Process algebras
for epidemiological and ecological modelling

Federica Ciocchetta
CoSBi

Multi-scale Modelling of Biological Systems
University of Stirling
5-6th July, 2010
Outline

Introduction

Bio-PEPA for epidemiological systems

The BlenX language for ecological systems

Conclusions
Outline

Introduction

Bio-PEPA for epidemiological systems

The BlenX language for ecological systems

Conclusions
Process algebras

Process algebras have been originally defined in the context of concurrent systems in computer science.
Process algebras

Process algebras have been originally defined in the context of concurrent systems in computer science.

They have proposed as an alternative approach for the **modelling and analysis of biological systems**.
Process algebras

Process algebras have been originally defined in the context of concurrent systems in computer science. They have proposed as an alternative approach for the modelling and analysis of biological systems.

Properties:
Process algebras

Process algebras have been originally defined in the context of concurrent systems in computer science.

They have proposed as an alternative approach for the modelling and analysis of biological systems.

Properties:

1. they offer a formal model of a system,
Process algebras

Process algebras have been originally defined in the context of concurrent systems in computer science.

They have proposed as an alternative approach for the modelling and analysis of biological systems.

Properties:

1. they offer a formal model of a system,
2. they support a compositional way to model construction,
Process algebras

Process algebras have been originally defined in the context of concurrent systems in computer science.

They have proposed as an alternative approach for the *modelling and analysis of biological systems*.

Properties:

1. they offer a *formal model* of a system,
2. they support a *compositional way* to model construction,
3. the individuals in the population can be described as distinct components with precise specifications of the interactions,
Process algebras

Process algebras have been originally defined in the context of concurrent systems in computer science.

They have proposed as an alternative approach for the modelling and analysis of biological systems.

Properties:

1. they offer a formal model of a system,
2. they support a compositional way to model construction,
3. the individuals in the population can be described as distinct components with precise specifications of the interactions,
4. they can be seen as an intermediate language from which various kinds of analysis can be considered.
Which kind of analysis?

Generally process algebras support stochastic simulation for the analysis.
Which kind of analysis?

Generally process algebras support stochastic simulation for the analysis.

Stochastic models are faithful representation of the system and are more appropriate than other methods when the population is small and characterized by a certain variability.
Which kind of analysis?

Generally process algebras support stochastic simulation for the analysis.

Stochastic models are faithful representation of the system and are more appropriate than other methods when the population is small and characterized by a certain variability.

Some process algebras, such as Bio-PEPA, offer various kinds of analysis.
Which kind of analysis?

Generally process algebras support stochastic simulation for the analysis. Stochastic models are faithful representation of the system and are more appropriate than other methods when the population is small and characterized by a certain variability.

Some process algebras, such as Bio-PEPA, offer various kinds of analysis.

Access to a variety of analysis techniques can help develop a better understanding of the behaviour of the system.
Which kind of analysis?

Generally process algebras support **stochastic simulation** for the analysis.

Stochastic models are faithful representation of the system and are more appropriate than other methods when the population is small and characterized by a certain variability.

Some process algebras, such as Bio-PEPA, offer **various kinds of analysis**.

Access to a variety of analysis techniques can help develop a better understanding of the behaviour of the system.

Furthermore, it can help discover possible errors.
Which kind of analysis?

Generally process algebras support stochastic simulation for the analysis.

Stochastic models are faithful representation of the system and are more appropriate than other methods when the population is small and characterized by a certain variability.

Some process algebras, such as Bio-PEPA, offer various kinds of analysis.

Access to a variety of analysis techniques can help develop a better understanding of the behaviour of the system.

Furthermore, it can help discover possible errors.

Finally, it allows the modeller to select the most appropriate approach for the study of the model considered.
In this talk

We show two case studies concerning the application of process algebras for modelling ecological/epidemiological models.
In this talk

We show two case studies concerning the application of process algebras for modelling ecological/epidemiological models.

The former case study concerns a model describing the avian influenza (H5N1) in the process algebra Bio-PEPA (with Jane Hillston, University of Edinburgh).
In this talk

We show two case studies concerning the application of process algebras for modelling ecological/epidemological models.

The former case study concerns a model describing the avian influenza (H5N1) in the process algebra Bio-PEPA (with Jane Hillston, University of Edinburgh).

The latter is about a three-level ecological network specified in the BlenX language (with Ferenc Jordan, CoSBi).
In this talk

We show two case studies concerning the application of process algebras for modelling ecological/epidemiological models.

The former case study concerns a model describing the avian influenza (H5N1) in the process algebra Bio-PEPA (with Jane Hillston, University of Edinburgh).

The latter is about a three-level ecological network specified in the BlenX language (with Ferenc Jordan, CoSBi).

The main aim is to explore the expressive and analysis power of these two languages in this field and discuss the possible drawbacks/benefits.
Related work

There is a vast literature of epidemiological/ecological models in terms of systems of differential equations and other techniques such as graph networks.
Related work

There is a vast literature of epidemiological/ecological models in terms of systems of differential equations and other techniques such as graph networks.

Recently, there have been a few applications of process algebras in this field.
Related work

There is a vast literature of epidemiological/ecological models in terms of systems of differential equations and other techniques such as graph networks.

