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Abstract
Computer simulation of a CA1 hippocampal pyramidal neuron is used to
estimate the effects of synaptic and spatio-temporal noise on such a cell’s
ability to accurately calculate the weighted sum of its inputs, presented in the
form of transient patterns of activity. Comparison is made between the pattern
recognition capability of the cell in the presence of this noise and that of a noise-
free computing unit in an artificial neural network model of a heteroassociative
memory. Spatio-temporal noise due to the spatial distribution of synaptic input
and quantal variance at each synapse degrade the accuracy of signal integration
and consequently reduce pattern recognition performance in the cell. It is shown
here that a certain degree of asynchrony in action potential arrival at different
synapses, however, can improve signal integration. Signal amplification by
voltage-dependent conductances in the dendrites, provided by synaptic NMDA
receptors, and sodium and calcium ion channels, also improves integration
and pattern recognition. While the biological sources of noise are significant
when few patterns are stored in the associative memory of which the cell is a
part, when large numbers of patterns are stored the noise from the other stored
patterns comes to dominate the pattern recognition process. In this situation,
the pattern recognition performance of the pyramidal cell is within a factor of
two of that of the computing unit in the artificial neural network model.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The ability of a neuron to discriminate different patterns of synaptic input is potentially
disrupted by a variety of forms of noise. Incoming signals from other neurons are subject
1 Current address: Department of Computing Science and Mathematics, University of Stirling, Stirling FK9 4LA,
UK.
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Figure 1. Schematic diagram of the CA1 pyramidal cell, showing the section of dendritic tree
throughout which synaptic input was distributed (stratum radiatum). Circles show locations of
particular synapses used to estimate effects of distance on EPSPs. The distribution of dendritic
distances from the soma in stratum radiatum is shown on the right.

to different transmission delays, synaptic transmission is unreliable and the postsynaptic
response may be affected by quantal variance (QV). Problems arise with the spatio-temporal
integration of synaptic signals distributed across an extensive dendritic tree. This paper
investigates the ability of a CA1 pyramidal cell to act as a pattern recognition device, given
these potential sources of noise. A detailed compartmental model of a pyramidal cell is used
to estimate the likely effect of the spatial distribution of synaptic input, temporal synchrony
and asynchrony between inputs, and intrinsic variation in synaptic EPSP amplitudes (QV) on
synaptic integration.

Cortical pyramidal neurons have extensive apical and basal dendritic trees that are the
site of synaptic input from multiple excitatory and inhibitory pathways. The dendritic trees
can serve to physically separate the inputs from different pathways and to provide local
processing of inputs. However, inputs from a common pathway may still be distributed across
a large section of dendritic tree. For example, in the mammalian hippocampus, Schaffer
collateral inputs from CA3 pyramidal cells are distributed across stratum radiatum in the
apical dendrites of a CA1 pyramidal cell (figure 1). Individual synapses may differ by several
hundred micrometres in their distance from the cell body (soma). For a passive dendritic
tree, the amplitude of an EPSP at the soma decreases and its time course lengthens with the
distance from the soma of the originating synapse. Thus different synapses will have different
abilities to influence the firing, or output, of the neuron. While this may be desirable between
separate input pathways, within a common pathway it is arguable that each synapse should
play an equal role in determining cell output (Cook and Johnston 1999). This is implicit
in theoretical models that treat the CA3–CA1 connections as forming a heteroassociative
memory (McNaughton and Morris 1987, Graham and Willshaw 1997a). In this scenario,
all inputs from CA3 to a CA1 pyramidal cell are initially equal, but may be strengthened or
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weakened by a Hebbian learning rule to enable patterns of activity in CA3 to be associated
with patterns of activity in CA1. For Hebbian learning to have the desired effect it is essential
that all the synaptic connections have the potential to equally participate in firing the CA1
neuron. It is within this context that the pattern recognition capabilities of the CA1 neuron are
considered.

Experimental recordings from CA1 pyramidal cells indicate much less variation in the
amplitude of the somatic response to proximal (near) and distal (far away) synaptic input than
that predicted by the passive dendritic cable model (Magee and Cook 2000, Stricker et al 1996,
Turner 1988, Andersen et al 1980). This implies either that synaptic conductance increases
with distance so that the synaptic EPSP amplitude also increases (Magee and Cook 2000,
Stricker et al 1996), or that voltage-gated ion channels within the dendritic tree act to boost
distal synaptic input (Cook and Johnston 1997, 1999, Gillessen and Alzheimer 1997, Lipowsky
et al 1996, Magee and Johnston 1995). Both of these possibilities are explored here.

An important question when building a functional model of a biological neural network
is the exact form of the signals being passed from neuron to neuron. Previous work
concerned with spatio-temporal integration and its effect on associative memory performance
has considered activity to be represented by continuous firing at a particular mean frequency
on each input axon (Cook and Johnston 1997, Graham and Willshaw 1997b). While this
has theoretical advantages in being able to treat the postsynaptic response to inputs as
steady-state conductance changes when calculating the requirements for voltage-gated ion
channels to remove the effects of synaptic location (Cook and Johnston 1999), it is arguably
unrealistic. Other models of associative memory in hippocampus and neocortex consider
each cycle of a gamma (40 Hz) frequency oscillation to be a recall step (Jensen et al
1996, Lisman and Idiart 1995, Menschik and Finkel 1998). In this scenario, a postsynaptic
neuron is likely to receive at most a single AP from an active presynaptic neuron within
a gamma cycle. The postsynaptic neuron must perform rapid (within 25 ms) recognition
of the incoming pattern of activity represented by these single action potentials arriving
more or less synchronously at different synapses. It is this scenario that is employed here,
with attention being paid to the effects of synchronous arrival of action potentials (APs)
on subsequent signal integration. The CA1 neuron is assumed to receive at most a single
synaptic contact from a particular CA3 cell (Bolshakov and Siegelbaum 1995) and an
AP causes the release of at most a single vesicle of neurotransmitter (Stevens and Wang
1995).

