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Abstract This article studies the suitability of modern

population based algorithms for designing combination

cancer chemotherapies. The problem of designing chemo-

therapy schedules is expressed as an optimization problem

(an optimal control problem) where the objective is to

minimize the tumor size without compromising the

patient’s health. Given the complexity of the underlying

mathematical model describing the tumor’s progression

(considering two types of drugs, the cell cycle and the

immune system response), analytical and classical opti-

mization methods are not suitable, instead, stochastic

heuristic optimization methods are the right tool to solve

the optimal control problem. Considering several solution

quality and performance metrics, we compared three

powerful heuristic algorithms for real-parameter optimi-

zation, namely, CMA evolution strategy, differential evo-

lution, and particle swarm pattern search method. The three

algorithms were able to successfully solve the posed

problem. However, differential evolution outperformed its

counterparts both in quality of the obtained solutions and

efficiency of search.

Keywords Evolutionary algorithms � Differential

evolution � Evolution strategies � Particle swarm

optimization � Numerical optimization � Optimal control �
Cancer chemotherapy � Combination chemotherapy

1 Introduction

Chemotherapy is a type of cancer treatment where drugs

are used to destroy tumor cells. Some cancer drugs are

given on their own but often several drugs are given

together, which is known as combination chemotherapy.

Chemotherapy produces damaging side-effects, in conse-

quence, it is normally given in rounds of treatment that

alternate with resting (recovering) periods. Several of these

cycles are normally required to reduce the tumor to a

minimum level after which the organism can naturally

eliminate the remaining tumor cells. The number and

scheduling of the treatment rounds depends on the type and

stage of the disease; and the patient’s health, among other

factors. An oncologist should plan treatments on a personal

basis. Given the complexity of this task, the use of

computer-based decision support systems is worth

investigating.

The process of designing chemotherapy schedules is

here expressed as an optimization problem (an optimal

control problem) where the objective is to minimize the

tumor size without compromising the patient’s health. The

goal in optimal control is to find a control scheme for an

underlying dynamical system under a period of time to

minimize a performance metric. In chemotherapy sched-

uling, the underlying dynamical system models the tumor

progression; and the controls are the drug concentrations

delivered into the system through time. Optimal control

formulations of cancer chemotherapy can be found in the

mathematical modeling literature (Panetta and Adam 1995;

de Pillis 2003; de Pillis and Radunskaya 2001). When the
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underlying mathematical formulation is sufficiently simple,

the optimal control problem can be solved analytically or

using classical numerical optimization methods. However,

for increasingly complex and realistic cancer models,

analytical or traditional numerical methods are no longer

applicable, and some authors have turned to soft computing

techniques, such as evolutionary and memetic algorithms

to optimize chemotherapy schedules. Modern hybrid evo-

lutionary and memetic algorithms (Acampora et al. 2011;

Arnaldo et al. 2013, Ong et al. 2009, Payne et al. 2013)

have increased their power and applicability in many

complex domains such as knowledge acquisition (Acam-

pora et al. 2011, 2012), data clustering (Li et al. 2013),

logic circuit design (Houshmand et al. 2011), software

engineering (Nunez et al. 2013), biological and chemical

applications (Haupt et al. 2011).

In the realm of chemotherapy scheduling, Petrovski and

McCall (1993) and Petrovski et al. (2004, 2006) have

successfully used evolutionary algorithms and other mod-

ern heuristics. Villasana and Ochoa (2004), compared the

performance of three meta-heuristics (genetic algorithms,

evolution strategies, and simulated annealing) in a similar

problem; and considered the effect of different terms in the

objective function of the optimal control formulation

(Ochoa et al. 2007). The main difference between the

approaches of these two group of authors, lies in the

underlying mathematical model of tumor growth. Petrovski

et al. (2004, 2006) considered the Gompertz growth model

with linear cell-loss effect (Wheldon 1998), without

including interactions with the immune system. Villasana

and Radunskaya (2003) employed a cancer model includ-

ing the interactions between tumor cells and immune cells;

and differentiating between cell phases for subsequent

treatment with a cycle-phase-specific drug. In (2008),

McCall et al. present a survey of approaches employing

heuristic search methods to solve the cancer chemotherapy

scheduling problem from an optimal control formulation.

Examples of these approaches include the use of simulated

annealing, a parallelized genetic algorithm, and multimodal

optimization genetic algorithms (see McCall et al. 2008

and the references therein for further details). More

recently, Liang and colleagues have applied several algo-

rithms: an elitist genetic algorithm in Tse et al. (2007) and

in Liang et al. (2006) they employ a memetic approach

using the elitist genetic algorithm with the forward iterative

dynamic programming as the local search. Some of these

studies consider the application of multiple drugs; how-

ever, none of them considers a drug that is not cytotoxic

nor do most models incorporate the tumor interaction with

the body’s natural defense system. These two features

uniquely distinguish the cancer model considered in this

article.