Recently, there have been a few applications of process algebras in this field.

The WSCCS (Weighted Synchronous Calculus of Communicating Systems) process algebra was used for modelling various ecological and epidemiological systems [Sumpter (2000), McCaig et al. (2008)].
There is a vast literature of epidemiological/ecological models in terms of systems of differential equations and other techniques such as graph networks.

Recently, there have been a few applications of process algebras in this field.

The WSCS (Weighted Synchronous Calculus of Communicating Systems) process algebra was used for modelling various ecological and epidemiological systems [Sumpter (2000), McCaig et al. (2008)].

The process algebra PEPA was instead considered for some models of disease spread [Benkirane et al. (2009)].
Related work

There is a vast literature of epidemiological/ecological models in terms of systems of differential equations and other techniques such as graph networks.

Recently, there have been a few applications of process algebras in this field.

The WSCCS (Weighted Synchronous Calculus of Communicating Systems) process algebra was used for modelling various ecological and epidemiological systems [Sumpter (2000), McCaig et al. (2008)].

The process algebra PEPA was instead considered for some models of disease spread [Benkirane et al. (2009)]. Bradley et al. apply PEPA to the modelling of Internet worm attacks.
Epidemiological systems

Epidemiological systems describe populations infected by one or more infections/diseases.
Epidemiological systems

Epidemiological systems describe populations infected by one or more infections/diseases.

They differ from each other in terms of:

1. the dynamics in the absence of disease;
2. assumptions about the transmission of the infection (directly by contact or through a vector);
3. the number of diseases active in a population and the relationship between them.
Epidemiological systems

Epidemiological systems describe populations infected by one or more infections/diseases.

They differ from each other in terms of:

1. the dynamics in the absence of disease;
Epidemiological systems

Epidemiological systems describe populations infected by one or more infections/diseases.

They differ from each other in terms of:

1. the dynamics in the absence of disease;

2. assumptions about the transmission of the infection (directly by contact or through a vector);
Epidemiological systems

Epidemiological systems describe populations infected by one or more infections/diseases.

They differ from each other in terms of:

1. the dynamics in the absence of disease;
2. assumptions about the transmission of the infection (directly by contact or through a vector);
3. the number of diseases active in a population and the relationship between them.
Epidemiological systems

Epidemiological systems describe populations infected by one or more infections/diseases.

They differ from each other in terms of:

1. the dynamics in the absence of disease;
2. assumptions about the transmission of the infection (directly by contact or through a vector);
3. the number of diseases active in a population and the relationship between them.

The population can be divided into classes: susceptibles (S), those who are infective (I) and those who have recovered and are immune (R).
Epidemiological systems

Epidemiological systems describe populations infected by one or more infections/diseases.

They differ from each other in terms of:

1. the dynamics in the absence of disease;
2. assumptions about the transmission of the infection (directly by contact or through a vector);
3. the number of diseases active in a population and the relationship between them.

The population can be divided into classes: susceptibles (S), those who are infective (I) and those who have recovered and are immune (R). In addition to these, we can have other classes, describing, for instance, symptomatic or asymptomatic infectives, treated, untreated or immune individuals.
Ecological networks describe the interactions between different species in an ecosystem (food webs) or interactions involving individuals of the same species (social network).
Ecological networks describe the interactions between different species in an ecosystem (food webs) or interactions involving individuals of the same species (social network).

Various models differ from each others in terms of the dynamics of the single species and the assumptions about the interspecific interactions.

In ecological modelling space is particularly relevant.
Abstract spatial structure

Spatial structure can have a large impact on the evolution of a population.
Abstract spatial structure

- **Spatial structure** can have a large impact on the evolution of a population.
- Generally an **abstract view** of space is sufficient to describe the spatial evolution of the epidemic/species.
Abstract spatial structure

- **Spatial structure** can have a large impact on the evolution of a population.
- Generally an **abstract view** of space is sufficient to describe the spatial evolution of the epidemic/species.
- The term **metapopulation** is used to indicate a population distributed over a number of **patches** or **subpopulations**, i.e. groups of individuals in the model.
Abstract spatial structure

- **Spatial structure** can have a large impact on the evolution of a population.

- Generally an **abstract view** of space is sufficient to describe the spatial evolution of the epidemic/species.

- The term **metapopulation** is used to indicate a population distributed over a number of **patches** or **subpopulations**, i.e. groups of individuals in the model.

- Individuals can migrate from one patch to another and this can be described by a **migration matrix** $M(i, j)$, that determines the topology and the strength of the connections between the patches.
Population structures
Outline

Introduction

Bio-PEPA for epidemiological systems

The BlenX language for ecological systems

Conclusions
Bio-PEPA

The first case study concerns a **Bio-PEPA model** for the spread of the **avian influenza H5N1** [Debarre et al, Ecology 2007].
Bio-PEPA

The first case study concerns a Bio-PEPA model for the spread of the avian influenza H5N1 [Debarre et al, Ecology 2007].

Bio-PEPA is a recently defined stochastic process algebra, intended for modelling biochemical pathways within cells.
Bio-PEPA

The first case study concerns a **Bio-PEPA model** for the spread of the **avian influenza H5N1** [Debarre et al, Ecology 2007].