The amplitude of the EPSP at a synapse due to the release of a vesicle of neurotransmitter
may vary from AP to AP. This is known as QV. Estimates of the amount of variation range from
it being negligible (CV < 10%) (Stricker et al 1996) to quite large (CV = 30%) (Bolshakov
and Siegelbaum 1995, Forti et al 1997, Turner et al 1997). The effects on signal integration
and subsequent memory performance of large QV are investigated.

The computer simulations presented here demonstrate that these neurobiological forms
of noise may significantly affect signal integration. However, even with transient signals,
active dendritic processes can act to ameliorate spatial and temporal effects that degrade
signal integration. Futhermore, the results indicate that actually the noise due to the other
stored patterns may dominate the pattern recognition process and so be the final determinant
of associative memory performance in networks of pyramidal cells. Thus artificial neural
networks, in which neurobiological noise is absent, are still reasonable models of associative
memory networks in the brain. Estimates of memory capacity from such models (Bennett et al
1994, Treves and Rolls 1994, Graham and Willshaw 1997a) may only overestimate by a factor
of around two the capacity achievable in a neurobiological system.

Some of this paper has been presented in abstract form (Graham 1999).
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2. The model

2.1. Compartmental model

A detailed compartmental model of a rat CA1 pyramidal neuron (figure 1, Major et al 1993)
was used to investigate the postsynaptic integration of transient signals in the form of individual
APs arriving more or less synchronously at spatially distributed synapses. Neurobiological
components activated by such transient signals, namely AMPA and NMDA receptors, and
dendritic sodium and calcium channels (Gillessen and Alzheimer 1997, Lipowsky et al 1996,
Magee et al 1998, Magee and Johnston 1995), were included. The model was simulated using
NEURON (Hines and Carnevale 1997) and the technical details are given in the appendix.

In the model, excitatory synapses, containing both AMPA and NMDA receptors, are
distributed randomly throughout the proximal apical dendritic tree, corresponding to Schaffer
collaterals from CA3 neurons synapsing in stratum radiatum. Dendritic distances from the
soma for stratum radiatum range up to 600 µm, with most of the tree lying between 200
and 500 µm (figure 1). A pattern of input to the cell consists of a number of individual APs
arriving more or less synchronously at the spatially distributed synapses. The cell is at a
steady state before the arrival of the APs, at its resting potential of −65 mV. The value used for
membrane resistance includes longer-term events, such as background synaptic activity and
slowly (in)activating ion channels.

Three cases for spatio-temporal integration are considered.

(1) Uniform. All synapses have the same AMPA-receptor-mediated peak conductance (no
NMDA component) and propagation of EPSPs along the dendrites is passive.

(2) Scaled. Propagation of EPSPs is still passive, but synaptic conductances are scaled with
distance so that any synapse produces a somatic EPSP with the same amplitude irrespective
of its location.

(3) Amplified. Three types of voltage-activated conductance are employed as amplifiers to
boost distal EPSPs; they are included individually and in combination:

(1) NMDA receptors, colocalized at the synapses with the AMPA receptors;
(2) persistent sodium channels, uniformly distributed throughout stratum radiatum and
(3) low-voltage-activated (LVA), inactivating calcium channels (T-type), also uniformly

distributed in stratum radiatum.

The active conductances span a range of voltage activations and time courses. All are activated
by synchronous EPSPs that are of sufficient amplitude so as to generate somatic APs, and they
activate fast enough to affect the amplitude and time course of the EPSPs. The persistent sodium
channels have the lowest voltage activation threshold, and the calcium channels the highest.
Only the calcium channels show significant inactivation during the time course of the EPSPs.
Details of these conductance models are given in the appendix. In addition, some simulations
include an A-type potassium conductance and an H-type mixed cation conductance, both
of which are prominent in the apical dendritic trees of these pyramidal cells (Magee 1999,
Hoffman et al 1997).

2.2. Discrimination of the number of active inputs

The basic ability of the pyramidal cell to recognize different patterns of input rests on its ability
to discriminate between different numbers of active inputs. The response of the cell to different
numbers of APs is investigated. Patterns that should be recognized by the cell consist of 200
active inputs represented by single APs arriving at different synapses. This level of activity
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generates a somatic depolarization of around 20 mV and would be sufficient to cause the cell
to fire its own AP and thus ‘recognize’ the pattern. Fewer active inputs should not cause the
cell to fire. This was tested by including fast sodium and potassium channels (as used by
Bernander et al 1994a) in the soma and using a constant hyperpolarizing current injection to
set a threshold, mimicking the putative role of somatic inhibition. There was a very strong
correlation between the amplitude of the somatic EPSP and the firing of the cell, indicating
that the EPSP amplitude is the determining factor for ‘pattern recognition’ (results not shown).
Thus the EPSP amplitude is used as the measure of the cell’s response to an input pattern and
AP firing by the cell is not included in the simulations presented here.