The incorporation of a cytostatic drug is only possible in

a model that considers the cell cycle and the use of delay

differential equations. This is the case of the model pre-

sented in Villasana and Radunskaya (2003). Although the

original model considered only the effects of a cytotoxic

cycle-phase-specific drug, it is extended in Villasana et al.

(2010) by incorporating the action of a cytostatic agent in

conjunction with the original cytotoxic agent. The idea

behind combining these two agents is that the cytostatic

drug can halt the rapid progression of the cancerous cells

through their cell cycle at a certain phase so that upon

release they are mostly agglutinated in the most vulnerable

stage to the action of cytotoxic drugs. An example of a

cycle-phase-specific cytotoxic drug is Taxol (paclitaxel),

and an example of a cytostatic drug is Iressa (gefitinib).

These two drugs were identified and included in the model

in Villasana et al. (2010), where alternative objective

function formulations and problem representations were

also considered; and the stated optimal control-problem

was solved using a single algorithm, the Covariance Matrix

Adaptation (CMA) evolution strategy (Hansen and Oster-

meier 1996, 2001).

The main contribution of the present study is to per-

form a comprehensive computational analysis comparing

main stream population-based algorithms with their

default parameter settings, when solving an optimal

control formulation of cancer chemotherapy based on a

realistic cancer model and multiple-type drugs. In par-

ticular three modern brands of actively studied algo-

rithms are considered: the CMA evolution strategies

(Hansen and Ostermeier 1996, 2001), differential evolu-

tion (Storn and Price 1995, 1997), and a hybrid version

of a particle swarm optimization algorithm (Vaz and

Vicente 2007). The comparison considers the algorithm’s

efficiency; and the quality and diversity of the obtained

solutions.

The next section summarizes the problem formulation

including the underlying mathematical model of cancer

growth, the optimal control problem and the solution rep-

resentation. Section 3 overviews the three algorithms tes-

ted. Section 4 details the experimental setup and

performance metrics used. Section 5 outlines the results,

and Sect. 6 summarizes and discusses the main findings.

2 Problem formulation

2.1 Biomedical background

Chemotherapy is a cancer treatment using powerful

chemical agents to destroy rapidly dividing cells. Some of

these drugs also interfere with the process of cell division,
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reducing the tumor cells to a minimum level allowing the

natural elimination of the remaining cancerous cells. There

are several types of cancer drugs. The mathematical model

used in this study incorporates two types of them: a cyto-

toxic and a cytostatic drug, which are both cycle-phase

specific. Cycle-phase-specific drugs are those acting on a

specific phase of the cell cycle. The cell cycle, is the

process between two cell divisions or mitosis. It encom-

passes four stages: G1, S, G2, and M, where G1 and G2 are

resting phases (or Gap periods), S is the synthetic period,

and M or mitosis is the time during which cells segregate

the duplicated DNA material between daughter cells.

A cytotoxic drug is a toxic agent that destroys cells.

Taxol (paclitaxel) is one of such drugs, which acts by

inhibiting mitosis and inducing programmed cell death. A

cytostatic drug is not toxic to the cells, instead, it acts by

halting their rapid cycling. The cytostatic drug modeled in

this study is called Iressa (gefitinib). Combining paclitaxel

and gefitinib has been found to be an effective treatment

and produced better results than using the cytotoxic drug

only (Park et al. 2004; Ciardiello et al. 2000). The idea of

this type of combined therapy is that once a number of

cells are captured at a certain phase by the cytostatic

agent, they will be more sensitive to the effect of the toxic

agent.

2.2 Mathematical model

The patient’s model used is a competition model of tumor

progression based on delay differential equations with the

following main features:

1. The tumor cell population is divided into two

compartments: tumor during interphase (TI), where

interphase is the period comprising G1 through G2; and

tumor during mitosis (TM). This division of the tumor

throughout the cell cycle allows the modeling of cycle-

phase specific drugs.

2. The immune system is modeled based on the cytotoxic

T cells (CTL). The variable I represents the population

of immune system cells (see Villasana and Raduns-

kaya 2003 for a full discussion).

3. Two drugs of different types and effect are modeled: a

cytotoxic drug and a cytostatic drug (Villasana et al.

2010). These drugs have different effects. The cyto-

toxic drug (u) aims at killing the tumor cells while

affecting other normal and immune cells; while the

cytostatic drug (v) arrests tumor cells during interphase

so that after agglutination they may be targeted with a

cytotoxic action.