Bio-PEPA is a recently defined stochastic process algebra, intended for modelling biochemical pathways within cells.

- **Unique rates** are associated with each reaction/action type. They can be specified by **functions**.
Bio-PEPA

The first case study concerns a Bio-PEPA model for the spread of the avian influenza H5N1 [Debarre et al, Ecology 2007].

Bio-PEPA is a recently defined stochastic process algebra, intended for modelling biochemical pathways within cells.

- Unique rates are associated with each reaction/action type. They can be specified by functions.
- The representation of an action within a component (species) records the stoichiometry and the role of that entity with respect to that action.
Bio-PEPA

The first case study concerns a **Bio-PEPA model** for the spread of the **avian influenza H5N1** [Debarre et al, Ecology 2007].

Bio-PEPA is a recently defined stochastic process algebra, intended for modelling biochemical pathways within cells.

- **Unique rates** are associated with each reaction/action type. They can be specified by **functions**.
- The representation of an **action** within a component (species) records the **stoichiometry** and the **role** of that entity with respect to that action.
- There is a notion of **location** within models intended to capture the compartments and membranes.
Bio-PEPA

The first case study concerns a **Bio-PEPA model** for the spread of the *avian influenza H5N1* [Debarre et al, Ecology 2007].

Bio-PEPA is a recently defined stochastic process algebra, intended for modelling biochemical pathways within cells.

- **Unique rates** are associated with each reaction/action type. They can be specified by functions.
- The representation of an **action** within a component (species) records the **stoichiometry** and the **role** of that entity with respect to that action.
- There is a notion of **location** within models intended to capture the compartments and membranes.
- **Events** are used to present experiments such as the introduction of a species at a given time or a change in the system.
Using Bio-PEPA for epidemiological models

- Each species corresponds to a subset of individuals (e.g. susceptible individuals).
Using Bio-PEPA for epidemiological models

- Each species corresponds to a subset of individuals (e.g. susceptible individuals).
- The role of the individual with respect to an action is not meaningful in this context, but can be used to indicate that the species decreases, remains invariant or increases in an interaction.
Using Bio-PEPA for epidemiological models

- Each **species** corresponds to a subset of individuals (e.g. susceptible individuals).
- The **role** of the individual with respect to an action is not meaningful in this context, but can be used to indicate that the species decreases, remains invariant or increases in an interaction.
- Interactions such as $I + S \rightarrow 2I$ are possible, where an entity is present on both sides of the interaction with different multiplicity.
Using Bio-PEPA for epidemiological models

- Each **species** corresponds to a subset of individuals (e.g. susceptible individuals).
- The **role** of the individual with respect to an action is not meaningful in this context, but can be used to indicate that the species decreases, remains invariant or increases in an interaction.
- Interactions such as $I + S \rightarrow 2I$ are possible, where an entity is present on both sides of the interaction with different multiplicity.
- **Spatial structures** are often present in epidemiological models, but it is meaningless to distinguish membranes and compartments.
Modifying Bio-PEPA for epidemiology

A Bio-PEPA model for epidemiological system is described by the following syntax:

\[
S ::= (\alpha, \kappa) \downarrow S \mid (\alpha, \kappa) \uparrow S \mid (\alpha, (\kappa_1, \kappa_2)) \circ S \mid S + S \mid C \mid S@L
\]

\[
P ::= P \bowtie L \mid S(x)
\]
Bio-PEPA as an intermediate language

A Bio-PEPA system is a formal, intermediate and compositional representation of the system.
Bio-PEPA as an intermediate language

A Bio-PEPA system is a formal, intermediate and compositional representation of the system.

From it we can obtain:
Bio-PEPA as an intermediate language

A Bio-PEPA system is a formal, intermediate and compositional representation of the system.

From it we can obtain:

▸ a Gillespie model for stochastic simulation;
Bio-PEPA as an intermediate language

A Bio-PEPA system is a formal, intermediate and compositional representation of the system.

From it we can obtain:

- a Gillespie model for stochastic simulation;
- a system of differential equations for simulation and other kinds of analysis;
Bio-PEPA as an intermediate language

A Bio-PEPA system is a formal, intermediate and compositional representation of the system.

From it we can obtain:

- a Gillespie model for stochastic simulation;
- a system of differential equations for simulation and other kinds of analysis;
- a continuous time markov chains (CTMC with levels);
Bio-PEPA as an intermediate language

A Bio-PEPA system is a formal, intermediate and compositional representation of the system.