For a particular number of active inputs, there is variation in the somatic EPSP amplitude
depending on the spatial location of the synapses. Thus the cell’s response to two different
input patterns both of which it should recognize will vary slightly. The distribution of EPSP
amplitudes produced by patterns of 200 active inputs may overlap with the distributions from
lower numbers of active inputs and so reduce the cell’s ability only to recognize patterns of 200
inputs. The cell’s discrimination between different numbers of active inputs can be assessed
by measuring the signal-to-noise ratio (S/N) between respective distributions of somatic EPSP
amplitudes (Dayan and Willshaw 1991):

S/N = 1

2

(µh − µl)
2

(σ 2
h + σ 2

l )

where µh (µl) and σ 2
h (σ 2

l ) are the mean and variance of the EPSP amplitude from the higher
(lower) number of active inputs, respectively. In the following results, the distribution of
peak voltages due to 100 and 200 active inputs from 100 simulations with different spatial
distributions of synapses are compared using this S/N. The higher the ratio, the better able the
cell is to discriminate between 100 and 200 inputs.

2.3. Pattern recognition in an associative memory

In a more realistic situation, the pattern recognition ability of the cell is compared with that
of a computing unit from an artificial neural network model of associative memory (Cook and
Johnston 1997). Hebbian learning is employed to associate both the cell and the computing unit
with the same set of input patterns. The simple neural network model of associative memory
that is used here is the associative net (Willshaw et al 1969). In this model, synaptic weights
are binary. During pattern storage, the connection between two units is given a weight of one
if both units are active for a particular input–output pattern pair (clipped Hebbian learning).
During recall, an output unit must recognize an input pattern on the basis of the number of
active inputs it is connected to by a weight of one. Thus the output unit must be able to
accurately count the number of active inputs impinging upon it.

An associative net consisting of 8000 input units connected to eight output units was used.
The number of inputs impinging on each output unit is of the same order as the number of
Schaffer collateral synapses on a CA1 pyramidal cell. Sixty random binary pattern pairs, each
consisting of 200 active input and four active output units, were stored in the memory. Each
output unit was associated on average with 30 of the input patterns. Memory performance is
assessed by applying each input pattern to every output unit and collecting the summed inputs
calculated by each output unit. This produces distributions of sums due to patterns that should
be recognized (high patterns) and due to those that should not (low patterns). The separation
of the distributions is measured using the S/N described above.
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2.4. Pattern recognition in the pyramidal cell

To compare the memory performance of the pyramidal cell with that of the computing units
in the associative net it was necessary to represent both stored patterns and synaptic weights
in a form suitable for the pyramidal cell. The 8000 inputs were represented by spatially
distributed synapses. Binary synaptic weights corresponded to the presence or absence of
synaptic conductances, depending on whether a synapse was potentiated by Hebbian learning,
or not, respectively. A binary input pattern was represented by a single AP on each active
(non-zero) input line, with the APs being more or less synchronous between input lines.

To compare the pattern recognition performance of the cell with an output unit in the
associative net, the weight matrix resulting from the storage of 60 pattern pairs for that output
unit was used to set the synaptic weights in the pyramidal cell model. Then all of the input
patterns stored in the associative net were presented to the cell in the form of APs, as described
above. The distributions of somatic EPSP amplitudes due to high and low patterns were
collected and compared using the S/N to give a performance measure that is directly comparable
with the performance of the output unit in the associative net. The pyramidal cell is compared
with all eight of the output units in turn.

3. Results

3.1. Signal loss in the dendritic tree

One focus of this paper is the distortion of input signals as they travel from a synapse along
the dendritic tree to the final site of integration in the soma. Attenuation of signals in the
passive dendritic tree of a CA1 pyramidal cell has been studied in detail elsewhere (Mainen
et al 1996). Figure 2 shows examples of EPSPs generated at different distances in the apical
dendritic tree and the subsequent voltage response at the soma, when average values are used
for the passive membrane characteristics (see the appendix). Distal signals (≈500 µm) are
attenuated more than 120-fold during propagation to the soma and the peak of the EPSP is
delayed by about 8 ms from its peak at the synapse. Recent experimental results (Magee and
Cook 2000) indicate that attenuation may be significantly less than this in such cells. The
level of attenuation used here results from the use of a relatively high value for axial resistance
(Ra = 200 � cm) and provides a severe test for the amplification properties of active channels,
to be considered below.

While synaptic EPSPs are finished after 20 ms, the somatic response lasts around 100 ms.
With uniform synaptic conductances (figures 2(a) and (b)), somatic EPSPs have similar
amplitude from about 30 ms onwards, irrespective of the synaptic location. In contrast, with
scaled conductances, the amplitudes of somatic EPSPs from distal synapses are elevated for
the full extent of the EPSP. This has implications for the integration of signals from synapses
distributed across the dendritic tree.

With uniform synaptic conductances the somatic amplitude decreases exponentially with
synaptic distance. There is a trend towards increasing synaptic amplitude with distance due
to reduction in dendritic diameters and a decrease in electrical load from the large soma and
proximal apical trunk. This is accentuated in the scaled case due to increasing synaptic
conductance with distance. A simple linear increase in AMPA conductance with distance,
from around 0.5 nS peak conductance at 100 µm up to 1.8 nS at 500 µm, provides a similar
EPSP amplitude in the soma, irrespective of synaptic distance. This range of conductances
is well within the bounds of estimates for Schaffer collateral synapses (Stricker et al 1996).
Note that the voltage-gated channels used to boost population inputs (amplified case) have
little effect on individual EPSPs.
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Figure 2. EPSPs at the synapse (a), (c) and subsequently at the soma (b), (d) for synapses at different
distances from the cell body. (a), (b) Passive dendritic tree with uniform synaptic conductances.
(c), (d) Conductances scaled to give similar EPSP amplitudes in the soma.

