Energy costs of neuronal synaptic transmission

Christophe B Michel¹, Matthias H Hennig², Bruce P Graham¹
¹ Computing Science and Mathematics, University of Stirling, Stirling, Scotland, FK9 4LA, UK
² School of Informatics, University of Edinburgh, Edinburgh, Scotland, EH8 9AB, UK

Summary
We developed a three component model (pre-synaptic, post-synaptic and axon initial segment) of the calyx of Held synapse and its target, the principal neurons in the MNTB to estimate the metabolic efficiency in this brainstem auditory system. Model parameters are fit such that data from whole cell recordings is reproduced, and models are compared between a baseline condition with low levels of nitric oxide (NO), and following conditioning with evoked activity that increases NO levels. Energy consumption by each component is estimated during low and high frequency activity.

Energy budget
Fig. 2. Metabolic cost of neurotransmission. Energy usage of the pre-synapse, post-synapse, and action potential (AP) firing were calculated from the number of ATP molecules consumed by each component following neurotransmitter release (Attwell, 2001). Coefficients were identified to evaluate the absolute and relative energy consumption of the pre-synapse, the post synapse and the AP firing site from the amount of transmitter release, the post-synaptic current (EPSC) integral, and the AP sodium current integral, respectively.

Model identification
Fig. 3. Synapse model. A ‘vesicle state’ model with activity dependent vesicle release (see equations). n is the proportion of vesicles from a readily releasable vesicle pool of maximal size n_0 (which is replenished with two different time constants). Vesicles release with probability P_v on presynaptic stimulation, resulting in a postsynaptic response, P_{sr}.

The parameters of this model were identified in control and NO conditions.

$$\frac{dn}{dt} = \left(1 - n_s \right) \left(n_0 - n \right) + n_s \left(n_0 - n \right) \frac{P_v}{E_{0v}} \sum \delta(t - \tau) n_v \alpha_v$$

Model parameters are fit such that data from whole cell recordings is reproduced, and models are compared between a baseline condition with low levels of nitric oxide (NO), and following conditioning with evoked activity that increases NO levels. The channel densities were identified with a error minimization algorithm between the data and the response of the model in 100 Hz control conditions and 400 Hz NO conditions. Different firing thresholds and the relative dominance of Kv3/Kv2 potassium channels were taken into account.

Fig. 4. MNTB ion channel conductance identification. The Na conductance model comes from hippocampal neurons, Kv3, Kv1 conductances from the cochlear nucleus (Rothman, 2003), and the Kv2 conductance from MNTB neurons (Johnston, 2008). The Na conductance model comes from hippocampal neurons, Kv3, Kv1 conductances from the cochlear nucleus (Rothman, 2003), and the Kv2 conductance from MNTB neurons (Johnston, 2008). The channel densities were identified with a error minimization algorithm between the data and the response of the model in 100 Hz control conditions and 400 Hz NO conditions. Different firing thresholds and the relative dominance of Kv3/Kv2 potassium channels were taken into account.

Fig. 5. Low frequency firing rate energy consumption is slightly higher in NO conditions. Relative contributions are shown in light colors, absolute contributions (ATP molecules) in dark colors.

Fig. 6. High frequency firing rate energy consumption is significantly lower in NO conditions. NO model is compared to the control model (red: artificially increased EPSCs in order to force AP firing in control).

Results
Fig. 7. Parameter sensitivity. 30% variation in component costs does not alter the relative frequency dependent metabolic cost between NO and control. Highest sensitivity for the post synapse is directly related to the highest energy consumption here.

References