Let s be the resident time of cells in interphase. Figure 1

illustrates the patient model and the governing equations

are:

T 0I¼2a4TM�ðc1Iþd2ÞTI�max 0;� 1

330
vþ1

� �
a1TIðt�sÞ

T 0M¼max 0;� 1

330
vþ1

� �
a1TIðt�sÞ�d3TM�a4TM

�c3TMI�k1ð1�e�k2uÞTM

I0¼kþ qIðTIþTMÞ3

aþðTIþTMÞ3
�c2ITI�c4TMI�d1I

�k3ð1�e�k4uÞI
u01¼�k1u1þcuðtÞ
u02¼�k2u2þcuðtÞ
v0¼�lnð

ffiffiffi
2
p
ÞvþcvðtÞ ð1Þ

where 0 denotes derivatives with respect to time and with

initial data given by:

TIðtÞ ¼ /1ðtÞ for t 2 ½�s; 0�
TMðtÞ ¼ /2ðtÞ for t 2 ½�s; 0�
IðtÞ ¼ /3ðtÞ for t 2 ½�s; 0�
u1ð0Þ ¼ u2ð0Þ ¼ vð0Þ ¼ 0

The fraction of cells that are targeted by the cytotoxic

drug is modeled by a term of the form �kjð1� e�hiuÞ;
where u is the drug concentration and hi and kj are

parameters that model the effectiveness. Linear competi-

tion terms are considered for tumor immune interactions

(I TI and I TM). The decay rate of paclitaxel is modeled as

before (Villasana and Radunskaya 2003; Villasana and

Ochoa 2004; Villasana et al. 2010) with two separate

elimination terms (u1 and u2 such that the total drug

concentration is their linear convex combination). Equa-

tions 4 and 5 of system (1) model this situation with

multiple drug applications in time. The drug applications

are identified with the function cu(t), which is the con-

centration of paclitaxel that goes in the system at time t.

The action of high concentrations of a cytostatic drug is

to arrest cells in the interphase compartment. The equa-

tion that governs the dynamics for the concentration of

the drug v is

Fig. 1 Diagram of the patient model including the cytotoxic and

cytostatic drugs
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dv

dt
¼ � ln ð

ffiffiffi
2
p
Þvþ cvðtÞ; ð2Þ

where cv is the amount of drug administered at time t. This

dynamics is identified after reports on Iressa’s cytostasis and

information on it’s elimination half life (Piechocki et al. 2006).

cv is regarded in Eq. (2) as a continuous input and has been

incorporated into the system dynamics. For more details on this

dynamics the reader is referred to Villasana et al. (2010).

The first and second equation of system (1), have a

modified cycling term. This term is inspired from the

model in Swierniak et al. (1996) and reflects that the pro-

liferating fraction of cells depends on the concentration

level of the cytostatic drug. Parameter estimation was

performed on the drug free system (Villasana and

Radunskaya 2003). The information available for paclitaxel

in Hardman and Linbird (1996), Zoli et al. (1995), Chuang

et al. (1993) was used for estimating the paclitaxel drug

terms. The system was re-scaled using the same non-di-

mensionalization as in Villasana and Radunskaya (2003).

The maximum drug concentration after 3 days of treatment

(330 mg) was used as the scaling factor for the drug con-

centration of v. The remaining model parameter values used

are the same as in Villasana and Ochoa (2004).

The associated drug-free system for (1) can have up to

five different fixed points depending on the parameter

values (Villasana and Radunskaya 2003). One of this fixed

points is always present, namely (0, 0, k/d1). This point

represents the desirable scenario of a tumor-free environ-

ment with a positive immune population.

2.3 Tumor initial conditions

In order to simulate the progression of the disease and the

course of the chemotherapy, the simulated treatment starts

from a constant initial state: ðTIð0Þ; TMð0Þ; Ið0ÞÞ ¼
ð1:3; 1:2; 0:9Þ; where the values represent cell counts and

are normalized by a factor of 106. These initial conditions

simulate a patient with a tumor that is not controllable by

the immune system alone. The objective of the computer-

based approach is to devise a treatment conducting the

system to the tumor-free basin of attraction, subject to the

constraint of not reducing the immune system population

below its initial critical level (Ithr = 0.9). The system’s

fixed points were numerically calculated and the desired

state of the tumor-free attractor is reached with the fol-

lowing tumor cells values: (TI
*, TM

* ) = (0.3, 0.3). For these

values (or below), the patient can be considered as cured.

2.4 Mathematical formulation and objective function

The problem of designing a chemotherapy protocol can be

viewed as an optimal control problem where the goal is to

eradicate the tumor while maintaining acceptable levels for

the immune system that represents the patient’s health.

Mathematically this means using the drugs introduced into

the system as control functions (cu(t) and cv(t)) to drive the

tumor into the tumor-free fixed point’s basin of attraction,

while keeping the immune system above a certain threshold.

