
2 Neuroscience Overview

1 INTRODUCTION

If we are to understand how the brain sees, learns, and is aware, we must
understand the architecture of the brain itself . The brain 's computational style
and the principles governing its function are not manifest to a casual inspection

. Nor can they be just inferred &om behavior , detailed though the behavioral 

descriptions may be, for the behavior is compatible with a huge number
of very different computational hypotheses, only one of which may be true of
the brain . Moreover , trying to guess the governing principles by drawing on

existing engineering ideas has resulted in surprisingly little progress in understanding 
the brain, and the unavoidable conclusion is that there is no substitute

for conjuring the ideas in the context of observations about real nervous systems
: &om the properties of neurons and the way neurons are interconnected .

This chapter focuses on the "neuroscience" 
component of the "

computa -

tional neuroscience" 
synergy . Ideally , computer modelers should know as

much neuroscience as practising neuroscientists . In fact, however , there is too
much neuroscience to be thoroughly mastered even by a single neuroscientist .
An anatomist may know a lot about his designated region of the visual cortex ,
rather less about other cortical areas and subcortical brain structures, less again
about central pattern generation in the spinal cord, and even less about plasticity 

of the vestibulo -ocular reflex . Our aim is to prepare the reader, &om whatever 

constituency , for the general conceptual &amework we deploy and the

specific neurobiological examples discussed within that &amework . Consequently
, the material in this chapter is organized to cohere with a computa -

tional approach to exploring certain aspects of nervous system function .
Because levels turn out to be pivotal in our grand scheme of things , charac-

terizing levels in neurobiology is a matter of the first importance . The presentation 
in this chapter is therefore keyed to illustrating anatomical and phys -

iological properties seen at different levels. Although understanding the

techniques whereby neurobiological data are gathered is also essential, to keep
the wagons moving we elected to provide this in the appendix at the end. Although 

this chapter is meant to provide some basic neuroscience background ,

Substantial portions of this chapter are taken from Sejnowski and Church land (1989).



neurocomputational models.

Discussions concerning the nature of psychological phenomena and their neu-

robiological bases invariably make reference to the notion of " levels." In trying
to be a bit more precise about what is meant by 

"
leveL

" we found three

different ideas about levels in the literature : levels of analysis, levels of organization
, and levels of processing. Roughly speaking, the distinctions are drawn along

the following lines: levels of organization are essentially anatomical, and refer

to a hierarchy of components and to structures comprising these components .

Levels of processing are physiological , and refer to the location of a process
relative to the transducers and muscles. Levels of analysis are conceptual,

and refer to different kinds of questions asked about how the brain performs a

task: into what subtasks does the brain divide the tasks, what processing steps
execute a subtask, and what physical structures carry out the steps? In what

follows , we elaborate on these distinctions .

Analysis

A framework for a theory of levels, articulated by Marr (1982), provided an

important and influential background for thinking about levels in the context

of computation by nervous structures.! This framework drew upon the conception 

of levels in computer science, and accordingly Marr characterized

three levels: (1) the computational level of abstract problem analysis, decomposing 

the task (e.g., determining the 3-D depth of objects from the 2-D

pattern on the retina ) into its main constituents ; (2) the level of the algorithm ,

specifying a formal procedure to perform the task so that for a given input ,
the correct output results; and (3) the level of physical implementation , constructing 

a working device using a particular technology . This division really

corresponds to three different sorts of questions that can be raised about

a phenomenon : (1) how does the problem decompose into parts?, (2) what

principles govern how the parts interact to solve the problem ?, and (3) what

is the stuff whose causal interactions implement the principles?

An important element in Marr 's view was that a higher -level question was

largely independent of the levels below it , and hence computational problems
of the highest level could be analyzed independently of understanding the

algorithm which performs the computation . Similarly , the algorithmic problem
of the second level was thought to be solvable independently of understanding 

its physical implementation . Thus his preferred strategy was top -down

rather than bottom -up. At least this was the official doctrine though , in practice
, downward glances figured significantly in Marr 's attempts to find problem 

analyses and algorithmic solutions . Ironically , given his advocacy of the

top -down strategy , Marr 's work was itself highly influenced by neurobiologi -

cal considerations , and implementation facts constrained his choice of problem

relevant neurosciencein the context of specific
will be introduced .