3.2. Discrimination of inputs

3.2.1. Synchronous arrival of action potentials. We are interested in the cell’s ability to
discriminate different levels of population input activity. Consider initially the somatic voltage
response to different numbers of APs arriving synchronously at spatially distributed synapses.
Examples of somatic voltage responses to either 100 or 200 APs for the uniform case are
shown in figure 3(a). While the voltage waveforms due to a particular number of APs are
very similar in shape, there is variation in the amplitude, depending on the spatial distribution
of the synapses. This is the result of differing levels of EPSP attenuation and soma arrival
times for synapses that are different distances from the cell body. The distributions of somatic
population EPSP amplitudes are shown in figure 3(b). While in this case it is clear that the
cell can distinguish between 100 and 200 APs, there will be overlap in the responses to closer
numbers of APs.

A measure of how well the cell can discriminate the responses is given by the S/N of the
distributions. The S/N of a number of different situations, with synchronous AP arrival, is
shown by the left-hand column of each histogram in figure 4. Scaling of synaptic conductance
with distance, or amplification of EPSPs by a voltage-activated conductance, acts to increase
the S/N significantly compared to the uniform case. When adding the different voltage-
gated conductances individually to the dendritic tree, the NMDA-receptor-mediated synaptic
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Figure 3. Population EPSPs at the soma due to 100 or 200 active synapses for the uniform case.
(a) Example EPSPs. (b) Distribution of EPSP amplitudes and the resultant S/N.
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Figure 4. S/N between EPSP amplitudes due to 100 or 200 active synapses for the different cases.
Amplifying conductances are included individually (NMDA, Na and Ca; with AMPA synapses
without scaling) and in combination (amplified; includes scaling). The three columns for each
case are: SY, synchronous APs: TJ, temporal jitter (time window of 20 ms); and QV, temporal
jitter plus QV (CV = 0.3).

conductance works best, providing a fourfold increase in S/N. A fivefold increase was obtained
when scaling was combined with all of the voltage-dependent conductances (amplified case).

The effects of the different amplifying conductances are illustrated by considering the
mean and standard deviation of the somatic EPSP amplitudes due to different numbers of
synchronous APs, as shown for the different cases in figure 5. Scaling and the NMDA
conductance both decrease the standard deviation of the EPSP amplitude for a particular
number of active synapses (figure 5(b)) due to a reduction in the spatial variation of individual
EPSP amplitudes. Thus the increase in S/N between 100 and 200 APs in these cases is due in
part to a narrowing of the spread of the population EPSP amplitude distributions. The NMDA
component of the synaptic conductance also acts to linearize the mean EPSP amplitude for
different numbers of active synapses (figure 5(a)). The combined EPSPs from higher numbers
of activated synapses are boosted more than smaller EPSPs due to the voltage-activated nature
of the NMDA conductance. This also increases the S/N by separating the mean amplitudes
between the population EPSPs for 100 and 200 synapses.

Such effects are also seen when sodium or calcium channels are used to amplify EPSPs,
and when all of the active conductances are combined (figures 5(c), (d)). The persistent
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Figure 5. Mean (a), (c) and standard deviation (b), (d) of EPSP amplitudes due to different numbers
of active synapses with synchronous APs. (a), (b) Uniform, scaled and NMDA cases; (c), (d) Na,
Ca and amplified cases.

sodium channels are activated by both 100 and 200 active synapses and serve mostly to
reduce population EPSP variance by amplifying distal individual EPSPs. The calcium channels
are activated at higher voltages and boost the EPSPs of 200 synapses more than those from
100 synapses, resulting in a linearization of the mean population EPSP amplitude curve for
different numbers of active synapses, as with the NMDA conductance. However, there is a
significant increase in variance in EPSP amplitude for 300 active synapses, as the regenerative
amplification by the calcium conductance becomes excessive and amplifies small differences
in EPSP amplitude. This effect reduces for 500 synapses due to damping by a reduction in
driving force of the synaptic conductances.

3.2.2. Asynchronous AP arrival. In reality, there will be variability in the transmission
delays from different CA3 input cells and the firing times of these cells may not be perfectly
synchronized. To test the effect of such temporal jitter, the arrival times of the APs at different
synapses were distributed uniformly in a 20 ms time window. Surprisingly, in all cases,
except for the calcium conductance alone, this significantly increased the S/N (figure 4; middle
columns of each histogram). This is largely the result of a decrease in the variance of the EPSP
amplitudes, as illustrated in figure 6. This is likely due to a reduction in interference between
nearby synapses and a randomizing of the arrival times of near and far synaptic EPSPs at the
soma.
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Figure 6. (a) Mean and (b) standard deviation of EPSP amplitudes due to different numbers of
active synapses in the amplified case with either synchronous APs, asynchronous APs (TJ; time
window of 20 ms), or asynchronous APs with QV (TJ + QV; CV = 0.3).

The width of the temporal jitter time window affects the S/N, with 20 ms being optimal for
the uniform case. The optimum time window must depend on the time course of the underlying
synaptic EPSPs. Once the window becomes too long, early synaptic EPSPs are nearly finished
by the time late EPSPs arrive and their summation will be poor. The decreased performance
of the calcium conductance with temporal jitter (see figure 4) is due to the fast inactivation of
the conductance, resulting in early EPSPs partially inactivating the calcium amplification for
later EPSPs. A certain persistence in the amplifying mechanism is thus useful in this situation,
as afforded by the NMDA and persistent sodium conductances.

3.2.3. Quantal variance. Apart from spatio-temporal integration, another potentially
significant source of noise in the summation process is trial-to-trial variation in EPSP amplitude
at each synapse, known as QV. Introducing a random variation in the peak conductance at
each synapse at the maximum level measured experimentally (coefficient of variation = 0.3)
(Bolshakov and Siegelbaum 1995, Forti et al 1997, Turner et al 1997) results in a 30–60%
reduction in the S/N, annulling any increase afforded by temporal jitter (figure 4, right-hand
columns of each histogram). QV increases the variance in EPSP amplitudes (figure 6(b)). The
effect of QV is most pronounced when the NMDA conductance is involved, as any variation in
synaptic conductance is accentuated by the voltage-dependent nature of the NMDA component.