The general mathematical formulation is:

Min JðTIðtÞ; TMðtÞ; IðtÞ; uðtÞ; vðtÞÞ
s:t Equations for patient dynamics

ð3Þ

The objective function in this optimization process is a

key component. In Villasana et al. (2010) a set of three

objective functions (from a pool of twelve originally posed

and preliminary analyzed) were studied and compared in

terms of their effectiveness and solution quality. The

objective function described below, rendered shorter and

effective treatments while keeping low doses of cytotoxic

drug, thus providing better patient health.

JðTIðtÞ; TMðtÞ; IðtÞ; uðtÞ; vðtÞÞ ¼ jTIðtf Þ � 0:3j þ jTMðtf Þ

� 0:3j þ 1

Tf

ZTf

0

ðTM

þ TIÞdt þ FðIÞ þ P

The terms in this function are:

TI(tf): the tumor population in interphase at

the end of treatment. The term

|TI(tf) - 0.3| minimizes the Euclid-

ean distance form a specifically

computed point inside the basin of

attraction.

TM(tf): the tumor population in mitosis at the

end of treatment.
1
Tf

R Tf

0
ðTM þ TIÞdt : integral term aggregating the average

size of the tumor during the whole

treatment. This term is included to avoid

large oscillations in tumor size during

treatment which can be detrimental.

F(I): the constraint on the immune cell’s

population, which is calculated using

Eq. 4.

P: the treatment length expressed as the

number of cycles. Notice that a

shorter treatment in terms of number

of cycles do not necessarily represent

a shorter treatment time in days.

However, a smaller number of

cycles is generally preferable.

FðIÞ ¼ 0 if IðtÞ[ Ithr

Ithr � IðtÞ if IðtÞ� Ithr

�
ð4Þ

where Ithr = 0.9.
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Pontryagin’s Maximum Principle was used to obtain the

necessary conditions for an analytical solution to this

problem (Villasana and Ochoa 2004), yielding this as a

singular problem. Since the amount of drug (the control

variables) in this formulation are bounded below and

above, the candidate solutions are bang - bang, which

means that the optimal control switches from one extreme

to the other at certain times (i.e. it is never strictly in

between the bounds).

2.5 Problem encoding

The control variables are the drug concentrations delivered

over time. These values determine the treatment dosing and

scheduling. Given that we are dealing with bang-bang

control, what needs to be determined are the optimal

switching times (from on to off) between the drugs’

application and the recovery periods. For a single drug, this

can be encoded using real numbers representing switching

times from application to resting (Villasana and Ochoa

2004). This representation can be easily extended to

incorporate an additional drug. Four types of variables (two

for each drug) are distinguished for encoding the drug

application time lengths, and resting time lengths. Two

additional variables are incorporated to account for the

number of cycles of each drug, PU and PV. These are

integer numbers in the range from 6 to 12 cycles, which

proved sufficient to eradicate the simulated tumor in our

experiments. This representation deals, then, with a vari-

able length encoding. Figure 2 illustrates this encoding,

which we termed overlapping-permitting, as it allows

overlapping (simultaneous) applications of the cytostatic

and cytotoxic drugs.

It is of interest, however, to find solutions that will have

the same qualitative features as those found in Swierniak

et al. (1996). For this purpose, a second encoding, that we

termed non-overlapping representation was also consid-

ered, where the solutions always deliver non-overlapping

treatment cycles, that is, the two drugs are never simulta-

neously applied. In this encoding, a treatment cycle

consists of the application of the cytostatic drug, followed

by the application of the cytotoxic drug, and a resting

period. An additional variable, P, accounts for the number

of cycles (allowed to vary from 6 to 12 cycles). Figure 3

illustrates the non-overlapping representation. Notice that

this encoding induces a smaller search space, since a single

resting time for each cycle is encoded. In Villasana et al.

(2010), these two encodings were compared and the non-

overlapping representation was found more effective and

used smaller amounts of toxic agent. It was, therefore,

selected for this study.

The range for the resting-time periods is [0, 30] (mea-

sured in days), where the lower bound indicates a contin-

ued treatment with no recovery period and the upper bound

reflects the current chemotherapy standards. The maximum

tolerated doses for paclitaxel and Iressa were considered to

obtain bounds on the control variables whose ranges are

[0.2, 5] and [1, 5] days, respectively.

3 The evolutionary optimization algorithms

We consider two powerful evolutionary algorithms for

numerical optimization, namely, Covariance Matrix

Adaptation (CMA) evolution strategy (Hansen and Oster-

meier 1996, 2001) and differential evolution (Storn and

Price 1995, 1997). The third algorithm is a hybrid between

a rigorous global optimization method (pattern search) and

a heuristic population-based approach (particle swarm

optimization). For the three algorithms, we used publicly

available Matlab toolboxes provided by their respective

authors. A description of these algorithms and their default

parameter settings is outlined below.