1. LEVELS IN NERVOUS SYSTEMS

Levels of
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and nurtured his computatioria I and algorithmic insights. Publicly, the advo-
cacy' of the top-down strategy did carry the implication, dismaying for some
and comforting for others, that neurobiological facts could be more or less
ignored, since they were, after all, just at the implementation level.

Unfortunately, two very different issues were confused in the doctrine of
independence. One concerns whether, as a matter of discovery, one can figure
out the relevant algorithm and the problem analysis independently of facts
about implementation. The other concerns whether, as a matter of fonna' theory,
a given algorithm which is already known to perform a task in a given machine
(e.g., the brain) can be implemented in some other machine which has adifferent 

architecture. So far as the latter is concerned, what computational theory
tells us is that an algorithm can be run on different machines, and in that sense
and that sense alone, the algorithm is independent of the implementation. The
formal point is straightforward: since an algorithm is formal, no specific physical 

parameters (e.g., vacuum tubes, Ca2+) are part of the algorithm.
That said, it is important to see that the purely fonnal point cannot speak to

the issue of how best to discover the algorithm in fact used by a given machine
, nor how best to arrive at the neurobiologically adequate task analysis.

Certainly it cannot tell us that the discovery of the algorithms relevant to
cognitive functions will be independent of a detailed understanding of the
nervous system. Moreover, it does not tell us that any implementation is as
good as any other. And it had better not, since different implementations
display enormous differences in speed, size, efficiency, elegance, etc. The formal 

independence of algorithm from architecture is something we can exploit
to build computationally equivalent machines once we know how the brain
works, but it is no guide to discovery if we do not know how the brain works.

The issue of independence of levels marks a major conceptual difference
between Marr (1982) and the current generation of researchers studying neural
and connectionist models. In contrast to the doctrine of independence, current
research suggests that considerations of implementation playa vital role in the
kinds of algorithms that are devised and the kind of computational insights
available to the scientist. Knowledge of brain architecture, far from being
irrelevant to the project, can be the essential basis and invaluable catalyst for
devising likely and powerful algorithms- algorithms that have a reasonable
shot at explaining how in fact the neurons do the job.

Levels of Organization

Marr' s three-level division treats computation monolithically, as a single kind
of level of analysis. Implementation and task-description are likewise each
considered as a single level of analysis. Yet when we measure Marr' s three
levels of analysis against levels of organization in the nervous system, the fit is
poor and confusing at best.2 To begin with, there is organized

. 
structure at

different scales: molecules, synapses, neurons, networks, layers, maps, and systems 
(figure 2.1). At each structurally specified stratum we can raise the compu-

tational question: what does that organization of elements do? What does it

Neuroscience Overview
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Figure 2.1 Levels of organization in the nervous system, as characterized by Gordon Shepherd
(1988a).
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contribute to the wider, computational organization of the brain? In addition,
there are physiological levels: ion movement, channel configurations, EPSPs
(excitatory postsynaptic potentials), I P S Ps (inhibitory postsynaptic potentials),
action potentials, evoked response potentials, and probably other intervening
levels that we have yet to learn about and that involve effects at higher
anatomical levels such as networks or systems.

The range of structural organization implies, therefore, that there are many
levels of implementation and that each has its companion task description. But
if there are as many types of task descriptions as there are levels of structural
organization, this diversity could be reflected in a multiplicity of algorithms
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Figure 2.2 A Battened projection of the cerebral cortex in the right hemisphere of the macaque
monkey. Stippling indicates cortical areas implicated in visual processing. (Upper left) Lateral
view of macaque brain. showing visual areas. (Lower left) Medial view of macaque brain. (Reprinted 

with pelmission from van Essen and Anderson 1990.)
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that characterize how the tasks are accomplished. This in turn means that the
notion of the algorithmic level is as over-simplified as the notion of the implementation 

level.
Note also that the very same level of organization can be viewed computa-

tionally (in terms of functional role) or implementationally (in terms of the
substrate for the function), depending on what questions you ask. For example,
the details of how an action potential is propagated might, from the point of
view of communication between distant areas, be considered an implementation

