
The Cooperative Royal Road:

Avoiding Hitchhiking

Gabriela Ochoa1, Evelyne Lutton2, and Edmund Burke1

1 Automated Scheduling, Optimisation and Planning Group, School of Computer
Science & IT, University of Nottingham, Nottingham NG8 1BB, UK

2 COMPLEX Team, INRIA Rocquencourt
Domaine de Voluceau BP 105, 78153, Le Chesnay Cedex, France

Abstract. We propose using the so called Royal Road functions as
test functions for cooperative co-evolutionary algorithms (CCEAs). The
Royal Road functions were created in the early 90’s with the aim of
demonstrating the superiority of genetic algorithms over local search
methods. Unexpectedly, the opposite was found to be true. The research
deepened our understanding of the phenomenon of hitchhiking where
unfavorable alleles may become established in the population following
an early association with an instance of a highly fit schema. Here, we
take advantage of the modular and hierarchical structure of the Royal
Road functions to adapt them to a co-evolutionary setting. Using a mul-
tiple population approach, we show that a CCEA easily outperforms a
standard genetic algorithm on the Royal Road functions, by naturally
overcoming the hitchhiking effect. Moreover, we found that the optimal
number of sub-populations for the CCEA is not the same as the num-
ber of components that the function can be linearly separated into, and
propose an explanation for this behavior. We argue that this class of
functions may serve in foundational studies of cooperative co-evolution.

1 Introduction

Co-evolutionary Algorithms (CEAs) represent a natural extension to standard
evolutionary algorithms for tackling complex problems; they can be generally
defined as a class of evolutionary methods in which the fitness of an individual
depends on its relationship to other members of the population. Several co-
evolutionary approaches have been proposed in the literature; they vary widely,
but the most fundamental classification relies on the distinction between coop-
eration and competition. In cooperative algorithms, individuals are rewarded
when they work well with other individuals, and punished otherwise. Whereas
in competitive algorithms, individuals are rewarded at the expense of those with
which they interact. Most of the work on CEAs has been in competitive models;
there has been, however, an increased interest in cooperation to tackle difficult
optimization problems by means of problem decomposition [7, 3, 14, 18, 11, 10].
The behavior of CEAs is very complicated and often counter-intuitive. Moreover,
our knowledge about the dynamics and ways of improving standard evolution-
ary algorithms, is not directly transferable to co-evolution [15]. Thus, there is

II

a need to conduct foundational research on co-evolutionary systems in order to
improve their applicability as a problem solving methodology. With this in mind,
we propose using the so called Royal Road functions [13, 4] as test functions in
cooperative co-evolution. The Royal Road functions were proposed with the aim
of isolating some of the features of fitness landscapes thought to be most rele-
vant to the performance of genetic algorithms. Surprisingly, it was found that a
random-mutation hill climber significantly outperformed the genetic algorithm
on these functions. However, this work led to a greater understanding of the phe-
nomenon of hitchhiking in evolutionary search, whereby some deleterious alleles
may become fixed in the population, after an early association with a highly fit
schema.

Cooperative co-evolutionary approaches are generally applied to decompos-
able problems. Thus, we take advantage of the modular and hierarchical struc-
ture of the Royal Road test functions to adapt them to the co-evolutionary
setting. We argue that these functions may serve theoretical studies of coop-
erative co-evolution, since the landscape can be varied in a number of ways,
and the global optimum and all possible fitness values are known in advance. It
would also be possible to study the dynamics of the search process by tracing
the origins and history of individual building blocks. Moreover, these functions
may be decomposed in several ways (including one or more blocks on each sub-
component), which made them useful in studies testing the automated emergence
of co-adapted components [18]. This study also makes a comparison between a
standard and a cooperative evolutionary algorithm on several instances of the
Royal Road functions. The cooperative algorithm explores all the alternative
problem decompositions possible with the modular Royal Road functions. Our
results show a clear advantage of the cooperative algorithm in this scenario, and
we go further to analyze why this is the case. This analysis leads us to revisit
the hitchhiking effect and the building blocks hypothesis in genetic algorithms.