From it we can obtain:

- a Gillespie model for stochastic simulation;
- a system of differential equations for simulation and other kinds of analysis;
- a continuous time markov chains (CTMC with levels);
- a PRISM model (based on the CTMC with levels) for model checking.
Models of H5N1 Avian Influenza

- We constructed a number of Bio-PEPA models of growing sophistication of the spread of the H5N1 Avian Influenza.
Models of H5N1 Avian Influenza

- We constructed a number of Bio-PEPA models of growing sophistication of the spread of the H5N1 Avian Influenza.
- The Bio-PEPA Workbench was used for analysis.
Models of H5N1 Avian Influenza

- We constructed a number of Bio-PEPA models of growing sophistication of the spread of the H5N1 Avian Influenza.
- The **Bio-PEPA Workbench** was used for analysis.
- This involved generating both continuous (ODE) and discrete simulations using the Dizy simulation engine.
Models of H5N1 Avian Influenza

- We constructed a number of Bio-PEPA models of growing sophistication of the spread of the H5N1 Avian Influenza.
- The **Bio-PEPA Workbench** was used for analysis.
- This involved generating both continuous (ODE) and discrete simulations using the Dizzy simulation engine.
- Stochastic simulations were replicated 100 times.
Models of H5N1 Avian Influenza

- We constructed a number of Bio-PEPA models of growing sophistication of the spread of the H5N1 Avian Influenza.
- The Bio-PEPA Workbench was used for analysis.
- This involved generating both continuous (ODE) and discrete simulations using the Dizzy simulation engine.
- Stochastic simulations were replicated 100 times.
- Additionally in some cases we generated PRISM models and verified properties using stochastic model checking.
Models of H5N1 Avian Influenza

- We constructed a number of Bio-PEPA models of growing sophistication of the spread of the H5N1 Avian Influenza.
- The Bio-PEPA Workbench was used for analysis.
- This involved generating both continuous (ODE) and discrete simulations using the Dizzy simulation engine.
- Stochastic simulations were replicated 100 times.
- Additionally in some cases we generated PRISM models and verified properties using stochastic model checking.
- Results were validated against previously published results of hand-crafted ODEs and stochastic simulations [Debarre et al, Ecology 2007].
Schema of the species involved

- I_s, t_r, I_s, r, t_r
- I_r, t_r
- I_s, r, t_r
- S_{p_r}
- I, I_r
- S

Symptoms, treatment, resistance
Quantities of interest

Some quantities of interest are:
Quantities of interest

Some quantities of interest are:

- Number of Susceptibles, Infectives and Recovered individuals.
Quantities of interest

Some quantities of interest are:

- **Number of Susceptibles, Infectives and Recovered individuals.**
- **Epidemic’s peak value and time;** i.e. the maximum number of infectives with respect to time and the time when this occurs.
Quantities of interest

Some quantities of interest are:

- **Number of Susceptibles, Infectives and Recovered individuals.**
- **Epidemic’s peak value and time;** i.e. the maximum number of infectives with respect to time and the time when this occurs.
- **Instantaneous number of total infectives at a time t.**
Quantities of interest

Some quantities of interest are:

▶ Number of Susceptibles, Infectives and Recovered individuals.

▶ Epidemic’s peak value and time; i.e. the maximum number of infectives with respect to time and the time when this occurs.

▶ Instantaneous number of total infectives at a time t.

▶ Cumulative number of total infectives generated during epidemic within a time t.
Simple model: single location, no drug treatment

The simple model is a $S / l_s R$. Infectives are distinguished between asymptomatic (l) and symptomatic (l_s) individuals:

\[
S \overset{\text{def}}{=} (\text{contact}1, 1) \downarrow S + (\text{contact}2, 1) \downarrow S
\]
\[
l \overset{\text{def}}{=} (\text{contact}1, (1, 2)) \odot l + (\text{contact}2, 1) \uparrow l
\]
\[
+ (\text{recovery}1, 1) \downarrow l + (\text{symp}, 1) \downarrow l
\]
\[
l_s \overset{\text{def}}{=} (\text{contact}2, (1, 1)) \odot l_s + (\text{recovery}2, 1) \downarrow l_s + (\text{symp}, 1) \uparrow l_s
\]
\[
R \overset{\text{def}}{=} (\text{recovery}1, 1) \uparrow R + (\text{recovery}2, 1) \uparrow R
\]

\[
S(450) \bowtie l(10) \bowtie l_s(40) \bowtie R(0)
\]
ODEs and Gillespie’s simulation

SIIsR model – ODE

SIIsR model – Gillespie

Time (days)

S
I
Is
R

Time (days)

S
I
Is
R

Federica Ciocchetta, CoSBi

Process algebras for epidemiological and ecological modelling
ODEs and Gillespie’s simulation
Total/cumulative number of infectives
PRISM properties

In PRISM it is possible to specify quantitative properties of the system using some logic.
PRISM properties

In PRISM it is possible to specify quantitative properties of the system using some logic.

In the context of epidemiological systems some properties of interest are:
PRISM properties

In PRISM it is possible to specify quantitative properties of the system using some logic.

In the context of epidemiological systems some properties of interest are:

- *Probability of coexistence of the species at a given time* t
PRISM properties

In PRISM it is possible to specify quantitative properties of the system using some logic.

In the context of epidemiological systems some properties of interest are:

- Probability of coexistence of the species at a given time t
- Probability of extinction of the disease at a given time t
PRISM properties

In PRISM it is possible to specify quantitative properties of the system using some logic.

In the context of epidemiological systems some properties of interest are:

- Probability of coexistence of the species at a given time t
- Probability of extinction of the disease at a given time t
- Long run probabilities (steady states) of coexistence of the species and extinction of infection
PRISM properties

In PRISM it is possible to specify quantitative properties of the system using some logic.