3.1 CMA evolution strategy

Evolution strategies (ES) are a branch of evolutionary

algorithms developed in Germany in the 1960s and first

applied to hydrodynamical design problems (Rechenberg

1973). ES use mutation as the main operator, and propose a

form of self-adaptive mutation, in which the mutation

parameters are also part of the chromosome and, thus,

Fig. 2 Schematic view of a candidate solution (control variable).

Solution encoding for overlapping-permitting treatments. The vector

has two sections, the first corresponds to the cytotoxic drug (u) while

the second to the cytostatic drug (v). The cytotoxic drug has cycles

beginning with an application (A), while the cytostatic drug’s cycle

begins with a resting period (R). Application and resting times are real

numbers representing days. Two additional variables are incorporated

to account for the number of cycles of each drug, PU and PV

Fig. 3 The solution representation for non-overlapping treatments.

The vector encodes cycles alternating applications (A) of the two

drugs (u cytotoxic agent, v cytostatic agent,), finalizing with a resting

period (R). The times are real numbers measuring days. The last

variable, P, encodes the length of the treatment (i.e. the number of

chemotherapy cycles)
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subject to evolution). CMA-ES are a modern version of ES

suited for real-parameter optimization (Hansen and Kern

2004; Hansen and Ostermeier 2001). They differ from the

canonical ES mainly in the shape of mutation distribution,

which is generated according to a covariance matrix. This

matrix is modified during the evolutionary process and thus

can adapt to the local shape of the search space, which

increase the efficiency and convergence of the algorithm.

The CMA-ES toolbox used in this study (Hansen 2006)

suggests values for its main parameters: a the population

size of k ¼ 4þ b3 ln Nc (where N is the problem size); and

a initial mutation step size equal to one a third of the

parameters range. It also incorporates weighted recombi-

nation, were the weights (wi; . . .;wl) are set to: wi ¼
ln kþ1

2
� ln i; for i ¼ 1; . . .; l:

3.2 Differential evolution

The differential evolution (DE) algorithm (Price et al.

2005; Storn and Price 1995, 1997) is an evolutionary

method that uses a more deterministic (greedy) approach to

problem solving than other more traditional evolutionary

and stochastic local search algorithms. DE incorporates a

powerful and conceptually simple self-adapting mecha-

nisms for the mutation strength based on a small popula-

tion. The algorithm’s key idea is a method for generating

candidate solutions (parameter vectors), which consist of

adding the weighted difference vector between two popu-

lation members to a third member. DE has been successful

in solving real-world engineering problems. Several vari-

ants have been developed, which are classified using the

notation: DE/a/b/c. These three parameters describe the

algorithm main design choices:

a: method for selecting the parent solution to constitute

the base vector.

b: number of difference vectors used to mutate the base

vector.

c: recombination mechanism used to create offsprings.

The bin acronym indicates that a number of

independent binomial trials are used within the

recombination mechanism.

For this study, the most widely-known variants: namely

DE/rand/1/bin, and DE/local - to - best/1/bin, were

selected. Our preliminary experiments indicated that the

second variant produced better results, therefore, we used

it in our comparisons. The main DE parameters are the

weighting factor F, and the crossover rate CR. We used

the default parameters as suggested in the DE Matlab

toolbox (Hansen 2008; Price et al. 2005): F = 0.85 and

CR = 0.8.

3.3 Particle swarm pattern optimization

The particle swarm pattern optimization algorithm

(PSwarm) (Vaz and Vicente 2007) combines the local

optimality convergence property of pattern search with the

more aggressive explorative property of particle swarm

optimization. This hybrid algorithm proved to be very

effective and more robust when compared to other pow-

erful global optimizers (see Vaz and Vicente 2007 for

details). Pattern search is a direct optimization method in

which trial points within a mesh are computed iteratively

following strict calculations until necessary conditions for

local optimality are achieved (Kolda et al. 2003). Particle

Swarm Optimization is a swarm intelligence method in

which particles (representing solutions to the problem) fly

through a multi-dimensional continuous space (Kennedy

and Eberhart 1995). Each particle id has a current position

xid and a current velocity vid. In addition, each particle

knows its best position so far and the best overall position

for the whole swarm. With this information, at each time

step, the new particle’s velocity and position are iteratively

computed.

The hybrid PSwarm method is a pattern search method

that incorporates particle swarm optimization to compute

trial points belonging to the pattern search mesh. When this

search fails to find an improved solution in an iteration,

local optimization is carried out on the best position over

all particles in the swarm. The PSwarm freeware Matlab

toolbox used for the experiments is available in (Vaz and

Vicente 2010) and the default parameters used

are: l = 0.5 and m = 0.5. The inertia is computed as a

linear decay function of the actual iteration with respect to

the maximum iterations allowed. The default parameters

for this decrement are the initial and final inertia set to 0.9

and 0.4 respectively and the maximum allowed iterations

here set to 100.