Next section gives a brief overview on cooperative co-evolution, distinguish-
ing between single and multiple population approaches, and describing some
test problems used so far when studying cooperative co-evolution. Thereafter,
section 3, introduces the Royal Road functions and describes the hitchhiking
phenomenon. Section 4, describes the algorithms and parameter settings used,
whilst section 5 presents and analyses our results. Finally, section 6 summarises
our findings and suggests directions for future work.

2 Cooperative co-evolution

Previous work on extending evolutionary algorithms to allow cooperative co-
evolution can be divided into approaches that have a single population of inter-
breeding individuals, and those that maintain multiple interacting populations.

Single population approaches: The earliest single-population method that
extended the basic evolutionary model to allow the emergence of co-adapted
subcomponents was the classifier system [6]; which is a rule-based learning

III

paradigm that evolves fixed length stimulus-response rules. An interesting
generalization of this paradigm for solving complex problems was proposed
in [1], where an aggregation of multiple individuals (in a single population)
is considered for solving the inverse problem for Iterated Function Systems.
In this approach, which has been termed Parisian Evolution, an additional
fitness measure (a “local” fitness) is used to independently evaluate the sub-
components during the search process, while a “global” fitness is used at each
generation to measure the progress of the aggregate solution. This scheme
is well suited for incorporating additional or incomplete information about
the searched solution. However, in order to avoid trivial and degenerate so-
lutions, a special mechanism for maintaining the population diversity should
be devised. Successful applications of the Parisian Approach can be found
in the image analysis and signal processing literature [11, 2]; and in data
retrieval applications [10].

Multiple population approaches: The first authors to apply a multi-species
cooperative co-evolutionary approach to tackle a difficult optimization prob-
lem were Husbands and Mill [8, 7] who successfully co-evolved job-shop
schedules, using a parallel distributed algorithm. A few years later, the work
by Potter and De Jong [16] helped to popularise the idea of cooperative co-
evolution as an optimisation tool. The authors devised a multiple population
framework where a decomposition of the problem into subcomponents should
be identified. Each component is, then, assigned to a subpopulation that
evolves simultaneously but in isolation to the other sub-populations. The
fitness of an individual in a given sub-population is calculated after selecting
collaborators from the other sub-populations in order to form a complete so-
lution. Notice that diversity in the ecosystem is, in this framework, naturally
achieved through maintaining genetically isolated populations. This frame-
work has been further analysed [22] by considering a relationship between
cooperative co-evolution and evolutionary game theory, and thus studying
it from a dynamical systems perspective. From the problem-solving point of
view, multi-species cooperative co-evolution has been applied to neural net-
works and concept learning [14, 17, 18]; and to inventory control optimisation
[3].

2.1 Abstract test functions

Most foundational empirical studies of cooperative co-evolution have used non
linear function optimization problems as benchmark [17, 23]. These problems
are well suited for cooperative co-evolution, since a natural decomposition is
straightforward: each subpopulation represents a particular variable of the func-
tion. In [14], much simpler functions (oneRidge and twoRidges) are studied. In
his dissertation [15], Potter used several test functions including, a simple binary
string covering task, continuous nonlinear functions, and Kauffman’s coupled
NK landscapes [9]. In a further, more theoretically oriented PhD dissertation,
Wiegand [21] used cooperative versions of test functions such as the OneMax,
LeadingOnes, and Trap functions.