In the context of epidemiological systems some properties of interest are:

- Probability of coexistence of the species at a given time t
- Probability of extinction of the disease at a given time t
- Long run probabilities (steady states) of coexistence of the species and extinction of infection
- Expected time until extinction of the disease.
PRISM Results (coexistence) — Varying contact rates

SIISR model: prob. Coexistence of all species

Federica Ciocchetta, CoSBi
Process algebras for epidemiological and ecological modelling
Models with multiple locations

We investigated the impact of having multiple locations and the spatial arrangement of those locations.
Models with multiple locations

We investigated the impact of having multiple locations and the spatial arrangement of those locations.

Five locations are used and the initial population of 500 is split evenly. Initially only one patch contains infected individuals.
Models with multiple locations

We investigated the impact of having multiple locations and the spatial arrangement of those locations.

Five locations are used and the initial population of 500 is split evenly. Initially only one patch contains infected individuals.

Interactions between individuals are as in the previous model but constrained to only occur when they are in the same location.
Population structures
Island and necklace structures
Island and necklace structures
Island and necklace structures

Necklace–type – ODE

Necklace–type – Gillespie

Federica Ciocchetta, CoSBi

Process algebras for epidemiological and ecological modelling
Island and necklace structures
Total/cumulative number of infectives

Island−type − Infectives

Island−type − Infective cases

Federica Ciocchetta, CoSBi

Process algebras for epidemiological and ecological modelling
Total/cumulative number of infectives

Necklace-type – Infectives

Necklace-type – Infective cases
Treatment, prophylaxis and resistance to the virus

In the general model there are:

- Treatment. Treatment is for all the symptomatic individuals; it works with a certain delay.
- Prophylaxis is added at one day after the beginning of the study (represented by events).
- Drug resistance. Infectives that are treated and non-resistant to drugs can become resistant to them.

Only one third of susceptibles and asymptomatic infectives is subjected to prophylaxis. Furthermore, the transmission rates for individuals with prophylaxis is just 30 per cent of the usual one.
Treatment, prophylaxis and resistance to the virus

In the general model there are:

- **Treatment.** Treatment is for all the symptomatic individuals; it works with a certain delay.

 - **Prophylaxis is added at one day after the beginning of the study (represented by events).**

 - **Drug resistance.** Infectives that are treated and non-resistant to drugs can become resistant to them.

Only one third of susceptibles and asymptomatic infectives is subjected to prophylaxis. Furthermore, the transmission rates for individuals with prophylaxis is just 30 per cent of the usual one.
Treatment, prophylaxis and resistance to the virus

In the general model there are:

- **Treatment.** Treatment is for all the symptomatic individuals; it works with a certain delay.

- **Prophylaxis** is added at one day after the beginning of the study (represented by events).
Treatment, prophylaxis and resistance to the virus

In the general model there are:

- **Treatment.** Treatment is for all the symptomatic individuals; it works with a certain delay.
- **Prophylaxis** is added at one day after the beginning of the study (represented by events).
- **Drug resistance.** Infectives that are treated and non-resistant to drugs can become resistant to them.
Treatment, prophylaxis and resistance to the virus

In the general model there are:

- **Treatment.** Treatment is for all the symptomatic individuals; it works with a certain delay.

- **Prophylaxis** is added at one day after the beginning of the study (represented by events).

- **Drug resistance.** Infectives that are treated and non-resistant to drugs can become resistant to them.

Only one third of susceptibles and asymptomatic infectives is subjected to prophylaxis. Furthermore, the transmission rates for individuals with prophylaxis is just 30 per cent of the usual one.
The effect of prophylaxis/treatment

Island–type, treatment – ODE

Island–type, treatment – Gillespie

Federica Ciocchetta, CoSBi

Process algebras for epidemiological and ecological modelling
The effect of prophylaxis/treatment

Island-type, treatment – Infectives

Island-type, treatment – Infective cases

Federica Ciocchetta, CoSBi

Process algebras for epidemiological and ecological modelling
Observations

- In some circumstances, particularly when locations are considered, stochastic simulations are appropriate forms of analysis because the populations of individual patches may become relatively small.
Observations

- In some circumstances, particularly when locations are considered, stochastic simulations are appropriate forms of analysis because the populations of individual patches may become relatively small.

- Whilst developed for modelling biochemical pathways Bio-PEPA does seem capable of expressing a wide variety of epidemiological models.
Outline

Introduction

Bio-PEPA for epidemiological systems

The BlenX language for ecological systems

Conclusions
Ecological systems

The second case study concerns the modelling of a complex ecological network using the BlenX language.
Ecological systems

The second case study concerns the modelling of a complex ecological network using the BlenX language.

This network is composed of three different levels:
Ecological systems

The second case study concerns the modelling of a complex ecological network using the BlenX language.

This network is composed of three different levels:

1. a spatial network of communities abstracting an ecosystem (landscape system);
Ecological systems

The second case study concerns the modelling of a complex ecological network using the BlenX language.

This network is composed of three different levels:

1. a spatial network of communities abstracting an ecosystem (landscape system);
2. a food web of species describing a local community;
Ecological systems

The second case study concerns the modelling of a complex ecological network using the BlenX language.

This network is composed of three different levels:

1. a spatial network of communities abstracting an ecosystem (landscape system);
2. a food web of species describing a local community;
3. a social network of individuals characterizing a species.
Schema of the network
Landscape network

A landscape model describes a mosaic of habitat patches and corridors.
Landscape network

A **landscape model** describes a mosaic of **habitat patches** and **corridors**.

