
Clustering of Local Optima
in Combinatorial Fitness Landscapes
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Abstract. Using the recently proposed model of combinatorial landscapes: lo-
cal optima networks, we study the distribution of local optima in two classes of
instances of the quadratic assignment problem. Our results indicate that the two
problem instance classes give rise to very different configuration spaces. For the
so-called real-like class, the optima networks possess a clear modular structure,
while the networks belonging to the class of random uniform instances are less
well partitionable into clusters. We briefly discuss the consequences of the find-
ings for heuristically searching the corresponding problem spaces.

1 Introduction

We have recently introduced a model of combinatorial landscapes: Local Optima Net-
works (LON) [1, 2], which allows the use of complex network analysis techniques [3]
for studying fitness landscapes and problem difficulty in combinatorial optimization.
The model, inspired by work in the physical sciences on energy surfaces[4], is based
on the idea of compressing the information given by the whole problem configura-
tion space into a smaller mathematical object which is the graph having as vertices
the local optima and as edges the possible transitions between them. This character-
ization of landscapes as networks has brought new insights into the global structure
of the landscapes studied. Moreover, some network features have been found to corre-
late and suggest explanations for search difficulty on the studied domains. Our initial
work considered binary search spaces and the NK family of abstract landscapes [1, 2].
Recently, we have turned our attention to more realistic combinatorial spaces (permuta-
tion spaces), specifically, the Quadratic Assignment Problem (QAP) [5]. In this article,
we focus on a particular characteristic of the optima networks using the QAP, namely,
the manner in which local optima are distributed in the configuration space. Several
questions can be raised. Are they uniformly distributed, or do they cluster in some non-
homogeneous way? If the latter, what is the relation between objective function values
within and among different clusters and how easy is it to go from one cluster to another?
Knowing even approximate answers to some of these questions would be very useful to
further characterize the difficulty of a class of problems and also, potentially, to devise
new search heuristics or variation to known heuristics that take advantage of this infor-
mation. This short paper starts to address some of these questions. The sections below
summarize our methodology and preliminary results.



2 Methodology

The Quadratic Assignment Problem: The QAP is a combinatorial problem in which
a set of facilities with given flows has to be assigned to a set of locations with given dis-
tances in such a way that the sum of the product of flows and distances is minimized. A
solution to the QAP is generally written as a permutation π of the set {1, 2, ..., n}. The
cost associated with a permutation π is: C(π) =

∑n
i=1

∑n
j=1 aijbπiπj , where n de-

notes the number of facilities/locations andA = {aij} andB = {bij} are referred to as
the distance and flow matrices, respectively. The structure of these two matrices charac-
terizes the class of instances of the QAP problem. For the statistical analysis conducted
here, the two instance generators proposed in [6] for the multi-objective QAP were
adapted for the single-objective QAP. The first generator produces uniformly random
instances where all flows and distances are integers sampled from uniform distribu-
tions. The second generator produces flow entries that are non-uniform random values.
The instances produced have the so called “real-like” structure since they resemble the
structure of QAP problems found in practical applications. For the purpose of commu-
nity detection, 200 instances were produced and analyzed with size 9 for the random
uniform class, and 200 of size 11 for the real-like instances class. Problem size 11 is
the largest one for which an exhaustive sample of the configuration space was compu-
tationally feasible in our implementation.