IV

3 Royal Road functions and the hitchhiking effect

The building-block hypothesis [5] states that the genetic algorithm works well
when short, low-order, highly-fit schemata (building blocks) recombine to form
even more highly-fit, higher-order schemata. Thus, the genetic algorithm’s search
power has been attributed mainly to this ability to produce increasingly fit-
ter partial solutions by combining hierarchies of building-blocks. Despite recent
criticism, empirical evidence, and theoretical arguments against the building-
blocks hypothesis [19], the study of schemata has been fundamental in our un-
derstanding of genetic algorithms. The first empirical counter-evidence against
the building-block hypothesis was produced by Holland himself, in collabora-
tion with Mitchell and Forrest [13, 4]. They created the Royal Road functions,
which highlight one feature of landscapes: hierarchy of schemata, in order to
demonstrate the superiority of genetic algorithms (and hence the usefulness
of recombination) over local search methods such as hill-climbing. Unexpect-
edly, their results demonstrated the opposite: a commonly used hill-climbing
scheme (random-mutation hill-climbing) significantly outperformed the genetic
algorithm on these functions. With this hill-climbing approach, a string is ran-
domly generated and its fitness is evaluated. The string is then mutated (by a
bit-flip) at a randomly chosen position, and the new fitness is evaluated. If the
new string has an equal or higher fitness, it replaces the old string. This pro-
cedure is iterated until the optimum has been found or a maximum number of
evaluations is reached. It is ideal for the Royal Road functions, since it traverses
its “plateaus” and reaches the successive fitness levels. However, the algorithm
(as with any other hill-climber) will have problems with any function with many
local minima. The authors [13, 4] also found that although crossover contributes
to genetic algorithm performance on the Royal Road functions, there was a detri-
mental role of “stepping stones” - fit intermediate-order schemata obtained by
recombining fit low-order schemata. The explanation suggested for these unex-
pected results lies in the phenomenon of hitchhiking (or spurious correlation),
which they describe as follows [12]: “once an instance of a higher-order schema
is discovered, its high fitness allows the schema to spread quickly in the popu-
lation, with 0s in other positions in the string hitchhiking along with the 1s in
the schema’s defined positions. This slows down the discovery of the schema’s
defined positions. Hitchhiking can, in general, be a serious bottleneck for the
GA.”

3.1 Functions R1 and R2

To construct a Royal Road function [4], an optimum string is selected and broken
up into a number of small building blocks. Then, values are assigned to each low-
order schema and each possible intermediate combination of low-order schemata.
Those values are, thereafter, used to compute the fitness of a bit string x in terms
of the schemata of which it is an instance.

The function R1 (Figure 1) is computed as follows: a bit string x gets 8 points
added to its fitness for each of the given order-8 schemata (si, i = 1, 2, . . . , 8)

V

s1 = 11111111**; c1 = 8
s2 = ********11111111**; c2 = 8
s3 = ****************11111111**; c3 = 8
s4 = ************************11111111********************************; c4 = 8
s5 = ********************************11111111************************; c5 = 8
s6 = **11111111****************; c6 = 8
s7 = **11111111********; c7 = 8
s8 = **11111111; c8 = 8
sopt =11

Fig. 1. The Royal Road function R1: An optimal string is broken into 8 building-blocks.

of which it is an instance. For example, if x contains exactly two of the order-8
building blocks, then R1(x) = 16. Similarly, R1(111 . . .1) = 64. More generally,
R1(x) is the sum of the coefficients cs corresponding to each given schema of
which x is an instance. Here cs is equal to order(s). The fitness contribution
from an intermediate stepping stone (such as the combination of s1 and s3 in
Figure 1) is thus a linear combination of the fitness contribution of the lower-level
components.

In R2, the fitness contribution of some intermediate stepping stones is much
higher (Figure 2). The Fitness in R2 is calculated as in R1: the sum of the coef-
ficients corresponding to each schema (s1 - s14) of which a string is an instance.
For example, R2(1111111100011111111) = 16, since the string is an instance of
both s1 and s8, but R2(111111111111111100 . . .0) = 32, because the string is
an instance of s1, s2, and s9. Thus, a string’s fitness depends not only on the
number of 8-bit schemata to which it belongs, but also on their positions in the
string. The optimum string 11111111 . . .1 has fitness 192, because the string is
an instance of each schema in the list.

s9 = 1111111111111111**; c9 = 16
s10 =****************1111111111111111********************************; c10 = 16
s11 =********************************1111111111111111****************; c11 = 16
s12 =**1111111111111111; c12 = 16
s13 =11111111111111111111111111111111********************************; c13 = 32
s14 =********************************11111111111111111111111111111111; c14 = 32
sopt=11

Fig. 2. The Royal Road Function R2: Some intermediate schemata are added to the
those in R1. Namely, s9 . . . s14.