, since it is an all-or-none event and only its timing carries information.
However, from a lower structural level- the point of view of ionic distributions

- the propagating action potential is a computational construct whose
regenerative and repetitive nature is a consequence of several types of nonlinear 

voltage-dependent ionic channels spatially distributed along an axon.
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Processing

The focus for this levels concept is the link between anatomy and what is
represented in the anatomy. As a first pass, it assumes that the greater the
distance from cells responding to sensory input, the higher is the degree of
information processing. Thus the level-rank assigned is a function of synaptic
distance from the periphery. On this measure, cells in the primary visual area of
the neocortex that respond to oriented bars of light are at a higher level than
cells in the lateral geniculate nucleus (LGN), which in turn are at a higher level
than retinal ganglion cells. Because the nature of the representations and the
transformations on the representations are still poorly understood, only the
relative level- x is higher or lower than y- rather than the ordinal level-
first, second, etc.- is referred to.

Once the sensory information reaches the cerebral cortex, it fans out
through cortico-cortical projections into a multitude of parallel streams of
processing. In the primate visual system, 2S areas that are predominantly or
exclusively visual have been identified (van Essen et al. 1991; figure 2.2). Many
(perhaps all) forward projections are matched by a backward projection, and
there are even massive feedback projections from primary visual cortex to the
LGN. Given these reciprocal projections, the processing hierarchy is anything
but a one-way ladder. Even so, by examining the cortical layer into which
fibers project, it is possible to find some order in the information flow. Forward
projections generally terminate in the middle layers of cortex, and feedback
projections usually terminate in the upper and lower layers.3 So far, however,
the function of these feedback pathways is not established, though the idea
that they have a role in learning, attention, and perceptual recognition is
not unreasonable. If higher areas can affect the flow of information through
lower areas, then strictly sequential processing cannot be taken for granted
(figure 2.3).

The organization typical of earlier sensory areas is only approximately,
roughly, and incompletely hierarchical.4 

Beyond the sensory areas, moreover,
not even that much hierarchy is manifest. The anatomy of frontal cortex and
other areas beyond the primary sensory areas suggests an information organization 

more like an Athenian democracy than a Ford assembly line. Hierarchies
typically have an apex, and following the analogy, one might expect to find a

characteristic patterns for the cells of origin of different pathways. Bilaminar (B) patterns, shown
on the right , include approximately equal numbers of cells from super Adal and deep layers (no
more than a 700/0- 30% split) and are found to occur with all three types of tennination pattern.
Unilaminar patterns, shown on the left, include predominantly super Adal-layer inputs (S pattern)
which correlate with F-type tenninations, and predominantly in &agranular-layer (I pattern) inputs 

which correlate with M-type tenninations. Within this general framework, a number of
variations on a theme can be encountered. Some pathways tenninate primarily in super Adal
layers, but they are grouped with the M pattern because they avoid layer 4. Other pathways are
quasi-columnar, but do not include all layers; they are classified as a C pattern if the labeling in
layer 4 is neither heavier nor sparser than in adjoining layers. Filled ovals, cell bodies; angles,
axon terminals. (From Felleman and van Essen 1991.)

Levels of

Neuroscience Overview



Figure 2.4 Model for decision-making in the insect nervous system. In the CNS, stations 1, 2, 3
contain local networks 1, 2, 3. These stations approximate the brain, the subesophageal (SOG),
and segmental ganglia of the locust. The output of each station results from a consensus between 

the activity of the inputs and the local networks in that station, so the output of each
station is different. The stations are thus linked in several parallel loops, and the output of the
whole system is the consensus of the activity in all the loops. (From Altman and Kien 1989.)

CNS
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brain region where all sensory information converges and from which motor
commands emerge. It is a striking fact that this is false of the brain. Although
there are convergent pathways, the convergence is partial and occurs in many
places many times over, and motor control appears to be distributed rather
than vested in a command center (Arbib 1989, Altman and Kien 1989; figure
2.4).