To compare the magnitude of noise due to QV with that from the spatial distribution of
synapses, the S/N was calculated from responses with all synapses located at the soma and
affected by QV (results not shown). This indicated that noise due to QV is somewhat less than
that due to spatio-temporal integration of inputs in the uniform, synchronous AP arrival case
(S/N = 220 for QV compared to 55 for the uniform case). QV must be twice the magnitude
used here to approach the level of noise from spatially distributed synapses (Graham 1999).

3.3. Pattern recognition

The pattern recognition capability of the pyramidal cell was tested by examining its ability to
distinguish between high and low patterns stored in the associative net. Firstly, the 60 stored
input patterns were presented in turn to the artificial neural network model and the resulting
input sum of each output unit was recorded. The distribution of sums over the 60 patterns for
the first unit is shown in figure 7(a). Note that high patterns always produce a sum of 200,
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Figure 7. Distributions of input sums due to low and high patterns stored in the associative net
for (a) a computing unit in the net (actual sums) and (b) the pyramidal cell (uniform case; sums
measured as somatic EPSP amplitudes). The S/N between the distributions are shown in each
figure.

while the low sums exhibit variability around a mean of about 100. The S/N between the high
and low pattern sums is given in the figure.

For each output unit in turn, the pattern of connection weights in the net was used to set 8000
synaptic connections onto the model pyramidal cell. The 60 input patterns were then presented
to the cell. The somatic EPSP amplitude was recorded for each pattern. The amplitude
distributions due to high and low patterns from the uniform case for the cell corresponding to
the first unit are shown in figure 7(b). Now there is variability in both the high and low sums
and the S/N is about 35% of that of the computing unit.

The mean S/N of the cell compared to the S/N of an output unit was calculated across the
eight output units for the different cell cases, with and without temporal jitter and QV. The
results are summarized in figure 8. The S/N is 70% of that of a computing unit when EPSPs
are scaled and amplified. Temporal jitter and QV now have smaller effects on performance
and the performance differences between the cases are much less than when comparing 100
with 200 active synapses. In this situation, low patterns activate different numbers of synapses.
This variability dominates the spread of low sums, so that the noise in the cell does not greatly
increase the variance of the low sums compared to those for a network unit.

4. Discussion

A compartmental model of a hippocampal CA1 pyramidal neuron has been used to assess
this cell’s ability to accurately calculate the weighted sum of its inputs. Such an ability is
necessary if the network formed by Schaffer collateral inputs from CA3 pyramidal cells onto
CA1 pyramidal cells forms a heteroassociative network, as has been postulated (McNaughton
and Morris 1987). This paper extends previous studies that considered the spatio-temporal
integration of essentially steady-state input in the form of trains of APs (Cook and Johnston
1997, 1999, Graham and Willshaw 1997b). Here, transient inputs in the form of individual
APs have been used and the effects of a variety of forms of noise have been considered. This
provides an indication of the likely ability of the pyramidal cell to rapidly recognize different
patterns of input, as required if the cell is a part of an associative memory network operating at
gamma (40 Hz) frequency (Jensen et al 1996, Lisman and Idiart 1995, Menschik and Finkel
1998).
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Figure 8. Average S/N between high and low pattern input sums for the different pyramidal cell
cases, relative to the equivalent S/N of a computing unit. The three columns for each case are: SY,
synchronous APs: TJ, temporal jitter (time window of 20 ms); and QV, temporal jitter plus QV
(CV = 0.3).

Various forms of noise interfere with signal integration in neurons. Input synapses are
distributed across a dendritic tree, resulting in spatio-temporal distortion of the synaptic signals
as they travel to the final point of integration in the cell body. APs from different input cells
will not be perfectly synchronized at the synapses, and the subsynaptic EPSP amplitude may
vary from AP to AP. The effects of these different sources of noise have been investigated.

4.1. Signal attenuation and passive membrane properties

The amplitude of the voltage response at the soma when a number of synapses are activated
simultaneously depends on the spatial distribution of the synapses. Variations in amplitude
occur for different spatial arrangements of the same number of active synapses (figure 3).
This limits the postsynaptic cell’s ability to discriminate between different numbers of active
synapses. The magnitude of the variation depends on the passive properties of the cell
membrane. The results presented here are based on average values for resistance and
capacitance (Rm = 30 k� cm2, Ra = 200 � cm, Cm = 1 µF cm−2) for the range estimated
from experiments (Mainen et al 1996). Increasing the membrane resistance, Rm, does increase
the S/N by reducing the attenuation of distal EPSPs. For example, using Rm = 100 k� cm2