In [13], the authors expected the genetic algorithm to perform better (i.e. find
the optimum more quickly) on R2 than on R1, because in R2 there is a clear path
via crossover from pairs of the initial order-8 schemata (s1 - s8) to the four order-
16 schemata (s9 - s12), and from there to the two order-32 schemata (s13 and
s14), and finally to the optimum (sopt). They believed that the presence of this
stronger path would speed up the genetic algorithm’s discovery of the optimum,
but their experiments showed the opposite: the genetic algorithm performed
significantly better on R1 than on R2.

VI

4 Methods

As the cooperative co-evolutionary algorithm, we used the multiple populations
approach (see Figure 3) firstly proposed by Potter and De Jong [16]; and later
studied by other authors [22, 15].

gen = 0
for each species s do

Pop_s(gen) = initialized population
evaluate(Pop_s(gen))

while not terminated do
gen++
for each species s do

Pop_s(gen) <- select(Pop_s(gen - 1))
recombine(Pop_s(gen))
evaluate(Pop_s(gen))
survive(Pop_s(gen))

Fig. 3. The structure of a cooperative co-evolutionary algorithm.

In order to adapt the Royal Road functions to the co-evolutionary setting,
a solution string is broken into equally sized sub-strings that contain one (or
more) of the original function lower-order schemata. Each of these sub-strings
represents a problem subcomponent, and is thus assigned to a separate popu-
lation. A global solution is assembled by concatenating these sub-components.
We used the simplest method of evaluating an individual in a given population;
which is to couple it with the current best members of the remaining popula-
tions, apply the resulting string to the global function, and assign the resulting
value as the fitness of the subcomponent. The initial fitness of each subpopula-
tion member is computed by combining it with a random individual from each
of the other species. We evaluated the cooperative co-evolutionary algorithm by
comparing its performance with that of a standard genetic algorithm on several
Royal Road functions (both R1 and R2). In order to maintain resemblance with
the originally proposed Royal Road functions [13, 4], we used functions (both R1
and R2) with lower-order schemata (building blocks - BBs) of length 8. With
regard to the string length, we considered functions of L = 64, 128, and 256,
that is, functions containing 8, 16 and 32 of these BBs. Several numbers of sub-
populations (or species, SP) were considered starting from the minimum of two
species, and doubling this number up to the maximum given by the number of
BBs in the function. This corresponds to sub-populations having, respectively,
a string length equal to half of the total Royal Road function length (half the
number of BBs), down to sup-populations having a string length of 8 (i.e. a
single BB). To set the size of each sub-population, we select a fixed number
of individuals in the whole ecosystem, and thereafter distributed them equally
among the sub-populations. For setting this ecosystem population size, we tested
a range of values (64, 128, 256, and 512) and selected, for each string length and
function, the size producing the best performance (see Table 1). We also selected

VII

the optimal population size, in this range, for the standard genetic algorithm,
which turned out to be the smallest size explored (64) for all the functions. The
remaining algorithm components were equal for the standard and cooperative
genetic algorithm, and were held constant over the experiments. Specifically, we
used binary tournament selection, 2-point crossover (rate = 0.8) and bit-flip mu-
tation (rate = 1/L, L= chromosome length), and 50 replicas for experiments.
Further methodological details and the performance measures, are described in
the following section.

