintain a probability vector (pi, t)i=1,...,K (where K de-
notes the number of operators), and use the operator’s raw
credit estimate to calculate probabilities. Two recent and
well performing selection rules, namely, Adaptive Pursuit
and Dynamic Multi-Armed Bandit, were implemented and
tested in our study. An overview of these two rules is pre-
sented below. These methods introduce control parameter.
The parameter settings used in our experiments are reported
in Table 1.

Adaptive pursuit was originally proposed for learning au-
tomata and was adapted to operator selection in [18]. It
follows a winner-takes-all strategy, selecting at each step
the operator with maximal reward, increasing its selection
probability, while all other operators get their probability
reduced. This method has two parameters: pmin that indi-
cates the minimal probability of selection for each operator,
and β, the learning rate taken from (0, 1].

The multi-armed bandit framework is commonly used in
game theory for studying the exploration vs. exploitation
dilemma. It involvesN arms and a decision making-algorithm
for selecting one arm at each time step with the goal of max-
imising the cumulative reward gathered along time. The ex-
ploration vs. exploitation balance is also relevant for heuris-
tic search. Indeed, adaptive operator selection can be for-
mulated using multi-armed bandits with arms correspond-
ing to search operators [6, 7]. Specifically, the upper confi-

dence bound multi-armed bandit [2] was used as it provides
optimal maximisation of cumulative rewards. Two consid-
erations were required to use this framework for adaptive
operator selection. First, a scaling factor C is needed, in
order to properly balance the tradeoff between exploration
and exploitation. Second, the original setting is static, while
adaptive operator selection is dynamic, i.e., the quality of
the operators is likely to change along the different stages
of the search. The multi-armed bandit framework is thus
combined with the Page-Hinkley statistical test for detect-
ing changes in the reward distribution, and, upon such a de-
tection, restarting the process [7]. This combined approach
is termed dynamic multi-armed bandit, and introduces two
additional parameters associated to the Page-Hinkley test:
γ, which controls the trade-off between false alarms and un-
noticed changes; and δ, which enforces the robustness of the
test when dealing with slowly varying environments.

3.3 High-level search strategy
For comparison purposes, we implemented the algorith-

mic framework used in recent adaptive operator selection
research [7]. Namely, a standard (1+λ)-EA without recom-
bination, where λ offspring are created from a single parent,
and the best individual among the current offspring and par-
ent becomes the parent in the next generation. The AOS
module is incorporated for choosing the mutation operator
to generate the next offspring as indicated in Algorithm 1.

Algorithm 1 (1 + λ)− EA with AOS.

Require: f : δ → R fitness function, maxGener max num-
ber of generations, µ size of parent pool, λ size of the
offspring pool

1: ParentPool0 = generatePopulation(µ)
2: for i = 0 until maxGener do
3: initialize OffspringPooli = pool(λ)
4: for j = 0 until λ do
5: OffspringPooli.add(AOS(ParentPooli−1))
6: end for
7: ParentPooli = Best(OffspringPooli)
8: end for
9: return Best(ParentPooli)

4. EXPERIMENTAL SETUP
This section describes the experimental setup including

test problems, algorithm variants and their parameter set-
tings, the performance metric and statistical testing em-
ployed.

4.1 Test problems
Three benchmark problems encoded as binary strings are

considered. The first benchmark function is the Onemax or
counting ones problem, traditionally used in theoretical and
proof of concept studies in genetic algorithms. We selected
it as it was one of the benchmarks of choice in recent adap-
tive operator selection studies based on fitness improvement
[7]. Two additional more complex test problems are also
considered, as described below.

Royal staircase functions. This class of functions is re-
lated to the more familiar Royal Road functions [15]. They
were proposed in [19] for analyzing epochal evolutionary
search, that is the existence of long periods of fitness sta-
sis punctuated by occasional fitness leaps. Although sim-
ple, Royal Staircase functions capture some essential ele-



ments found on complex problems, namely, highly degen-
erate genotype-to-phenotype maps, and the existence neu-
trality. A formal definition of the Royal Staircase class of
functions is given below.

1. Genotypes are binary strings s = s1s2 . . . sL, si ∈
{0, 1}, of length L = NK, where N is the number
of blocks and K the number of bits per block.