Local Optima Networks: In order to define the local optima network of the QAP
instances, we need to provide the definitions for the nodes and edges of the network.
The vertexes of the graph can be straightforwardly defined as the local minima of the
landscape. In this work, we select small QAP instances such that it is feasible to ob-
tain the nodes exhaustively by running a best-improvement local search algorithm from
every configuration (permutation) of the search space. The neighborhood of a configu-
ration is defined by the pairwise exchange operation, which is the most basic operation
used by many meta-heuristics for QAP. This operator simply exchanges any two posi-
tions in a permutation, thus transforming it into another permutation. The neighborhood
size is thus |V (s)| = n(n − 1)/2. The edges account for the transition probability be-
tween basins of attraction of the local optima. More formally, the edges reflect the total
probability of going from basin bi to basin bj , which is the average over all s ∈ bi of
the transition probabilities to solutions s

′ ∈ bj .The reader is referred to [5] for a more
detailed exposition.
We define a Local Optima Network (LON) as being the graph G = (S∗, E) where the
set of vertices S∗ contains all the local optima, and there is an edge eij ∈ E with weight
wij = p(bi → bj) between two nodes i and j iff p(bi → bj) > 0. Notice that since
each maximum has its associated basin, G also describes the interconnection of basins.

The study of LONs for the QAP instances [5], showed that the networks are dense.
Indeed, they are complete or almost complete graphs, which is inconvenient for cluster
detection algorithms. Therefore, we opted for filtering out the networks edges keeping
the more likely transitions (which are the most relevant for heuristic search). In filtering,
we first replace the directed graph by an undirected one (wij = wij+wji

2 ), and then
suppress all edges that havewij smaller than the value making the α-quantile (α = 0.05
in experiments) in the weights distribution. Such a less dense network provides a coarser



but clearer view of the fitness landscape backbone, and can be used for minima cluster
analysis.

3 Results and Discussion

Clusters or communities in networks can be loosely defined as being groups of nodes
that are strongly connected between them and poorly connected with the rest of the
graph. Community detection is a difficult task, but today several good approximate
algorithms are available [7]. Here we use two of them: (i) a method based on greedy
modularity optimization, and (ii) a spin glass ground state-based algorithm, in order
to double check the community partition results. Figure 1 shows the modularity score
(Q) distribution calculated for each algorithm/instance-class. In general, the higher the
value of Q of a partition, the crisper the community structure [7]. The plot indicates
that the two instance classes are well separated in terms of Q, and that the community
detection algorithm does not seem to have any influence on such a result.

The modularity measurements (Fig. 1) indicate that real-like instances have signifi-
cantly more minima cluster structure than the class of random uniform instances of the
QAP problem. This can be appreciated visually by looking at Fig. 2 where the commu-
nity structures of the LON of two particular instances are depicted. Although these are
the two particular cases with the highest Q values of their respective classes, the trends
observed are general. For the real-like instance (Fig. 2, left) one can see that groups of
minima are rather recognizable and form well separated clusters (encircled with dotted
lines), which is also reflected in the high corresponding modularity value Q = 0.79.
Contrastingly, the right plot represents a case drawn from the class of random uniform
instances. The network has communities, with a Q = 0.53, although they are hard to
represent graphically, and thus are not shown in the picture.
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Fig. 1. Boxplots of the modularity score Q on the y-axis with respect to class problem (rl stands
for real-like and uni stands for random uniform) and community detection algorithm (1 stands
for fast greedy modularity optimization and 2 stands for spin glass search algorithm).



Fig. 2. Community structure of the filtered LONs for two selected instances: real-like (Left);
uniform (Right). Node sizes are proportional to the corresponding basin size. Darker colors mean
better fitness. The layout has been produced with the R interface to the igraph library.

Our analysis so far, considers only small instances, and even in this case, the lo-
cal optima networks show an interesting modular structure. We argue that for larger
instances, the modular structure will also be present or even increased. In order to
study larger instances, we are currently exploring adequate sampling algorithms. Our
results may have consequences in the design of effective heuristic search algorithms.
For example, on the random uniform instances a simple local heuristic search, such as
hill-climbing, should be sufficient to quickly find satisfactory solutions since they are
homogeneously distributed. In contrast, in the real-like case they are much more clus-
tered in regions of the search space. This leads to more modular optima networks and
using multiple parallel searches, or large neighborhood moves would probably be good
strategies. These ideas clearly deserve further investigation.
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