R1 R2

L = 64 L = 128 L = 256 L = 64 L = 128 L = 256

SGA 64 64 64 64 64 64
CCEA 128 256 256 64 128 256

Table 1. Optimal population sizes (in the set of: 64, 128, 256, and 512), for both the
standard genetic algorithm (SGA) and cooperative co-evolutionary algorithm (CCEA).
For CCEA the size producing the best performance over all the number of species
tested, was considered. L stands for the Royal Road function’s string length.

5 Empirical results and analysis

For comparing the performances, the algorithms were allowed to continue until
the optimum string was discovered, and the number of evaluations of this dis-
covery was recorded. Table 2 shows the average number of evaluations (×102)
to discover the optimum string, for the R1 (top) and R2 (bottom) functions.
The standard deviations are shown within brackets. Note that 50 replicas for
each experiment were carried out. From Table 2, we see that the CCEA (with
any number of species) clearly outperformed the SGA on all the instances stud-
ied. On average, the CCEA (with the appropriate number of species) found the
optimum a factor of about two times faster on R1, and three times faster on
R2. Notice that, as has been reported before, the SGA performs better on R1
than on R2. This is not the case, however, for the CCEA where the algorithm
has a similar best performance on both R1 and R2. Our explanation for the
improved performance of the CCEA lies in the phenomenon of hitchhiking, de-
scribed in section 3. By maintaining separate populations, the CCEA is able to
avoid hitchhiking, since each sub-population samples independently each schema
region. Thus, more than one desirable schema may appear simultaneously in the
ecosystem, and thereafter these sub-components are aggregated when calculating
the global function. In [12], the authors identify some features that would im-
prove the performance of GAs as compared to other heuristic search algorithms.
These are: (i) independent samples, (ii) sequestering desired schemas, and (iii)
instantaneous crossover of desired schemas. It is clear that a cooperative genetic
algorithm contains all these features, and entails a better implementation of the
building-blocks hypothesis (see section 3).

VIII

R1

Algorithm L = 64 (8 BBs) L = 128 (16 BBs) L = 256 (32 BBs)

SGA 227.8 (90.23) 665.1 (225.99) 2150.9 (805.70)
CCEA2 165.4 (66.22) 571.4 (270.62) 2161.2 (768.20)
CCEA4 142.2 (71.56) 402.2 (143.18) 1473.9 (577.42)
CCEA8 114.1(43.30) 327.1 (130.71) 1094.8 (464.03)
CCEA16 365.2 (128.84) 851.5 (319.73)
CCEA32 1140.9 (352.26)

R2

Algorithm L = 64 (8 BBs) L = 128 (16 BBs) L = 256 (32 BBs)

SGA 241.3 (119.69) 947.3 (622.71) 3278.6 (1560.43)
CCEA2 173.5 (74.76) 640.8 (301.91) 2480.1 (1141.24)
CCEA4 115.6 (51.22) 412.2 (214.98) 1432.1 (472.53)
CCEA8 127.0 (56.36) 305.7 (92.60) 1094.5 (430.02)
CCEA16 399.9 (142.02) 876.2 (330.46)
CCEA32 1389.2 (365.93)

Table 2. Average number of evaluations (×102) and standard deviations to find the
optimum on the R1 (top) and R2 (bottom) functions. The sub-index in the CCEA
corresponds to the number of species.

Another interesting observation (Table 2 and Figure 4) is that the number of
species (SP) on the CCEA, that produced the best performance was consistently
(with the exception of R1 with 8 BBs - L = 64) achieved by SP = half of the
number of blocks in the function. This corresponds to a sub-population string
length of 16 bits, namely two 8-bits BBs. This can be more clearly appreciated
in Figure 4, which compares the algorithm’s performance (SGA and CCEA with
different a number of sub-populations) on both R1 and R2, with 16 and 32 blocks
(L = 128 and 256). Thus, the optimal number of sub-populations for the CCEA
(i.e. the number of problem sub-components) is not the same as the number of
pieces that the function can be linearly separated into, which, in principle, may
appear to be a counter-intuitive observation. The following set of experiments,
offers an explanation for this behavior.