The assumption that there is a sensory-processing hierarchy, if only to a first

approximation, affords the possibility of probing the processing stages by
linking various behavioral measures, such as task-relative reaction time (RT) , to
events taking place in the processing hierarchy at different times as measured

by cellular response. To put it more crudely, temporal ordering helps determine 
what is cause and what is effect. Accuracy of response under varying

conditions can be measured, and both humans and animals may be subjects.
This is an important method for triangulating the brain areas involved in

executing a certain task and for determining something about the processing
stages of the task. For example, on the physiological side, one may measure the



delay between the presentation of a moving target and the first response by
motion-sensitive cells in visual area MT , and on the behavioral side one may
measure the response latency relative to degrees of noise in the stimulus. One
surprise is that the latencies for signals reaching the visual areas in the cortex
are so long, relative to the behavioral RT. The latency for MT is about 50-
60 msec, and about 100 msec in inferotemporal cortex. Since human RT to
a complex object is on the order of 150- 200 msec including assembling
the motor response, sending the signal down the spinal cord, and activating
the muscles, this suggests that surprisingly few processing steps intervene
between detection in MT and preparing the response in the motor cortex,
striatum, cerebellum, and spinal cord. Such data help constrain theories about
the nature of the processing.

By way of illustration, consider a set of experiments by William Newsome
and colleagues (1989) in which they show a correlation between the accuracy
of the behavioral response to motion detection and the spiking frequency of
single neurons responding to motion stimuli in MT . ( Newsome et al. 1989) In
the task, tiny dots move randomly on a TV screen. The monkey is trained to
respond as soon as it detects coherent motion, to either the right or the left.
Across trials, what varies is the number of dots moving coherently and their
direction of motion. The monkey detects direction of motion with as few as
four dots moving coherently, and his accuracy improves as the number of dots
moving together increases. What about the cells in MT? Suppose one records
from a cell that prefers right-going motion. The visual display is set up so that
it is matched to the cell's receptive Aeld, with the result that the experimenter
has control of the minimum stimulus needed to produce the maximum response

. So long as fewer than four dots move coherently, the cell does not
respond. With increasing numbers of dots moving coherently in the cell's
preferred direction, the cell responds more vigorously. Indeed, the accuracy
curve displayed in the monkey

's behavior and the spiking-frequency curve
displayed by the single cell are, to a first approximation, congruent (Agure 2.5).
This implies, to put it crudely, that the information contained in the cellular
responses of single sensory neurons and the information contained in the
behavioral response are roughly on par. It should, however, be kept in mind
that the monkeys were very highly trained on this task and that the sensory
stimulus was chosen to match the optimal response of each neuron. In a naive
monkey, there may not be such close correspondence between the response of
the single cell and the overt behavior.

The next phase of the experiment tests whether the information carried
by directionally selective cells found in MT is really used in generating the
response. To do this, Newsome and colleagues presented left-going visual
stimuli, and at the proper latency- they electrically stimulated the column containing 

cells preferring right-going visual stimuli. How did the animal behave?
Would the electrical stimuli demonstrate its effectiveness by overriding, at
least sometimes, the visual stimultl The monkey behaved as though he saw
right-going stimuli; more exactly, the electrical stimulus decreased the probability 

that the animal would respond to the visual stimulus and increased the

Neuroscience Overview
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Figure 2.5 (a) Responses of a directionally selective neuron (in visual area MT) at three different
motion correlations spanning physiological threshold. Hatched bars represent responses to
motion in the neuron's preferred direction; solid bars indicate responses to motion 1800 opposite
to the preferred direction. Sixty trials were perfonned in each direction for each of the three
correlation levels. Response distributions for a range of correlation levels were used to compute
a "neurometric" function that characterized the neuron's sensitivity to the motion signal and
could be compared with the psychometric function computed horn the monkey

's behavioral
response. (b) Comparison of simultaneously recorded psychometric and neurometric functions.
Opens circles, psychophysical performance of the monkey; filled circles, performance of the
neuron. Psychophysical performance at each correlation is given by the proportion of trials on
which the monkey correctly identified the direction of motion. Neuronal performance is calculated 

Horn distributions of responses of the directionally sensitive MT neuron. The physiological
and psychophysical data fonn similar curves, but the data for the neuron lie to the left of the data
for the monkey, meaning that the neuron was somewhat more sensitive than the monkey. (From
Newsome, Britten, and Movmon [1989]. Reprinted by permission Horn Nature 341: 52- 54.
Copyright @ 1989 Maanillan Magazines Ltd.)
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probability that it would respond as though presented with a stimulus in the
opposite direction. This result implies that the cells' responses- and hence
the information carried in those responses':'--are behaviorally significant
(figure 2.6).