roughly doubles the S/N between 100 and 200 active inputs. However, it also increases the
duration of the somatic response. The scenario employed here is based on the assumption
that the neuron can respond to a new pattern of input on every cycle of a gamma frequency
(40 Hz) oscillation, without interference from previous inputs. Thus the cell must have a
low membrane resistance, providing a fast time constant. Even if the membrane itself has
high resistance (Rm = 100 k� cm2 or more), low-frequency background synaptic input
(Bernander et al 1991) or suitably timed inhibitory input will serve to lower the effective
membrane resistance. Ion channels in the dendrites, such as the A-type potassium current
and the H-current, may also aid the required rapid membrane repolarization (Hoffman et al
1997, Magee 1999). Addition of these channels to the model (results not shown) resulted in
an earlier peak in the EPSP, due to the A-current, and a shorter time course, due to inactivation
of the H-current, as seen experimentally by Magee (1999). The A-type current also slightly
reduced the S/N as its voltage-dependent activation served to attenuate the higher-amplitude
EPSPs due to 200 active inputs more strongly than lower-amplitude EPSPs from 100 inputs,
bringing the respective EPSP amplitude distributions closer together.
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Perhaps more uncertain is the appropriate value of the axial resistance, Ra. Estimates
range from around 50–400 � cm (Mainen et al 1996). Lowering Ra also improves the S/N by
reducing the attenuation of distal inputs relative to proximal inputs. Subsynaptic voltages are
also reduced and are more spatially uniform. Thus a low value of Ra increases the equivalence
of spatially distributed synapses. Recent electrophysiological recordings show much less
attenuation of EPSPs with distance in CA1 pyramidal cells than for the simulations here,
indicating an Ra of around 70 � cm (Magee and Cook 2000). Higher values of Ra may be
appropriate in separating out the effects of different input pathways located in different sections
of a dendritic tree. Scaling of synaptic conductances or amplification of EPSPs could then
equilibrate the synapses of a common input pathway.

4.2. Scaling and amplification

In contrast to previous studies that concentrated on the possibility of signal amplification by
ion channels in the dendritic tree (Cook and Johnston 1997, 1999), here a reduction in the
attenuation of distal EPSPs was achieved by a simple scaling (increase) in peak synaptic
conductance with distance from the soma (Magee and Cook 2000, Stricker et al 1996),
as well as by amplification with voltage-activated ion channels (Gillessen and Alzheimer
1997, Lipowsky et al 1996, Magee and Johnston 1995). Both methods improved the S/N by
reducing the variance in the somatic EPSP amplitudes from different spatial arrangements of
the same number of active synapses. The significant difference between the methods was that
scaling affected even individual EPSPs from a single activated synapse, while amplification
only boosted population EPSPs where the summed amplitude reached several millivolts. In
reality, a combination of scaling and amplification may be employed. The somatic response to
individual synapses does not correlate with distance, implicating conductance scaling (Magee
and Cook 2000, Stricker et al 1996). Active sodium and calcium channels in dendrites have
been shown to amplify large-amplitude EPSPs in many neuronal types (De Schutter and Bower
1994, Gillessen and Alzheimer 1997, Lipowsky et al 1996, Magee and Johnston 1995). Here,
pattern recognition was improved by the use of a combination of scaling and amplification
(figures 4 and 8).

NMDA channels at synapses and a uniform density of persistent sodium channels or
calcium channels throughout stratum radiatum was used to provide amplification. The
improvement in S/N that resulted is in accord with previous modelling work that tested the
use of calcium and sodium channels in this capacity (Cook and Johnston 1997). If active
inputs are represented by steady-state conductance changes it is possible to calculate the
channel characteristics required to eliminate location-dependent variability from the somatic
response (Cook and Johnston 1999). It is unlikely that active channels could fully eliminate
this variability for transient synaptic inputs. Increasing the density of the active channels
does increase the S/N but, as with high Rm, the EPSP time course is significantly lengthened
due to the long time course of particularly the NMDA and persistent sodium conductances.
As discussed previously, inhibitory conductances and suitably timed inhibitory postsynaptic
potentials (IPSPs) can act to forshorten the EPSPs.

The amplification by active channels resulted in a reduction in the variance of population
EPSP amplitudes and a linearization in the summation of EPSPs. The role of active
conductances in the dendrites in such linearization has been explored in other computer models
(Bernander et al 1994a) and experimentally (Cash and Yuste 1998, 1999). Sodium, calcium and
NMDA conductances may participate in this (Cash and Yuste 1999). Such amplification can
also lead to local nonlinear summation and an enhancement of synaptic location-dependent
variability. This can result in a neuron responding preferentially to synchronous inputs at
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spatially clustered synapses (Mel 1993). With the diffuse input from large numbers of synapses
used here, the entire dendritic tree is depolarized relatively uniformly and the voltage-dependent
amplification serves to boost the input from higher numbers of synapses more than for smaller
inputs, separating the population EPSP amplitudes for different numbers of synapses and hence
increasing the S/N. This is particularly prominent for the NMDA and calcium conductances,
which have a higher voltage activation threshold than the persistent sodium conductance used
here.

In principle, this boosting mechanism could be applied directly to the summed EPSPs
in the soma, rather than throughout the dendritic tree. Recent experiments have implicated a
somatic persistent sodium current in the amplification of EPSPs near threshold (Andreasen and
Lambert 1999). This was tested by adding persistent sodium channels to the soma only. This
did indeed result in a considerable increase in S/N, even when the dendrites were passive (results
not shown). However, there is a tradeoff with this use of regenerative channel activation for
amplification. Too much amplification also leads to an increase in variance in EPSP amplitudes
as small differences in amplitude are magnified (note, for example, the high variance for 300
synapses with calcium channels, shown in figure 5(d)). This can counteract the positive effect
of increasing the separation in EPSP amplitudes for different numbers of synapses, leading to
a decrease in S/N.

In summary, amplification of EPSPs by active conductances distributed diffusely within
the dendritic region of synaptic input robustly improves the integration of transient inputs,
provided the amplification is not too large. Exact details of the time course and voltage
activation range of the active conductances are not crucial, providing activation is sufficiently
fast when inputs are transient, and activation does occur in the dendritic voltage range produced
by the synaptic input. Activation should last for at least the duration of transient input and the
transmission times of distal EPSPs to the soma.