4 Experimental setup

A candidate solution of the formulated optimal control

problem consists of 37 real numbers that correspond to 12

applications of the cytotoxic drug, 12 applications of the

cytostatic drug, and 12 resting times. The last value

encodes the effective number of cycles used, P, out of the

maximum possible 12 (see Fig. 3).

The algorithms’ terminate after 100 iterations. This was

chosen after observing a flattening of the performance

curves at around 60 iterations in a set of preliminary runs

with 300 iterations. In order to ensure that the computa-

tional effort of each algorithm was comparable, the popu-

lation sizes of the three algorithms were set to the same
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value. We followed the suggestion given by CMA-ES

Toolbox. The offspring population was set to k ¼ 4þ
b3 ln Nc (where N is the problem dimension). As discussed

above, a candidate solution is represented with N = 37 real

numbers, therefore, k = 14. With this population size and

considering 100 iterations, both the CMA-ES and the DE

algorithms accumulated exactly 1,400 function evaluations

per run. However, due to its characteristics, the hybrid

PSwarm algorithm produced a variable number of evalu-

ations in each run, despite having a population size of 14.

Therefore, to ensure a comparable computational effort for

this algorithm, an alternative stopping condition was set for

it. Namely, the algorithm was allowed to run until a

maximum of 1400 function evaluations. In this case, the

number of PSwarm iterations varied with the following

distribution: maximum = 100, minimum = 47, mean =

73.5 and standard deviation = 17.39.

We conducted 30 independent replicas for each algo-

rithm and considered a number of metrics to asses the

algorithms’ performance and quality of the obtained solu-

tions. The algorithms performance was also assessed using

nonparametric statistical tests. In order to reduce the effects

of random sampling, the initial population for each of the

30 replicas of each algorithm, was the same. In other

words, the 3 algorithms were started from the same 30

initial populations.

4.1 Algorithm performance metrics and statistical

analysis

In order to asses the performance and suitability of the

algorithms, we considered the following metrics and sta-

tistical procedures:

4.1.1 Algorithm performance

The most direct metric for assessing the performance of the

competing algorithms is the best objective function value

obtained at the end of the run. Since 30 runs are conducted

for each algorithm, these values are presented as box-plots

and non-parametric tests are used to show significant sta-

tistical differences among the competing algorithms.

4.1.2 Nonparametric statistical tests

Statistical methods can be categorized into parametric and

nonparametric. Parametric tests have been used when

analyzing soft computing techniques. However, they are

based on assumptions (i.e. independence, normality, and

homoscedasticity) that are likely violated when consider-

ing stochastic search algorithms (Derrac et al. 2011).

Nonparametric statistical procedures overcome this limi-

tation and can be used for comparing this type of

algorithms. In this article we used CONTROLTEST, a

tool for nonparametric comparison between algorithms

(Derrac et al. 2011).1 Specifically, two of the proposed

non-parametric tests were conducted: Friedman (1940)

and Aligned Friedman (Hodges and Lehman 1962) tests.

The Friedman test can be used to asses whether in a set of

k samples (k [ 2), at least two samples represent popu-

lations with different median values. Therefore, it is a

multiple comparison test that aims to detect significant

differences between the behavior of two or more algo-

rithms. It ranks the algorithms for each problem (or run)

separately; the best performing algorithms should have

rank 1, the second best rank 2, and so forth. A drawback

of the ranking scheme of the Friedman test is that it

allows for intra-set comparisons only. In the Aligned

Friedman test, a value of location is computed as the

average performance achieved by all algorithms in each

run (or problem). Then the difference between the per-

formance obtained by an algorithm and the value of

location is obtained. These differences (aligned observa-

tions) are then ranked. This procedure allows comparisons

among runs (inter-set comparisons) which may be desir-

able when the number of algorithms for comparison is

small. This is relevant in our study since 3 algorithms are

compared and for each of the 30 runs, the algorithms start

from the same initial conditions. In order to asses the

statistical significance of the results, the p-value for each

test is computed, which provides information about

whether a statistical hypothesis test is significant or not. In

our study the null hypothesis, H0 represents no significant

differences between the algorithms. The p-values also

indicate how significant the results are: the smaller the

p-value the stronger the evidence against H0.

4.1.3 Algorithm convergence

In order to asses the algorithms’ convergence rates, we

visualized the curves of the objective function over the

algorithm’s iterations. We considered both the progression

curves of the best run and the typical run (i.e. a run pro-

ducing the median value of the objective function) for each

algorithm.