During the past hundred years, experimental psychologists have assembled
an impressive body of RT information, and it is a valuable data base upon
which neuroscientists may draw. Thus consider also a set of studies by Requin
and colleagues (Requin et al. 1988, Riehle and Requin 1989). In the first stage,
they measured the monkey

's RT where the task was to make a wrist flexion in
a certain direction and by a certain amount as indicated by a signal. There were
basically three conditions: the monkeys were precued or not, and if they were
precued, the cue indicated either the direction or the extent of the movement.
Precuing was found to have a large effect on the RT but only a slight effect on
the movement time, showing that precuing has its major effect on programming 

and preparing for the movement, rather than on the speed of execution
of the movement. Additionally , if the advance cue specified where but not how
much, the RT was shortened more than if the cue specified how much but not
where. This suggests that information about extent of movement cannot be
efficiently incorporated until the system knows the direction of the movement.

In the second stage, Riehle and Requin investigated the electrophysiological
properties of cells in the primary motor cortex ( MI) and the premotor cortex
(PM). They found execution-related neurons, which were more common in MI ,
and preparation-related, directionally selective neurons, which were more
common in PM. This coheres with other physiological data, and implies that
PM probably involves an earlier stage of processing than does MI , since PM
has more to do with preparing for the movement than with executing it . Moreover

, within the class of preparation-related cells in PM, they found two
subclass es: those related to programming the muscle movements, and those
related to preprocessing the general components of the movement program.
This is another instance of research that narrows down hypotheses about
relative order of processing and the structures involved in a distinct aspect
of processing by establishing behavioral reaction times and by correlating
those data with specific responses of cells.!

3 STRUCTURE AT VARIOUS LEVELS OF ORGANIZA nON

Identification of functionally significant structure at various spatial scales in
nervous systems proceeds in partnership with hypotheses about a given struc-
ture's role in the nervous system

's performance and the manner in which that
structure's own subcomponents are organized to constitute the mechanisms to
carry out that role. To be sure, functional architecture at various spatial scales is
all part of one integrated, unified biological machine. That is, the function of a
neuron depends on the synapses that bring it information, and, in turn, the
neuron process es information by virtue of its interaction with other neurons in
local networks, which themselves playa particular role by virtue of their place
in the overall geometry of the brain.
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Figure 2.6 Microstimulation in cortical area MT blases perceptual judgments of motion. (A)
Schematic diagram of the experimental protocol showing the spatial arrangement of the fixation
point (FP), receptive field (shaded), stimulus aperture (thick circle), and response light emitting
diodes (LE Os). (B) Schematic drawing illustrating the temporal sequence of events during a
microstimulation trial. At time T 1 the fixation point appeared, and the monkey transferred its
gaze to the fixation point, as indicated by the deflection in the eye position trace. At time T 2 the
visual stimulus appeared, and the train of electrical stimulation pulses began. The monkey was
required to maintain fixation for 1 sec until time T 3. The fixation point, the visual stimulus, and
the microstimulation pulses were turned off at time T 3' and the target LED turned on. The
monkey then indicated its judgment of motion direction by making a saccadic eye movement to
one of the two response LE Os. (Right) The effect of microstimulation on performance for two
stimulation sites in area MT (C and D). The proportion of decisions in the preferred direction is
plotted as a function of the percent correlation in the moving dots during the stimulus presentation 

(positive correlation values indicate motion in the neuron's preferred direction). In half the
trials (closed circles), microstimulation was applied simultaneously with the visual stimulus; the
other trials (open circles) contained no microstimulation. The shift in the curves caused by the
microstimulation is equivalent to adding 7.7% correlated dots (0 and 20.1% ( 0). (From Sai7man,
Britten, and Newsome 1990. Reprinted by pennission from Nature 346: 174- 177. Copyright @
1989 Maanillan Magazines Ltd.)
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Accordingly , which structures really constitute a level of organization in the
nervous system is an empirical , not an a priori matter . We cannot tell , in
advance of studying the nervous system, how