5.1 Dynamic behavior

In order to find an explanation for the observed optimal number of sub-populations
in the CCEA (SP = half of the number of blocks in the function), we study, in
this section, the algorithms’s dynamic behavior. For the analysis we selected the
R1 function with L = 128 (16 BBs), and a CCEA with 8 and 16 sub-populations,
which were the SP values producing the best performance in this scenario. Fig-
ure 5 illustrates the performance curves for both a single run (left-hand plot)
and averaging 50 runs (right-hand plot). Each point in the curves represents the
global objective function value of the aggregated solution. Each run lasted 50 x
104 function evaluations, and the global objective value was sampled every 100
evaluations.

IX

SGA CCEA2 CCEA4 CCEA8 CCEA16
0

100

200

300

400

500

600

700

800

900

1000

Algorithm
E

va
lu

at
io

ns
 to

 O
pt

im
um

Royal Road Functions (L = 128)

R1
R2

SGA CCEA2 CCEA4 CCEA8 CCEA16 CCEA32
0

500

1000

1500

2000

2500

3000

3500

Algorithm

E
va

lu
at

io
ns

 to
 O

pt
im

um

Royal Road Functions (L = 256)

R1
R2

Fig. 4. Comparing the algorithm’s performance on both R1 and R2 with L = 128 (left
plot), and L = 256 (right plot). The bars measure the average number of evaluations
(×102) to find the optimum.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

0

20

40

60

80

100

120

num of evaluations

be
st

 o
bj

ec
tiv

e
fu

nc
tio

n

R1 (L = 128), single run

ccea 8
ccea 16

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

0

20

40

60

80

100

120

num of evaluations

be
st

 o
bj

ec
tiv

e
fu

nc
tio

n

R1 (L = 128), average

ccea 8
ccea 16

Fig. 5. Comparing the dynamic behavior of CCEA with 8 and 16 sub-populations on
the R1 function with L = 128. The left-hand plot illustrates a single run, whereas the
right-hand plot, averages 50 runs.

Notice that, on average, the CCEA with 8 species outperformed the CCEA
with 16 species throughout the whole run. The single run dynamics looks more
complicated, with both algorithms having similar performance at the initial
stages of the search, and CCEA16 dominating at some intermediate stages.
Towards the final stages of the search, however, it is CCEA8 which is producing
and maintaining higher fitness values. Notice that in the process of the run, the
fitness levels are discovered and lost several times before getting established,
which suggests that the convergence behavior of the multi-population CCEA is
slower and more complex than that of a standard genetic algorithm. The curves
in Figure 5 show the behavior of the aggregate solution, hiding the informa-
tion about the fitness contribution of each sub-population. In order to have a
closer look at the fitness contribution of each schema or BB to the global objec-
tive function, Figure 6 illustrates the contribution of an example schema, where
without loss of generality we select schema 9 (s9). Both single run (top plot)

X

and average (bottom plot) behavior are illustrated for the CCEA with 8 and 16
species3.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

−1

0

1

2

3

4

5

6

7

8

9

num of evaluations

sc
he

m
a

fit
ne

ss
 c

on
tr

ib
ut

io
n

sp = 8, single run, schema 9

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

−1

0

1

2

3

4

5

6

7

8

9

num of evaluations

sc
he

m
a

fit
ne

ss
 c

on
tr

ib
ut

io
n

sp = 16, single run, schema 9

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

−1

0

1

2

3

4

5

6

7

8

9

num of evaluations

sc
he

m
a

fit
ne

ss
 c

on
tr

ib
ut

io
n

sp = 8, average, schema 9

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

−1

0

1

2

3

4

5

6

7

8

9

num of evaluations

sc
he

m
a

fit
ne

ss
 c

on
tr

ib
ut

io
n

sp = 16, average, schema 9

Fig. 6. Comparing the dynamic fitness contribution of a representative schema (s9)
in a CCEA with 8 (left-hand plots) and 16 (right-hand plots) species. The top plots
illustrate single runs, whereas the bottom plots show the averages of 50 runs.