2. Starting from the first position, the number I(s) of
consecutive 1s in a string is counted.

3. The fitness f(s) of string s with I(s) consecutive ones,
followed by a zero, is f(s) = 1 + bI(s)/Kc. The fitness
is thus an integer between 1 and N + 1, corresponding
to 1 plus the number of consecutive fully-set blocks
starting from the left.

4. The single global optimum is s = 1L; namely, the
string of all 1s.

FixingN andK determines a particular problem or fitness
landscape.

Multiple knapsack problem. The combinatorial op-
timisation problem described here, called the 1/0 multiple
knapsack problem, follows the formulation in [9]. This prob-
lem is a generalisation of the 0/1 simple Knapsack problem
where a single knapsack of capacity C, and n objects are
given. Each object has a weight wi and a profit pi. The
objective is to fill the knapsack with objects producing the
maximum profit P . In other words, to find a vector x =
(x1, x2, . . . , xn) where xi ∈ {0, 1}, such that

∑n
i=1 wixi ≤ C

and for which P (x) =
∑n

i=1 pixi is maximised.
The multiple version consists of m knapsacks of capacities

c1, c2, . . . , cm and n objects with profits p1, p2, . . . , pn. Each
object has m possible weights: object i weighs wij when
considered for inclusion in knapsack j (1 ≤ j ≤ m). Again,
the objective is to find a vector x = (x1, x2, . . . , xn) that
guarantees that no knapsack is overfilled:

∑n
i=1 wijxi ≤ cj

for j = 1, 2, . . . ,m; and that yields maximum profit P (x) =∑n
i=1 pixi.

4.2 Algorithm variants and parameter settings
The high-level search strategy is the (1+ λ)-EA (Algo-

rithm 1) with offspring population size, λ = 50 in order to
have the same high level algorithm and population size used
in [7]. A common pool of mutation operators for binary
representation was selected. The standard n-flip operator is
considered, which chooses uniformly at random n bits in the
current solution and flips their values (0 is changed to 1 an
vice-versa). Our implementation used n values of 1, 3 and
5, as this was the choice of operators in [7].

For the Onemax problem six Adaptive Operator Selec-
tor (AOS) variants were considered by combining the three
alternative credit assignment mechanisms: fitness improve-
ment (Fit) and two evolvability metrics (Ea and Eb); with
the two selection rules: adaptive pursuit (ap), and dynamic
multi-armed bandits (dmab). These variants are identified
with the pair of mechanisms separated by a hyphen. For ex-
ample, Ea-dmab indicates a variant using credit assignment
based on the evolvability metric Ea coupled with the dmab
selection rule (see Figure 1). For the two remaining test
problems, and due to space constraints, only the best per-
forming evolvabibilty metric (Ea) and selection rule (dmab)
are considered. This reduces the number of AOS variants to
two, namely: Ea-dmab and Fit-dmab. Notice that variant

Fit-dmab, corresponds to the algorithm proposed [7]. As a
control, a variant that selects operators uniformly at random
at each iteration (identified as Random) is also considered
for all test problems.

Table 1 reports the parameter settings used in the exper-
iments. The first 4 rows show the parameter values that
are common to all the experiments. Namely, the offspring
population size λ, the credit assignment window size W , the
Metropolis-Hastings sampling size for calculating evolvabil-
ity metrics, and the control parameter δ associated to the
dmab rule (this value is suggested in [7]). The last 6 rows
in Table 1 show the parameter values specific to each test
problem. Namely, the maximum number of generations for
the evolution strategy MaxGener, the chromosome length
L, and the selection rule control parameters (C, γ for dmab;
and β, pmin for ap). For the Onemax problem, these val-
ues follow the suggestions in [7]. For the remaining two test
problems, the values were manually tuned.