' 
many levels there are, nor what

is the nature of the structural and functional features of any given level . Some

techniques used to study various levels will be surveyed in the appendix . In
this section, seven general categories of structural organization will be discussed

. In fact, however , the count is imprecise, for several reasons. Further
research may lead to the subdivision of some categories, such as systems, into
Aner-grained categories, and some categories may be profoundly misdrawn
and may need to be completely reconfigured . As we come to understand more
about the brain and how it works , new levels of organization may be postulated

. This is especially likely at higher levels where much less is known than at
the lower levels.

Systems

To standardize references to brain locations, prominent landmarks, including
major gyri , fissures, and the major lobes have been labeled (figures 2.7, 2.8).

Using tract-tracing techniques, neuroanatomists have identified many systems
in the brain. Some correspond to sensory modalities, such as the visual system;
others, for example, the autonomic system, respect general functional characteristics

. Yet others, such as the limbic system, are difficult to define, and may
turn out not to be one system with an integrated or cohesive function. The

components of these systems are not neatly compartmentalized but are distributed 
widely in the brain and are connected by long fiber tracts. For example, a

particular brain system for long-term memory may involve such diverse structures 
as the hippo campus, the thalamus, the &ontal cortex, and basal forebrain

nuclei (Mishkin 1982). In this respect brain systems contrast quite vividly , and
perhaps discouragingly, with systems designed by an engineer, where components 

are discrete and functions are compartmentalized.
One of the earliest systems concepts was that of a reflex arc, such as the

monosynaptic reflex in the knee-jerk responseS herring ton 1906; figure 2.9).
The pathways of some reflex es have now been traced in great detail; examples
are the vestibulo-ocular reflex, which stabilizes images on the retina when the
head is moving (Robinson 1981), and the gill withdrawal reflex in Aplysia,
which has been a focus for research into the molecular mechanisms of plasticity
(Kandel et al. 1987). The reflex arc is not a useful prototype for brain systems in
general- or even, it appears, for most reflex es, such as the stepping reflex in
the cat, or the nociceptive reflex (withdrawal of limb &om a painful stimulus).
Take, for example, the smooth pursuit system for visually tracking moving
targets, where one pathway originates in the retina, leads to the lateral geniculate 

nucleus (LGN), to the cortex and through distinct visual topographic
areas, down to the pons, and eventually to the oculomotor nuclei (Lisberger et
al. 1987). (See chapter 6.) Despite the machine-like quality of smooth pursuit, it
is to some extent under voluntary control and depends on expectation as well

Neurosdence Overview
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as the visual stimulus. Behaviors more sophisticated than simple reflex es probably 
exploit more complex computational principles.

In this regard, two important features of brain systems should be mentioned
. First, there are almost always reciprocal (feedback) connections between 
brain areas, at least as rich in number as the feed forward connections.

For example, the recurrent projections from the visual cortical area VI back to
the LGN are about ten times as numerous as those from the LGN to the VI .
Second, although the simple models of reflex arcs suggest that a single neuron
may be sufficient to activate the neuron on which it synapses, in fact a large
number of neurons are almost always involved, and the effect of any single
neuron on the next is typically quite small. For example, an important feature
in the visual system is that input from a specific neuron in the LGN generally
makes relatively weak synaptic contacts on a large population of cortical cells
rather than a strong synaptic effect on just one or a few neurons ( Martin 1984).
This implies that cortical neurons rely on a convergence of many afferents, and
correlations between pairs of neurons tends to be relatively weak. 6 There may
be interesting exceptions to this; for example, chandeijer cells in cortex make
inhibitory connections on the axon hillocks of their targets, and they may, as
single cells, have a strong, decisive effect on their target cells. Another exception 

is the strong influence that single climbing fibers have on single Purkinje
cells in the cerebellum.

Topographic Maps

A major principle of organization within many sensory and motor systems is
the topographic map. For example, neurons in visual areas of cortex, such as

�
Figure 2.8 Major gyri and fissures of the human cerebral cortex. (Left) View &om above (donal
aspect). (Right) View &om below (ventral or inferior, aspect). (Courtesy Hanna Damasio.)