4.1.4 Inter-run diversity

The diversity of the different solutions obtained by an

algorithm across several runs, is an interesting property. To

measure this, we calculated the moment of Inertia of the

best 30 solutions obtained by each algorithm. This metric

was used in Morrison and Jong (2002) in the context of

1 The ControlTest package is available at http://sci2s.ugr.es/sicidm/.
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evolutionary algorithms, but it is inspired by concepts from

engineering where it measures how the mass of an object is

distributed. Given a set of vectors p of dimension k, we

first calculate the centroid of the set p: ci ¼
Pp

j¼1
xi;j

p ; for

i ¼ 1; 2; . . .; k; where xi,j corresponds to the ith coordinate

of the jth point. We can then calculate the moment of

inertia of p by:

Inertia ¼
Xk

i¼1

Xp

j¼1

ðxi;j � ciÞ2

A higher Inertia value, indicates a higher solution set

diversity.

4.2 Solution quality metrics

Since the objective function aggregates a number of

measurements, it is interesting to explore the quality of

the obtained solutions according to the most relevant

aspects. In order to do so, the following metrics were

considered:

4.2.1 Area under the tumor curve (AUTC)

Accumulates the number tumor cells through the whole

treatment process. Minimizing this metric clearly produces

more effective treatments.

4.2.2 Total application time for the cytotoxic drug (AT)

Measures the total amount of the toxic drug applied to the

system across the treatment process. Minimizing this

metric will reduce the treatment’s side effects and favor the

patient health.

4.2.3 Duration of treatment (DT)

Calculates the total treatment duration in days. A shorter

treatment is desirable over a longer one.

4.2.4 Immune system health (ISH)

Calculates the average deviation of the immune system

population with respect to its critical threshold (Ithr). This

measure represents the patient health and it is calculated

by:

ISH ¼
ZTf

0

IðtÞdt � Ithr � Tf :

To summarize, preferred treatments would have low

AUTC, AT, and DT values, and high ISH values.

5 Results

Figure 4 illustrates for each algorithm the value and dis-

tribution of the best objective function values. DE pro-

duced both the best overall solution and the best typical

performance, followed by CMA-ES and PSwarm in the

third place.

In order to asses the statistical significance of the results,

Table 1 reports the average ranks computed through the

Friedman and Aligned Friedman tests. For both tests the

smaller the average rank the better the algorithm. Since

the study considers 3 algorithms and 30 runs per algorithm,

the best possible Friedman rank for a given algorithm is 1

and the best Aligned Friedman rank is 30, but the figures in

the table correspond to the average ranks. As can be seen in

Table 1, the order between the algorithms is the same for

the two tests and it is consistent with the box-plots in

Fig. 4. The evidence supports that differential evolution is

the best performing algorithm with a Friedman rank of

1.483 and Aligned Friedman rank of 30.433, followed by

CMA-ES, with PSwarm in the last place. The p-values

computed through the statistics of both tests (0.0005394

and 0.0000115) strongly suggest the existence of signifi-

cant differences among the algorithms considered, i.e. the

null hypothesis, H0 suggesting no difference between

algorithms is strongly rejected.

The dispersion or diversity, from the point of view of the

solutions (drug schedules) themselves can be appreciated

by the moment of inertia values (see Sect. 4.1), reported in

Table 2. The inertia is larger for PSwarm and smaller for

DE, with an intermediate figure for CMA-ES. This is an

interesting observation if we consider that, for the three

algorithms, the runs started from the same set of initial

populations.
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Fig. 4 Comparing algorithms’ performance according to the objec-

tive function values of the best obtained solution at the end of each

run. DE differential evolution, ES CMA-evolution strategy, PSwarm
pattern particle swarm optimization
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Our encoding allows the design of treatments with dif-

ferent number of cycles. This number is subject to evolu-

tion and was allowed to vary between 6 and 12. As seen in

Table 3, DE and ES were able to find a larger proportion of

treatments with a shorter number of cycles, namely 10 and

11. PSwarm was not able to produce treatments of 10

cycles and produced only 6 treatments of 11 cycles.

Figure 5 illustrates the value and distribution of the

solution quality metrics described in Sect. 4.2: (a) area

under the tumor curve, (b) cytotoxic drug application time,

(c) duration of treatment, and (d) immune system health.

These metrics give more detailed information about the

solutions and their various components aggregated in the

objective function. Good solutions should have low values

for metrics (a–c), keeping (d) as high as possible. We can

see that DE obtained both the best overall and typical

solutions with respect to the most relevant quality mea-

surement (area under the tumor curve) which represents the

tumor size across the whole treatment (plot (a) in Fig. 5).

This is consistent with the results reported in Fig. 4 and

Table 1. Moreover, DE was able produce the smaller

overall tumor sizes with shorter drug application times

[plot (b) in Fig. 5] relative to the second to best algorithm.

DE also achieved higher immune system health [plot (c) in

Fig. 5] with respect to CMA-ES, which seconded DE in all

other measures.