4.3. Temporal jitter

The asynchronous arrival of APs can also act to improve the accuracy of signal integration,
provided the APs are dispersed over a suitably short period of time. Interference between
nearby synaptic responses is reduced and EPSP transmission delays to the soma are
randomized. The optimum time window is dependent on the time course of the EPSPs and
was about 20 ms with passive dendrites. This is sufficiently short that the CA1 cell can still
integrate and react to a pattern of input within one cycle of a 40 Hz oscillation. It is also
compatible with the hypothesis that bursts of presynaptic APs are the fundamental input signal
(Lisman 1997). Bursts in CA3 cells last less than 25 ms and, given the probabilistic nature of
synaptic transmission, each burst may only produce a single postsynaptic EPSP at some time
within the burst period. Thus bursting, together with low probabilities of transmitter release,
can provide a suitable dispersion in time of the synaptic EPSPs.

Asynchronous APs may also maximize cell firing in response to trains of synaptic input.
This is due to not wasting input during cell refractory periods, rather than by reducing synaptic
saturation (Bernander et al 1994b). Hence very precise synchronicity of inputs is not desirable,
even if the receiving neuron is acting as a ‘coincidence detector’.

4.4. Quantal variance

QV at the maximum level estimated experimentally (Bolshakov and Siegelbaum 1995, Forti
et al 1997, Turner et al 1997) is a major source of noise, but not as significant as that due to
spatio-temporal integration. However, a neuron is unable to compensate for such noise by the
use of active conductances in the same way that spatio-temporal noise can be dealt with.
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If pattern recognition is a multi-step process, such as during recall in an autoassociative
memory, then a small amount of synaptic noise can actually be beneficial (Amit 1989, Bennett
et al 1994). In this situation it introduces variability into each neuron’s output, that stops the
network of neurons becoming stuck in false patterns of activity that do not correspond to the
required stored memory.

4.5. Pattern recognition in an associative memory

In a simple pattern recognition task based on a heteroassociative memory model, a pyramidal
cell including all these forms of noise may have a S/N that is 70–80% of that achieved by a
noise-free network computing unit. This is achieved using only transient pattern presentation
in the form of single, quasisynchronous APs on each active input. Recognition is very rapid
(within 5–20 ms). Earlier work with a model neocortical pyramidal cell showed a one- to
two-order-of-magnitude reduction in the S/N, when the input signals were in the form of trains
of APs of a fixed mean frequency (Graham and Willshaw 1997b). With such steady-state
input, active conductances can be tuned to remove location-dependent variability (Cook and
Johnston 1997, 1999) and linearize the response to different numbers of inputs (Bernander et al
1994a). This can dramatically improve the neuron’s pattern recognition performance (Cook
and Johnston 1997). With the transient input signals used here, however, the neuron achieved
40% of the performance of the computing unit even without synaptic conductance scaling or
amplification to combat spatial effects. This rose to between 70 and 80% with the inclusion
of active conductances. The membrane properties of a neuron dictate the nature of input to
which it is most responsive. It would seem that CA1 pyramidal cells are well tuned to respond
to transient inputs over a time window of around 25 ms and so can plausibly recognize patterns
at gamma frequency. When the basic passive characteristics are poorly matched to the input,
voltage-gated ion channels distributed throughout the dendritic tree can shape the membrane
properties to suit the input.

4.6. Other forms of noise

Other forms of noise will also affect a biological neuron’s ability to function as a pattern
recognition device. A comparison between the effects of the forms of noise considered here
and other sources of noise, namely partial connectivity and probabilistic synaptic transmission,
can be made by considering the variance in input sums with a mean value of 200, when the
different forms of noise are present individually.

In a network such as that formed by the CA3 Schaffer collateral input onto CA1
pyramidal cells, each CA1 cell will receive input from only a small fraction of the CA3
cells. Consequently, each CA1 cell receives only a sample of the total activity in CA3. For the
heteroassociative memory model this means that even input patterns that the output cell should
recognize will consist of variable numbers of active inputs, rather than the fixed number used
here. Suppose the CA1 cell receives connections from 5% of the CA3 cells (Bennett et al
1994, Bolshakov and Siegelbaum 1995). If each input pattern is represented by 4000 active
CA3 cells, the mean high pattern input sum at the CA1 cell will be 200 active synapses with
a standard deviation of 14, giving a coefficient of variation of 0.07. In the results presented
here, the noisy input sums for exactly 200 active inputs have a coefficient of variation of
between 0.03 and 0.06. Thus partial connectivity may represent an even more serious source
of noise than spatio-temporal integration or QV. Appropriate threshold setting during recall can
ameliorate the effects of partial connectivity in neural network models of associative memory
(Buckingham 1991, Marr 1971). It is possible that such thresholding strategies could be
employed in neurobiological networks as well (Graham and Willshaw 1995).



488 B P Graham

If the input from CA3 cells consists of single APs, rather than the bursts discussed earlier,
then probabilistic transmission will also be a considerable source of noise (Allen and Stevens
1994). Suppose the CA1 cell is connected to all of the CA3 cells that belong to input patterns
with which it is associated. Given that the probability that a presynaptic AP causes an EPSP
is only 0.2 and the input pattern consists of 1000 active cells, the mean high pattern sum is
again 200, but with a standard deviation of 13. If the probability of transmission is 0.8 and
patterns contain 250 cells, the standard deviation reduces to 6. Thus the noise from probabilistic
transmission will be similar in magnitude to the forms of noise considered here.

4.7. Summary

The work presented here demonstrates that, despite many sources of noise, a pyramidal neuron
can rapidly (within 5–20 ms) recognize transiently presented patterns of input. This supports
the hypothesis that networks of pyramidal cells can operate as associative memory devices and
recall stored patterns at gamma (40 Hz) frequency.