Neuroscience Overview



Figure 2.9 Schematic diagram of the pathways for the stretch reflex. Stretch recepton in mulde

spindles read to changes in length of the muscle, and afferent Aben carry this information along
the donal roots to the spinal cord where they synapse on extensor motoneurons, which extend
the knee, and inhibitory interneurons, which reduce activity in motor neurons that produce
contractions of the antagonistic Aexor muscles. Both of these actions combine to produce a
coordinated expression of the knee-jerk reflex. This information is also conveyed to higher brain
centen, which in turn can modify the reflex behavior through descending pathways to the spinal
cord. (From Kandel 1985.)

VI , are arranged topo graphic ally, in the sense that adjacent neurons have

adjacent visual receptive fields and collectively they constitute a map of the
retina. Because neighboring processing units (cell bodies and dendrites) are
concerned with similar representations, topographic mapping is an important
means whereby the brain manages to save on wire and also to share wire

( Mead 1989). It is significant that the maps are distorted, in the sense that some

regions of the body surface occupy larger regions of cortex than others. The
fovea, for example, occupies a r.elatively large part of VI , and the hands

occupy a relatively large area of the somatosensory cortex. In visual area
MT of the macaque, which contains many neurons selective for direction of
motion, the lower half of the visual field has greater representation than the

To . . , ~ .;:
. . ~
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Figure 2.10 Schematic drawing of the multiple representations of the body surface in the primary 
somatic sensory cortex of the owl monkey. Because the cortex of the owl monkey is relatively 
flat, most of the body representation is located on the surface rather than in the convolutions

found in the speaes of most other primates. (A) Two representations of the hand are shown in
areas 3b and 1. (B) The hand of the owl monkey is innervated by the median and ulnar nerves,
which have different territory on the ventral surface (Bl) and are represented in adjacent areas of
cortex in each of the two maps (B2). The topographical organization of the cortical map for the
ventral surface of the hand is highly ordered (B3) in both areas. Cortex devoted to the ventral
surface is indicated in white; that devoted to the dorsal surface, in dark shading. D. to Ds, digits;
P. to P~, palmar pads; I, insular pad; H, hypothenar pads; T, thenar pads. (From Kandel and
Schwartz 1985).

upper half. This makes sense because it is the lower half of the visual field
where hand skills- searching for termites, picking up lice, and so forth-

require the greatest acuity ( Maunsell and van Essen 1987.)'

In the visual systems of monkeys, physiologists have found about 2S distinct 
areas, most of which are topo graphic ally mapped.

s A similar hierarchy of
multiple topographic maps is found for body location in the somatosensory
system (Kaas et at. 1979; figure 2.10), for frequency in the auditory system
(Merzenich and Brugge 1973), and for muscle groups in the motor system
(Ferrier 1876, Asanuma 1973). One possible exception is the olfactory system,
but even odors may be spatially organized at the level of the olfactory bulb
(Stewart et at. 1979). To some extent the different sensory maps can be distin-

Neuroscience Overview
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guished by differences in the fine details in the laminations of neurons (see next

section) and their cellular properties , but often these are so subtle that only

physiological techniques can distinguish bouridaries between different cortical

areas.

Some brainstem structures, such as the superior colliculus , also display this

organization . The cerebellum appears to have patches of partial maps, though
the principles do not seem clear, and these areas may not be maps in any real

sense at all . Some areas seem to lack a strong topographic organization , and for

other areas the topographic organization is quite complex , for example the

basal ganglia (Selemon and Goldman -Rakic 1988). Cortical areas anterior to

the central sulcus seem sparser in topographic maps, but research may show

that what they map are abstract, not sensory, representations, and hence such

maps cannot be discovered by methods used to establish response patterns to

peripheral stimuli . In bat auditory cortex there are topographic mappings of

abstract properties such as frequency differences and time delays between

emitted and received sounds, properties that may help the bat to echo locate

prey (Suga et al. 1984), and in the bam owl internal spatial maps are synthesized 
from binaural auditory inputs ( Konishi 1986, Knudsen et al. 1987). There

are some areas of cortex , such as association areas, parietal cortex, and some

parts of frontal cortex , for which it has not yet been possible to find properties
that form orderly mappings . Nonetheless , projections between these areas

remain topographic . For example, Goldman -Rakic (1987) has shown that in the

monkey projections from parietal cortex to target areas in the prefrontal cortex

, such as the principal sulcus, preserve the topographic order of the source

neurons.