Table 1 Average Friedman and Aligned Friedman ranks

Algorithm Friedman A. Friedman

DE 1.483 30.433

ES 2.033 43.933

PSwarm 2.483 62.133

DE differential evolution, ES CMA-evolution strategy, PSwarm pat-

tern particle swarm optimization

Table 2 Inter-run diversity (among the 30 runs) measured with the

moment of inertia

DE ES PSwarm

Inertia 1.7188 1.8392 2.3435

Table 3 Number of best solutions (out of the 30 runs) with a given

number of cycles obtained by each algorithm

Algorithm 10 Cycles 11 Cycles 12 Cycles

DE 3 14 13

ES 7 16 7

PSwarm 0 6 24
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Fig. 5 Boxplots comparing the three competing algorithms, with

respect to the performance measures: a area under the tumor, b drug

application time, c total duration of the treatment and d immune

system health. For the metrics a–c the smaller the better, whereas for

metric d the larger the better. DE differential evolution, CMA-ES
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Figure 5 suggest that metrics (c) duration of treatment,

and (d) immune system health are correlated, as the values

for each algorithm have similar ranges. This is in accor-

dance with the intuition that longer treatments can be more

manageable for the immune system.

PSwarm produced the most benevolent treatments with

higher immune system health values [plot (d)], longer

durations [plot (c)], and shorter toxic drug application

times [plot (b)]. However, this is achieved at the expense of

a decreased treatment efficiency in terms of the overall

tumor minimization [plot (a)], as compared to the other

algorithms. CMA-ES is regarded as a competing algorithm

but holds a middle ground in all of the performance mea-

sures between the two other algorithms considered.

Figure 6 illustrates the best protocols obtained by DE

and PSwarm, which provide the two extreme solution

scenarios found. We observe that DE produced a regular

scheduling of the two drugs, while greater variation is

observed for PSwarm with much smaller doses of toxic

drug at the initial stages of the treatment.

Figure 7 illustrates the convergence behavior of the best

and typical run of each algorithm on a semi-log scale. The

best run for the ES corresponds to the outlier observed in

Fig. 4, it shows the fastest initial convergence rate. How-

ever, DE is able to reach better objective values at later

stages, and improves steadily during the search process.

The typical runs show a faster initial convergence rate for

ES and Pswarm, with DE maintaining an improved con-

vergence across the whole search process and obtaining the

best results. All the algorithms were run 30 times from the

same 30 initial conditions. The curves in Fig. 4 are seen to

start from different initial conditions, this is because the

best and typical behavior of each algorithm correspond to

different runs.

6 Conclusions

Two modern evolutionary algorithms for real-parameter

optimization and a hybrid particle swarm pattern optimi-

zation algorithm are thoroughly compared for solving the

problem of designing combined cancer chemotherapies,

which is stated as an optimal control problem. The mathe-

matical model of tumor progression displays several inter-

esting features, distinguishing it from other models used in

previous approaches to heuristic design of cancer chemo-

therapies. The model incorporates different stages of the
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Fig. 6 The best combination therapy devised using DE differential

evolution and PSwarm particle swarm pattern optimization
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tumor cell’s cycle and the immune system response. Mod-

eling the cell-cycle allows the incorporation of so-called

cyclic-specific drugs, and more importantly, of a different

type of chemotherapy agent: a cytostatic drug. This agent

acts by interfering with the rapid tumor cell cycling process,

and arresting them at a certain phase at which they are most

exposed to the effect of the toxic drugs.

The three algorithms compared were able to successfully

solve the posed problem. It is worth noting that the algo-

rithms were used without tuning their control parameters.

With these default settings, Differential Evolution outper-

formed its counterparts both in quality of the obtained

solutions and efficiency of search. The performance dif-

ference were statistically significant. The hybrid particle

swarm pattern optimization algorithm was the least com-

petitive of the algorithms with respect to the most important

goal of reducing the tumor size. However, it produced more

benevolent treatments (with respect to the immune system

health) and a larger variability of alternative solutions,

which can offer more options to the practitioner. Depending

on the user’s goal, one optimization algorithm may be

preferred over another. For example, PSwarm produces

larger treatments, and very similar resting-time lengths at

the final stages the end of treatment. Upon inspection of the

solutions, it was found that this algorithm produced the

maximum possible length for the resting periods at the final

stages of treatment. This explains the high immune system

values observed in the protocols, as greater resting times

allow for the recovery of the immune system. The immune

system health is an important consideration, but the eradi-

cation of the tumor is likewise important and is not achieved

as well by the PSwarm algorithm when compared to the

solutions provided by the other two algorithms.

The proposed model may serve as a decision support

system in the complex problem of designing personalized

combination chemotherapies. Personalizing the model

would require gathering each patient set of biological

parameters and initial disease condition. This is a delicate

task considering technical difficulties and ethical issues.

The biological parameters and initial conditions used in

this article served, however, as a case study to illustrate the

effectiveness of evolutionary algorithms in optimal control

formulations of cancer combination chemotherapies.
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