The former ones are the place where the population can survive for a long time, whereas the latter are links connecting patches.
Landscape network

A landscape model describes a mosaic of habitat patches and corridors. The former ones are the place where the population can survive for a long time, whereas the latter are links connecting patches.

Here landscape systems have an abstract spatial structure: the patches may have no explicit area and can be static (i.e. the patch/corridor topology is fixed) and homogeneous (i.e. its internal structure is not relevant).
Landscape network

A **landscape model** describes a mosaic of **habitat patches** and **corridors**. The former ones are the place where the population can survive for a long time, whereas the latter are links connecting patches.

Here landscape systems have an abstract spatial structure: the patches may have no explicit area and can be *static* (i.e. the patch/corridor topology is fixed) and *homogeneous* (i.e. its internal structure is not relevant).

They are characterized by the actual number of individuals in it and by how they are connected to each other.
Landscape network

A **landscape model** describes a mosaic of *habitat patches* and *corridors*. The former ones are the place where the population can survive for a long time, whereas the latter are links connecting patches.

Here landscape systems have an abstract spatial structure: the patches may have no explicit area and can be *static* (i.e. the patch/corridor topology is fixed) and *homogeneous* (i.e. its internal structure is not relevant).

They are characterized by the actual number of individuals in it and by how they are connected to each other.

Species can migrate from one patch to the other.
Food webs

A local community model is described by a food web, i.e. the interspecific interaction network composed of prey-predator interactions.
Food webs

A local community model is described by a food web, i.e. the interspecific interaction network composed of prey-predator interactions.

In a food web a species can be classified as:
Food webs

A local community model is described by a food web, i.e. the interspecific interaction network composed of prey-predator interactions.

In a food web a species can be classified as:

- **Top predator**: it can catch other species but cannot be captured by any other.

- **Intermediate species**: it can both be captured by or capture other species.

- **Basal species**: the species can be captured by other species but cannot capture any other.

Interspecific interactions are feeding (capture of the prey) and feeding-reproduction (capture of the prey and reproduction of the predator).

Here we consider one top predator, two intermediate species and two basal species.
Food webs

A local community model is described by a **food web**, i.e. the interspecific interaction network composed of prey-predator interactions.

In a food web a species can be classified as:

- **Top predator**: it can catch other species but cannot be captured by any other.
- **Intermediate species**: it can both be captured by or capture other species.
Food webs

A local community model is described by a **food web**, i.e. the interspecific interaction network composed of prey-predator interactions.

In a food web a species can be classified as:

- **Top predator**: it can catch other species but cannot be captured by any other.
- **Intermediate species**: it can both be captured by or capture other species.
- **Basal species**: the species can be captured by other species but cannot capture any other.
Food webs

A local community model is described by a **food web**, i.e. the interspecific interaction network composed of prey-predator interactions.

In a food web a species can be classified as:

- **Top predator**: it can catch other species but cannot be captured by any other.
- **Intermediate species**: it can both be captured by or capture other species.
- **Basal species**: the species can be captured by other species but cannot capture any other.

Interspecific interactions are **feeding** (capture of the prey) and **feeding-reproduction** (capture of the prey and reproduction of the predator).
Food webs

A local community model is described by a **food web**, i.e. the interspecific interaction network composed of prey-predator interactions.

In a food web a species can be classified as:

- **Top predator**: it can catch other species but cannot be captured by any other.
- **Intermediate species**: it can both be captured by or capture other species.
- **Basal species**: the species can be captured by other species but cannot capture any other.

Interspecific interactions are **feeding** (capture of the prey) and **feeding-reproduction** (capture of the prey and reproduction of the predator).

Here we consider one top predator, two intermediate species and two basal species.
Social networks

In a **social network** model, individuals of the same species can interact with each other.
Social networks

In a **social network** model, individuals of the same species can interact with each other.

A kind of social interaction is **connectivity**: individual of the same species can connect with each other.
Social networks

In a **social network** model, individuals of the same species can interact with each other.

A kind of social interaction is **connectivity**: individual of the same species can connect with each other.

Connected individuals changer their interspecific interactions, for instance, it is easier for them to capture the prey more with respect to unconnected individuals.
Questions

We are interested in network dynamics at each three levels, and how top-down (landscape effects) and bottom-up (social network effects) actions can influence local communities at the intermediate level.
Questions

We are interested in network dynamics at each three levels, and how top-down (landscape effects) and bottom-up (social network effects) actions can influence local communities at the intermediate level.

▶ How do spatial dynamics (spatial structure, rates of migration from one patch to the other) of the ecosystem influence extinction risk of species?
Questions

We are interested in network dynamics at each three levels, and how top-down (landscape effects) and bottom-up (social network effects) actions can influence local communities at the intermediate level.

▶ How do spatial dynamics (spatial structure, rates of migration from one patch to the other) of the ecosystem influence extinction risk of species?

▶ Do the initial distribution of individuals over all the habitat patches have effect on the temporal evolution of species?
Questions

We are interested in network dynamics at each three levels, and how top-down (landscape effects) and bottom-up (social network effects) actions can influence local communities at the intermediate level.