Table 1: Parameter settings.
Parameter Onemax Royal Staircase M. Knapsack

λ 50 50 50
W 30 30 30
S 7 7 7

dmab δ 0.15 0.15 0.15
MaxGener 1,000 10,000 5,000

L 10,000 100 to 700 50 to 105
dmab γ 100 75 80
dmab C 10 7 7.5

ap β 0.75 - -
ap pmin 0.10 - -

4.3 Performance metric and statistical testing
The performance metric is simply the value of the fitness

function after the preselected fixed number of generations
of the evolutionary strategy. The three test problems con-
sidered are maximisation problems. Therefore, the higher
the value of the objective function at the end of the run,
the better the performance of the algorithm variant. For
each AOS variant and test problem instance, 33 independent
runs were conducted and results are reported using descrip-
tive statistics and box-plots summarising the performance
distribution. Statistical inference (i.e. multiple comparison
hypothesis testing) was used to asses the comparative perfor-
mance of the AOS variants. Upon checking, our results were
found to approximately follow a Normal distribution and
have stable variances. Therefore, the use of parametric hy-
pothesis testing is adequate. We used the one-way ANOVA
F test (also called Omnibus test) for the Onemax problem,
as there is a single factor (the AOS variant) that can explain
performance differences in the unique Onemax instance con-
sidered. For the other two problems, namely, Royal Stari-
case and Multiple Knapksack, a two-way ANOVA F test is
required as not only the AOS variant but also the specific
problem instance can explain observed differences. In order
to asses the statistical significance of the results, a pairwise
t test is applied post-hoc to identify specific differences (if
they exist) in a given pair of AOS variants. Furthermore,
the p-value for each test is computed including a Bonferroni
correction, which provides control over the so-called family-
wise error rate. In our study the null hypothesis H0 rep-



resents no significant performance differences between the
algorithm variants. Finally, the Tukey HSD test is used to
enforce t test results. All these tests were executed with the
standard significance level of 0.05.

5. RESULTS AND ANALYSIS
We start by showing in Table 2 some basic descriptive

statistics summarising the performance of the proposed algo-
rithm Ea-dmab as compared with the state-of-the-art AOS
variant Fit-dmab [7] and the controlRandom strategy across
all the test problems. Results clearly indicate the superior
performance Ea-dmab. The stopping condition in our exper-
iments considers the number of generations of the of the evo-
lutionary strategy. The calculation of evolvability through
sampling, will incur in additional computational costs. How-
ever, as Table 3 indicates, running times were not greatly
increased in our experiments.

Table 2: Descriptive statistics of main AOS variants
across all test problems.
Onemax Mean Median Std.dev Best
Ea-dmab 8074.12 8050 27.92 8200
Fit-dmab 7832.52 7750 27.42 7957
Random 6834.53 6812 30.01 6892
R.StairCase Mean Median Std.dev Best
Ea-dmab 16.45 16 16.03 19
Fit-dmab 10.97 11 12.01 16
Random 10.78 10 13.63 15
M.Knapsack Mean Median Std.dev Best
Ea-dmab 706600 718500 73105.9 863198
Fit-dmab 495423.24 512432 77231.6 697673
Random 276634.77 269983 78332.4 35728

Table 3: Empirical running times in seconds on se-
lected test instances.

Test Instance Fit-dmab Ea-dmab
Onemax10,000 7.56 8.32
Royal StaircaseN40K5 7.48 12.75
Royal StaircaseN100K7 16.27 37.26
Multiple KnapsackWeing7 0.84 1.12
Multiple KnapsackSento1 3.45 5.14

A more detailed statistical analysis of the results and the
dynamic behaviour of the AOS variants is presented below
for the three test problems.

5.1 Onemax
Figure 1 illustrates the magnitude and distribution of best

fitness values at the end of the run for the 33 independent
replicas on the Onemax instance. All the adaptive algo-
rithms outperform the uniform random selection of oper-
ators. Clearly, the AOS variants using dmab outperform
those using the ap selection rule. Within a fixed selection
rule, the credit assignment mechanisms based on evolvabil-
ity have the best performance, with the Ea metric consis-
tently producing the best result. The one-way ANOVA F
test, reported in Table 4, supports the existence of signifi-
cant differences in the performance means given by the algo-
rithms. A pairwise t test was also conducted with Bonferroni
p-value corrections as shown at the bottom of Table 4. This

shows evidence about the significant difference between al-
gorithms. Specifically, we are interested in the performance
of Ea-dmab as compared to the other AOS variants.
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Figure 1: Onemax. Distribution of fitness values for
all the AOS variants.