From the single run plots of the fitness contribution of schema 9 (figure 6,
top plots), it can be seen that the CCEA with 16 species is more unstable at
maintaining the BBs of 8 consecutive ones (fitness contribution of 8), in other
words the BB appears and disappears more easily throughout the search. This
is because when SP = 16, an individual in each sub-population is composed of
a single BB, so any bit mutation would break it. This is not the case with SP
= 8, where each individual in a sub-population is composed of two consecutive
BBs. In this scenario, a bit mutation may destroy one of the BBs, but keep the
other, and the correct concatenation of the two BBs can be easily recovered by
a recombination event. This behavior is also reflected by the average plots (Fig-
ure 6, bottom plots) where the fitness contribution curve of schema 9 reaches
lower levels (deeper drops) when SP = 16 (right-hand bottom plot). These plots
therefore suggest that having sub-populations composed by individuals contain-
ing two BBs instead of a single BB, would benefit the stability and permanence
of the appropriately set BBs in the sub-populations, thus supporting the overall
better global behavior.

3 The plots for all the other schemata were qualitatively similar, and are not shown
due to space limits.

XI

6 Conclusions

Cooperative co-evolution is suitable to decomposable problems; consequently,
we have taken advantage of the modular and hierarchical structure of the Royal
Road functions to adapt them as test functions for cooperative co-evolutionary
algorithms (CCEAs). Our empirical results show that a CCEA clearly outper-
forms a standard genetic algorithm on the Royal Road functions, confirming our
intuition that cooperative co-evolution helps in overcoming the so-called hitch-
hiking (or spurious correlation) effect, which is known to hinder the performance
of evolutionary algorithms. This suggests that CCEAs may be an advantageous
technique, even for static optimization, as they entail a better instantiation of
the building-blocks hypothesis.

An advantage of the Royal Road functions as test functions in cooperative
co-evolution is that they admit several natural decompositions, which makes
them useful in studies to test the automated emergence of co-adapted compo-
nents. Our results show that having two basic sub-components, instead of a
single sub-component for sub-populations produced better overall performance,
which suggests that caution should be taken when manually proposing a prob-
lem decomposition. A potential drawback of the Royal Road functions as test
beds for cooperative co-evolution, is similar to that highlighted for standard evo-
lutionary search; namely the independence (or separation) between the building
blocks. To overcome this limitation, Watson et al. [20] have proposed the so called
Hierarchical If-and-only-if (H-IFF) functions that have a hierarchical decompos-
able structure where sub-problems are not separable. In consequence, a natural
extension of our contribution will be to propose a cooperative version of the
H-IFF family of functions. Another interesting extension would be to compare
and assess the scenarios where a single-population implementation of coopera-
tive co-evolution (such as the Parisian approach [1]) would be advantageous over
a multiple-population one.

References

1. Pierre Collet, Evelyne Lutton, Frederic Raynal, and Marc Schoenauer, Polar

IFS+parisian genetic programming=efficient IFS inverse problem solving, Genetic
Programming and Evolvable Machines 1 (2000), no. 4, 339–361.

2. E. Dunn, G. Olague, and E. Lutton, Parisian camera placement for vision metrol-

ogy, Pattern Recognition Letters 27 (2006), no. 11, 1209–1219.
3. Roger Eriksson and Björn Olsson, Cooperative coevolution in inventory control op-

timisation, Proceedings of the Third International Conference on Artificial Neural
Networks and Genetic Algorithms, Springer-Verlag, 1997.

4. Stephanie Forrest and Melanie Mitchell, Relative building-block fitness and the

building block hypothesis, Foundations of Genetic Algorithms 2 (San Mateo), Mor-
gan Kaufmann, 1993, pp. 109–126.