- How do spatial dynamics (spatial structure, rates of migration from one patch to the other) of the ecosystem influence extinction risk of species?
- Do the initial distribution of individuals over all the habitat patches have effect on the temporal evolution of species?
- How do changes in social network topology (connectivity) impact the temporal behaviour of species?
The BlenX language

BlenX is a stochastic programming language explicitly designed to model interactions of biological entities.
The BlenX language

BlenX is a stochastic programming language explicitly designed to model interactions of biological entities.

BlenX represents a biological entity as a box, composed by a set of interfaces and a process. An example of box is:

![Box diagram]

Federica Ciocchetta, CoSBi
Process algebras for epidemiological and ecological modelling
The BlenX language

BlenX is a stochastic programming language explicitly designed to model interactions of biological entities.

BlenX represents a biological entity as a box, composed by a set of interfaces and a process. An example of box is:

![Diagram of a box with interfaces and process]

Interfaces (e.g. x, y and z) have associated types (e.g. S, T, V) and represent the interaction capabilities of a box; the internal program (P) codifies for the mechanism of the transformation of an interaction into a conformational change.
The BlenX language: actions

Each box can evolve independently from the other boxes by synchronizing internally an input and an output on the same channel (intra-communication).
The BlenX language: actions

Each box can evolve independently from the other boxes by synchronizing internally an input and an output on the same channel (intra-communication).

Alternatively, it is possible to hide or unhide a site, to change the type, to expose a new site or die.
The BlenX language: actions

Each box can evolve independently from the other boxes by *synchronizing internally* an input and an output on the same channel (*intra-communication*).

Alternatively, it is possible to *hide* or *unhide* a site, to *change* the type, to *expose* a new site or *die*.

Two boxes can interact by composing/decomposing or communicating (*inter-communication*) only if they have *compatible interfaces*.
The BlenX language: events

Events specify statements, or **verbs**, to be executed with a specified rate and/or when some **conditions** are satisfied.
The BlenX language: events

Events specify statements, or verbs, to be executed with a specified rate and/or when some conditions are satisfied.

Simple examples of event are the following:

\[
\text{when } (A, B : (|A| > 2 \text{ and } |B| > 2) : r) \text{ join}(C)
\]

\[
\text{when } (A :: f) \text{ new}(1)
\]

\[
\text{when } (A :: f) \text{ die}(1)
\]
The BlenX language: stochastic simulation

All the possible interactions are associated with a constant rate or a functional rate, expressing their dynamics.
The BlenX language: stochastic simulation

All the possible interactions are associated with a constant rate or a functional rate, expressing their dynamics.

These rates are used when analysing the system in order to derive the actual rate in stochastic simulation (Gillespie’s algorithm).
The BlenX language: stochastic simulation

All the possible interactions are associated with a constant rate or a functional rate, expressing their dynamics.

These rates are used when analysing the system in order to derive the actual rate in stochastic simulation (Gillespie’s algorithm).

BlenX supports also immediate actions (using the keyword inf as rate value), i.e. actions that have precedence with respect to actions with finite rates.
The BlenX language: stochastic simulation

All the possible interactions are associated with a constant rate or a functional rate, expressing their dynamics.

These rates are used when analysing the system in order to derive the actual rate in stochastic simulation (Gillespie’s algorithm).

BlenX supports also immediate actions (using the keyword inf as rate value), i.e. actions that have precedence with respect to actions with finite rates.

A BlenX program can be executed within the Beta Workbench, a set of tools to design, simulate and analyze models written in BlenX.
The BlenX model

The BlenX model of the three-level network is based on the following abstraction:
The BlenX model

The BlenX model of the three-level network is based on the following abstraction:

1. Habitat patches are abstracted by names. Each box has a location interface with a specific type representing the patch.
The BlenX model

The BlenX model of the three-level network is based on the following abstraction:

1. Habitat patches are abstracted by names. Each box has a location interface with a specific type representing the patch.

2. Each species i is represented by a box.

\[
\begin{align*}
& \text{B}_{\text{intra}_i,l,h} \quad \text{B}_{\text{inter}_i,l,h} \\
& \text{zih, Norep} \\
& \text{P}_{i,l,h} \mid \text{P}_{\text{aux},i} \quad \text{y, Loc}\end{align*}
\]
Single patch network vs four-patch network (island-type)

Mean and sd for A: no patches vs patches

Mean and sd for B: no patches vs patches

Mean and sd for C: no patches vs patches

Mean and sd for D: no patches vs patches

Mean and sd for E: no patches vs patches
Results

In an homogeneous population the species D goes extinct, whereas the species B grows up infinitely. Indeed the species B is just regulated by D and when D disappears B grows.
Results

In an homogeneous population the species D goes extinct, whereas the species B grows up infinitely. Indeed the species B is just regulated by D and when D disappears B grows.

The standard deviation shows a great variability between the various runs, especially for B.
Results

In an homogeneous population the species D goes extinct, whereas the species B grows up infinitely. Indeed the species B is just regulated by D and when D disappears B grows.

The standard deviation shows a great variability between the various runs, especially for B.