Table 4: Onemax. One-way ANOVA F test, and
pairwise t test.
ANOVA Df Sum Sq Mean Sq F value Pr(>F)
Algorithms 6 32928932 5488155 3748.5 1.68e-18
Residuals 217 317710 1464
t tests Ea-ap Ea-dmab Eb-ap Eb-dmab Fit-ap
Ea-dmab 2.4e-16 - - - -
Eb-ap 1.2-16 1.5e-17 - - -
Eb-dmab 2e-9 2.4e-12 3.2e-9 - -
Fit-ap 2.4e-8 4.3e-18 1.5e-09 2e-16 -
Fit-dmab 2.1e-16 3.3e-16 2.6e-16 1 4.15e-6

Figure 2 illustrates the magnitude and distribution of best
fitness at the end of the run of the best performing AOS
variants Ea-dmab and Fit-dmab, with different window sizes
W = {10, 30, 50}. TheRandomAOS variant is also included
for comparison purposes. The window size is a parameter
of the extreme-value credit assignment (described in Sec-
tion 3.1) indicating the memory size of previous operator’s
credit. Results indicate that a window size of 30 consistently
produced good results, not only in the Onemax problem as
illustrated in Figure 2 but in the other test problems also
(not shown here due to space constraints). It seems that
a small window does not give enough scope for estimating
the operator’s reward, while a large one maintains historic
information that is no longer relevant.

Figure 3 shows the dynamic of operators’ probabilities
autonomously adapted through an execution for Fit-dmab
(top) and Ea-dmab (bottom). The curves show a similar
behaviour for both variants. A clear transition or abrupt
change (most probably detected by the dmab mechanism)
is observed around iteration 750 in both cases. The tran-
sition occurs slightly early for the fitness-based mechanism
suggesting that evolvability is a more reliable indicator of
change. Moreover, after the transition, the Ea based rule
increases the selection probability of operator 1-flip and de-
creased that of operator 3-flip at a higher rate than the
fitness based rule.
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Figure 2: Onemax. Fitness distributions illustrating
the effect the window size (W ) parameter.
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Figure 3: Onemax. Dynamic of adapted operators’
probabilities over a run.

5.2 Royal Staircase
Royal Staircase functions are always unimodal, but we can

increase the landscape ruggedness by decreasing the number
of blocks N . Modifying the number of blocks also alters the
overall shape. Four combinations of N and K were selected
for the experiments in this subsection (i.e. the following
<N,K> pairs: <20,5>, <40,5>, <80,5>, and<10,7>), with
string lengths (N ∗K) varying from 100 to 700.

Random Fit-dmab Ea-dmab

0
5
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F
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Figure 4: Royal Staircase. Post-hoc boxplot with
performance distribution across all instances.

The two-way ANOVA F test combining the 4 test in-
stances and 3 algorithm variants, reported in Table 5, sup-
ports the the existence of significant differences in the perfor-
mance means of the studied AOS variants. Further analysis
is required to identify which pairs of algorithms are signif-
icantly different. This is achieved with the pairwise t test
with Bonferroni adjustments reported at the the middle por-
tion of Table 5. The test supports that the Ea-dmab variant
has significant performance differences as compared to the
other variants. Finally, the Tukey HSD test with family-wise
confidence level of 95 % (reported at the bottom of Table 5)
supports this evidence. Figure 4 shows box-plots with post-
hoc performance of the AOS variants. Clearly, our approach
Ea-dmab outperforms the other variants.

Table 5: Royal Staircase. Two-way ANOVA F test,
pairwise t test and Tukey HSD test.
ANOVA Df Sum Sq Mean Sq F value Pr(>F)
Algorithm 2 950.1 475.05 42.222 4.16e-15
Instance 3 4990.3 1663.42 147.841 1.23e-16
Residuals 390 4388.1 11.25
t Tests Ea-dmab F it-dmab
F it-dmab 2.1e-6 -
Random 3.9e-8 0.016
TukeyHSD diff lwr upr p adj
Fit vs Ea -3.03 -4.0 -2.05 0.00
Rand vs Ea -3.49 -4.46 -2.52 0.00
Rand vs Fit -0.46 -1.43 0.50 0.023

Figure 5 shows the dynamic of operators’ learned proba-
bilities across a run for Fit-dmab (top) and Ea-dmab (bot-
tom) on the N = 80,K = 5 Royal staircase case instance.
The curves show a different behaviour for both variants. The
evolvability, Ea based variant (bottom plot), shows a vary-
ing selection dynamic of the tree operators, while the fitness
based variant seems to converge to fixed probabilities since
very early in the run.