Spatio-temporal dispersion of input signals, QV and variation in signal arrival times all act
to distort the summation of inputs by the neuron. Increases in peak synaptic conductances with
distance and boosting of distal inputs by voltage-dependent conductances act to reduce spatial
variations. Preferential amplification of large signals by voltage-dependent conductances also
aids discrimination of such signals from weaker inputs.

The cell’s ability to act as a pattern recognition device is sufficient that a network of cortical
pyramidal cells can function as an associative memory when Hebbian learning is used to store
patterns by altering connection weights. As such a memory nears capacity, the noise due to
other stored patterns comes to dominate the pattern recall process and the pattern recognition
performance of a pyramidal cell approaches within a factor of two of that of a computing
unit in an equivalent artificial neural network model. Consequently, estimates of the memory
capacity of biological networks can reasonably be based on the capacity of artificial models
using simple computing units.
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Appendix. Pyramidal cell model details

Cell: rat CA1 pyramidal cell as per figure 2 of Major et al (1993).
Compartments: 890
Passive properties: Rm = 30 k� cm2, Cm = 1 µF cm−2, Ra = 200 � cm throughout neuron

(Mainen et al 1996). Membrane area is adjusted to compensate for spine area.
Synapse: excitatory, AMPA and NMDA type with synaptic current

Is = gs(V − Es)

where V is the local membrane potential, Es = 0 mV is the synaptic reversal potential
and gs is the synaptic conductance given by

gs = (1 − α)gAMPA + αgNMDA

where 0 � α � 1 determines the relative contributions of AMPA and NMDA receptors to
the total conductance; α is 0 for AMPA-only synapses, 0.1 for AMPA and NMDA synapses
with passive dendrites and 0.05 with synaptic conductance scaling or active dendrites.
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The AMPA conductance is

gAMPA = ḡs
τ1τ2

τ2 − τ1
(e−t/τ2 − e−t/τ1)

where τ1 = 0.2 ms, τ2 = 2 ms and ḡs = 6 nS gives a peak AMPA-only conductance of
about 1 nS (Forti et al 1997, Mainen et al 1996).
The NMDA conductance is voltage dependent and is described by the model of Mel
(1993):

gNMDA = ḡs
e−t/τ2 − e−t/τ1

1 + µ[Mg2+]e−γV

where τ1 = 0.66 ms, τ2 = 80 ms, µ = 0.33 mM−1, [Mg2+] = 1 mM and γ = 0.06 mV−1.
In all simulations ḡs was set to give a peak somatic depolarization of ≈20 mV with 200
active synapses. Synapses were located directly on the dendritic membrane. Initial studies
locating synapses on spines showed that the spines had only a very small quantitative effect
on the voltage response (Cook and Johnston 1997).

Scaling: synaptic peak conductance, ḡs is scaled to give constant EPSP amplitude in the soma
when dendrites are passive, via the empirical equation

ḡs = g0(1 + 0.020 88d)

where d is the soma–synapse distance (µm) and g0 is the maximum conductance at the
soma (ḡs = 1 nS gives peak somatic depolarization of ≈20 mV with 200 AMPA-only
synapses).

Voltage-gated ion channels: EPSPs amplified by persistent sodium channels or calcium
channels uniformly distributed throughout stratum radiatum, and in some simulations
the EPSP time course is affected by A-type potassium channels and an H-type mixed
cation current.
Persistent sodium current given by Lipowsky et al (1996)

Ip = gpm(V − ENa)

where ENa = 65 mV and activation, m is controlled by standard first-order dynamics with

αm = −1.74(V − 11)

(exp(−(V − 11)/12.94) − 1)

βm = 0.06(V − 5.9)

(exp((V − 5.9)/4.47) − 1)

τm = 1/(αm + βm)

m∞ = 1/(1 + exp(−(V + 49)/5)).

A peak conductance of ḡp = 0.01 mS cm−2 was used when this was the only active
conductance, being reduced to 0.005 mS cm−2 when other voltage-gated conductances
were present. In some simulations the current was only added to the soma, in which case
ḡp = 0.2 mS cm−2 was used.
Low-voltage-activated, inactivating calcium current given by Lipowsky et al (1996),
Warman et al (1994)

ICa = gCam
2h(V − ECa)
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where ECa = 80 mV and (in)activation kinetics are controlled by

αm = −0.16(V + 26)

(exp(−(V + 26)/4.5) − 1)

βm = 0.04(V + 12)

(exp((V + 12)/10) − 1)

τm = 1/(αm + βm)

m∞ = αm/(αm + βm)

αh = 2

exp((V + 94)/10)

βh = 8

(exp(−(V − 68)/27) + 1)

τh = 1/(αh + βh)

h∞ = αh/(αh + βh).

A peak conductance of ḡCa = 1 mS cm−2 was used when this was the only active
conductance, being reduced to 0.5 mS cm−2 when other voltage-gated conductances were
present.
The model of an A-type potassium current used is that given by Migliore et al (1999).
Channel density increased linearly with distance from the soma to six times the proximal
density after 500 µm. A peak proximal conductance of ḡA = 0.2 mS cm−2 was used
here.
The model of the H-type mixed cation current is given by Borg-Graham (1998). This
current is depolarizing, with a reversal potential of EH = −17 mV, but is mostly activated
at hyperpolarized potentials. As with the A-current, the channel density increases with
distance from the soma (Magee 1999) to seven times the proximal density after 500 µm.
A peak proximal conductance of ḡH = 0.03 mS cm−2 was used here.
The fast sodium and delayed-rectifier potassium current models from Bernander et al
(1994a) were used to produce spiking in the soma to test cell output to EPSPs.

Temporal jitter: AP arrival times uniformly distributed over a small time window of 20 ms.
Quantal variance: maximum synaptic conductances varied around the mean value with a

coefficient of variation of 0.3.
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