When the island-type network is introduced, all the species with the exception of B reach a higher level than before. In particular D does not go extinct. The effect of the landscape structure is a better regulation and the survival for all the species.
Different spatial structure

Mean and sd for E: loop, island type

Mean and sd for E: necklace, island type

Mean and sd for E: spider, island type

Mean and sd for D: loop, island type

Mean and sd for D: necklace, island type

Mean and sd for D: spider, island type

Federica Ciocchetta, CoSBi
Figures

Mean and sd for B: loop, island type
Mean and sd for B: necklace, island type
Mean and sd for B: spider, island type
Mean and sd for A: loop, island type
Mean and sd for A: necklace, island type
Mean and sd for A: spider, island type

Federica Ciocchetta, CoSBi

Process algebras for epidemiological and ecological modelling
Analysis results

We consider the various spatial structures; in particular we compare the island-type structure with loop-type, necklace-type and spider-type structures.

The qualitative behaviour of each species is the same in all the cases. However, there are a few discrepancies between the networks with the island-type and the loop-type structures, whereas both the networks with necklace and the spider-type structures are similar to the one with island-type structure.
Radiation - initially equidistributed species (island type)

We compare the case of radiation from a single patch to the others and the case of species equally present in all the patches.
Radiation - initially equidistributed species (island type)

We compare the case of radiation from a single patch to the others and the case of species equally present in all the patches.

The sum of individuals of a given species over all the patches is the same in both the situations. The graphs show that, after short initial time, we obtain the same temporal evolution for all the species.
Radiation - initially equidistributed species (island type)

We compare the case of radiation from a single patch to the others and the case of species equally present in all the patches.

The sum of individuals of a given species over all the patches is the same in both the situations. The graphs show that, after short initial time, we obtain the same temporal evolution for all the species.

For our specific choice of parameters, the initial state does not influence the behaviour of species.
Absence of connectivity vs connectivity

Mean and sd for A: with and without cooperation

Mean and sd for B: with and without cooperation

Mean and sd for C: with and without cooperation

Mean and sd for D: with and without cooperation

Mean and sd for E: with and without cooperation
Results

Connectivity increases the quantity of individuals of the top predator and intermediate species whereas the individuals of the basal species decrease.
Results

Connectivity increases the quantity of individuals of the top predator and intermediate species whereas the individuals of the basal species decrease.

In particular, A is quite close to zero and B, after a rapid increment in the first time interval, decreases close to zero too. However they do not go extinct but are very low as consumed by their predator quite rapidly.
Observations

We showed that:

1. In a fragmented population there is an increase of the number of individuals;
2. Connectivity among individuals of the same species (top predator and intermediate species) has the effect to increase the total number of individuals of that species preventing extinction.

These behaviours are in agreement with the behaviour of this kind of ecosystems in nature.
Observations

We showed that:

1. in an fragmented population there is an increase of number of individuals;
Observations

We showed that:

1. in a fragmented population there is an increase of number of individuals;

2. connectivity among individuals of the same species (top predator and intermediate species) has the effect to increase the total number of individuals of that species preventing extinction.
Observations

We showed that:

1. in a fragmented population there is an increase of number of individuals;

2. connectivity among individuals of the same species (top predator and intermediate species) has the effect to increase the total number of individuals of that species preventing extinction.

These behaviours are in agreement with the behaviour of this kinds of ecosystems in nature.
Outline

Introduction

Bio-PEPA for epidemiological systems

The BlenX language for ecological systems

Conclusions
Summary

Two case studies concerning the application of two process algebras were showed.
Summary

Two case studies concerning the application of two process algebras were showed.

The former was about some epidemiological models described in Bio-PEPA, the latter was about a complex ecological network in the BlenX language.
Summary

Two case studies concerning the application of two process algebras were showed.

The former was about some epidemiological models described in Bio-PEPA, the latter was about a complex ecological network in the BlenX language.

Both process algebras were suitable to describe the two systems and the analyses were useful to understand their behaviour.
Summary

Two case studies concerning the application of two process algebras were showed.

The former was about some epidemiological models described in Bio-PEPA, the latter was about a complex ecological network in the BlenX language.

Both process algebras were suitable to describe the two systems and the analyses were useful to understand their behaviour.

In these examples stochastic simulation resulted appropriate as the systems are characterized by a certain variability, especially when the spatial structure was considered.
Future work

For the future, we are planning to extend our models in order to consider more complex assumptions.
Future work

For the future, we are planning to extend our models in order to consider more complex assumptions.

In particular for the latter case study we are considering more general assumptions about connectivity and the influence of a level on the other two levels.
Future work

For the future, we are planning to extend our models in order to consider more complex assumptions.

In particular for the latter case study we are considering more general assumptions about connectivity and the influence of a level on the other two levels.

Furthermore, we would like to investigate the possibility to extend the languages in order to consider more complexes definition of space and a more compact definition of species with similar behaviour.
Future work

For the future, we are planning to extend our models in order to consider more complex assumptions.

In particular for the latter case study we are considering more general assumptions about connectivity and the influence of a level on the other two levels.

Furthermore, we would like to investigate the possibility to extend the languages in order to consider more complexes definition of space and a more compact definition of species with similar behaviour.

Finally, we would like to apply sensitivity analysis to find out the parameters that have most impact on our models.