5.3 Multiple Knapsack
Four multiple-knapsack instances, taken from the liter-

ature, were selected as test problems. These are multi-
modal constrained problems with sizes ranging from 50 to
105 objects and from 2 to 30 knapsacks. These (and several
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Figure 5: Royal Staircase (N = 80,K = 5). Dynamic
of adapted operators’ probabilities over a run.

other) problems are available online from the OR-library by
Beasley1.

Table 6 reports the two-way ANOVA F test (top part of
the Table), and the pairwise t test with Bonferroni adjust-
ments (middle portion of the Table). The tests support that
the Ea-dmab variant has significant performance differences
as compared to the other variants. The Tukey HSD test with
family-wise confidence level of 95 %, also conducted and re-
ported at the bottom of Table 6, supports this evidence.
Figure 6 shows box-plots with post-hoc performance of the
AOS variants. Our approach Ea-dmab also outperforms the
other variants in the Multiple Knapsack problem.

Table 6: Multiple Knapsack. Two-way ANOVA F
test, pairwise t test and Tukey HSD test.
ANOVA Df Sum Sq Mean Sq F value Pr(>F)
Algorithm 2 6.46 3.23 9.33 1.0-4
Instance 3 8.42 2.80 8.11 2.2e-16
Residuals 390 1.35e10 3.46e7
t Tests Ea-dmab F it-dmab
F it-dmab 3.12e-3 -
Random 8.52e-5 1.11e-2
TukeyHSD diff lwr upr p adj
Fit vs Ea -986 -2690 717 3.27e-3
Ran vs Ea -3066 -4770 -1362 8.66e-5
Rand vs Fit -2079 -3783 -375 0.0012

1The OR Library is available at http://people.brunel.
ac.uk/~mastjjb/jeb/info.html.
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Figure 6: Multiple Knapsack. Post-hoc boxplot
with performance distribution across all instances.

Figure 7 shows the dynamic of operators’ learned proba-
bilities across a run for Fit-dmab (top) and Ea-dmab (bot-
tom) on the Weish30 multiple knapsack instance. The curves
for both plots sown a simliar overall behaviour; with the Ea

based variant (bottom plot) more sharply detecting prob-
ability distribution changes. This, together with the ob-
served improved performance, seems to indicate that the
evolvabilty metric is producing a richer feedback to guide
adaptive operator selection.
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Figure 7: Multiple Knapsack (Weish30). Dynamic
of adapted operators’ probabilities over a run.



6. CONCLUSIONS
We investigated the benefits of using evolvability metrics

to inform the adaptive selection of operators. Evolvability
metrics are estimated using a Metropolis-Hasting algorithm,
which reduces the computational complexity of their calcula-
tion. Results on binary-based combinatorial problems reveal
that assigning credits to operators based on their evolvabil-
ity rather than on their direct fitness improvement produces
statistically significant improved results. This suggest that
considering the fitness landscape local structure of combina-
torial problems provides a richer picture to guide the self-
configuration of heuristic search algorithms. From the two
selection rules tested, the dynamic multi-armed bandit pro-
duced better performance, suggesting that it is critical to
be able to detect and act upon abrupt changes in the local
structure of the fitness landscape. Our research contributes
to the goal of using fitness landscape local features to inform
dynamic self-configuring algorithms.

Future work will test the proposed approach on real-world
combinatorial optimisation problems such as educational time-
tabling and vehicle routing. Our study considered a stan-
dard evolution strategy with a pool of mutation operators
as the high-level search strategy. It is worth stressing that
adaptive operator selection methods are relevant to any heuris-
tic search strategy or algorithmic component where a pool
of search operators is available, be they mutation, recombi-
nation, memes (local searchers) or construction-destruction
heuristics. This research is therefore relevant to selective
hyper-heuristics, adaptive large neighbourhood search and
memetic algorithms. Further work will then explore how to
incorporate the proposed adaptive mechanism within other
algorithmic frameworks.
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