5. John H. Holland, Adaptation in natural and artificial systems, University of Michi-
gan Press, 1975.

6. John H. Holland and J. S. Reitman, Cognitive systems based on adaptive algo-

rithms, Pattern-directed inference systems, Academic Press, New York, 1978.

XII

7. P. Husbands, Distributed coevolutionary genetic algorithms for multi-criteria and

multi-constraint optimisation, Lecture Notes in Computer Science 865 (1994), 150–
166.

8. Philip Husbands and Frank Mill, Simulated co-evolution as the mechanism for

emergent planning and scheduling, Proceedings of the Fourth International Con-
ference on Genetic Algorithms, Morgan Kaufman, 1991, pp. 264–270.

9. Stuart A. Kauffman and Sonke Johnsen, Co-evolution to the edge of chaos: Coupled

fitness landscapes, poised states, and co-evolutionary avalanches, Artificial Life II,
Addison-Wesley, 1992, pp. 325–369.

10. Yann Landrin-Schweitzer, Pierre Collet, and Evelyne Lutton, Introducing lateral

thinking in search engines, Genetic Programming and Evolvable Machines 7 (2006),
no. 1, 9–31.

11. Jean Louchet, Maud Guyon, Marie-Jeanne Lesot, and Amine M. Boumaza, Dy-

namic flies: a new pattern recognition tool applied to stereo sequence processing,
Pattern Recognition Letters 23 (2002), no. 1-3.

12. Melanie Mitchell, When will a genetic algorithm outperform hill-climbing?, Pro-
ceedings of the Fifth International Conference on Genetic Algorithms, Morgan
Kaufman, 1993.

13. Melanie Mitchell, Stephanie Forrest, and John H. Holland, The royal road for

genetic algorithms: Fitness landscapes and GA performance, Proc. of the First
European Conference on Artificial Life, MIT Press, 1992, pp. 245–254.

14. David E. Moriarty and Risto Miikkulainen, Forming neural networks through effi-

cient and adaptive coevolution, Evolutionary Computation 5 (1998), no. 4, 373–399.
15. Elena Popovici and Kenneth A. De Jong, Understanding cooperative co-

evolutionary dynamics via simple fitness landscapes, Genetic and Evolutionary
Computation Conference, GECCO 2005, ACM, 2005, pp. 507–514.

16. Mitchell A. Potter and Kenneth De Jong, A cooperative coevolutionary approach to

function optimization, Parallel Problem Solving from Nature – PPSN III, Springer,
1994, Lecture Notes in Computer Science 866, pp. 249–257.

17. , The coevolution of antibodies for concept learning, Parallel Problem Solv-
ing from Nature – PPSN V, Springer, 1998, Lecture Notes in Computer Science
1498, pp. 530–539.

18. Mitchell A. Potter and Kenneth A. De Jong, Cooperative coevolution: An architec-

ture for evolving coadapted subcomponents, Evolutionary Computation 8 (2000),
no. 1, 1–29.

19. Colin Reeves and Jonathan Rowe, Genetic algorithms: Principles and perspectives,
Kluwer, 2002.

20. Richard A. Watson and Jordan B. Pollack, Hierarchically consistant test prob-

lems for genetic algorithms, 1999 Congress on Evolutionary Computation, 1999,
pp. 1406–1413.

21. R. P. Wiegand, An analysis of cooperative coevolutionary algorithms, Ph.D. thesis,
George Mason University, 2004.

22. R. Paul Wiegand, William Liles, and Kenneth De Jong, Analyzing cooperative

coevolution with evolutionary game theory, Proceedings of the 2002 Congress on
Evolutionary Computation CEC2002, 2002, pp. 1600–1605.

23. R. Paul Wiegand, William C. Liles, and Kenneth A. De Jong, An empirical analysis

of collaboration methods in cooperative coevolutionary algorithms, Proceedings of
the Genetic and Evolutionary Computation Conference (GECCO-2001), Morgan
Kaufmann, 2001, pp. 1235–1242.