Maps of the s Ulface of the body in the brain are formed during development

by projections that become ordered, in part , through competitive interactions

between adjacent fibers in the target maps (see chapter 5). Some of the neurons

undergo cell death during this period , and with the possible exception of

olfactory receptors, no new neurons are formed in the mature mammal (Cowan

et al. 1984). However , competitive interactions between neurons continue , to

some extent , even in adulthood , since the territory in cortex devoted to a

particular part of the body s Ulface can shift as much as 1- 2 cm, but not much

farther , weeks after injury to sensory nerves or after excessive sensory stimulation 

(Pons et al. 1991). Thus, regions in somatosensory cortex that are silenced

following denervation of a sensory nerve will eventually become responsive
to nearby regions of the body . It is not yet known how much of this rearrangement 

is due to plasticity in cerebral cortex , or perhaps in subcortical structures

that project to cortical maps. Auditory maps, particularly in the superior col-

liculus, are also modifiable both in development , and in the adult following

partial deafness (King and Moore , 1991). Nonetheless , this evidence, and further 

evidence for synaptic plasticity summarized below , make it difficult to

think of the machinery in the adult brain as "hardwired ,
" or static. Rather, the

brain has a remarkable ability to adapt to changes in the environment , at many
different structural levels and over a wide range of time scales.
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Figure 2.11 Cross -section through monkey striate cortex using cresyl violet to stain cell bodies .

Laminations are clearly visible ; the layers are numbered at the left . W , white matter . Deeper
layers of the burled fold of cortex are shown in the lower part of the figure . (From Hubel and

Wiesel 1977 .)

Layers and Columns

Many brain areas display not only topographic organization , but also laminar

organization (Agures 2.11, 2.12). Laminae are layers (sheets) of neurons in

register with other layers, and a given lamina conforms to a highly regular

pattern of where it projects to and from where it receives projections . For

example, the superior colliculus receives visual input in superficial layers, and
in deeper layers it receives tactile and auditory input . Neurons in an intermediate 

layer of the superior colliculus represent information about eye movements .

In the cerebral cortex , specific sensory input from the thalamus typically projects 
to layer 4, the middle layer, while output to subcortical motor structures

issues from layer 5, and intracortical projections originate chiefly in (superficial)

layers 2 and 3. Layer 6 mainly projects back to the thalamus (see Agure 2.3).
The basal ganglia do not have a laminar organization , but rather a patchwork
of islands which can be distinguished by developmental and chemical markers

(Graybiel and Hickey 1982).
As well as the horizontal organization seen in laminae, cortical structures

also display vertical organization . This organization consists in a high degree
of commonality between cells in vertical columns, crossing laminae, and is

Neuroscience Overview
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Figure 2.12 Schematic diagram of cortical connections in the cat. (A) Distribution of inputs from
layers of the lateral geniculate, showing that geniculate axons project to different corticallami-
nae as a function of layer of origin in the geniculate. Cortical neurons with similar receptive field
properties cluster together in particular lamina. The origin of fibers leaving a region of cortex
varies as a function of target. (8) Schematic arborization patterns of the main cell types in
laminae I- VI. (After Gilbert and Wiesel 1981.)
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reflected both anatomically in terms of local connections between neurons
(Martin 1984, Lund 1987) and physiologically in terms of similar response
properties (Hubel and Wiesel 1962). For example, a vertical penetration of an
electrode in visual cortex reveals cells which share a preference for stimuli with
the same orientation (e.g., a bar of light oriented at about 200 from the horizontal

). Another vertical penetration nearby will show cells which prefer a
different orientation. Inputs and outputs are also organized in columns, such as
the ocular dominance columns in VI , and inputs into the principal sulcus which
alternate between parietal projections from the same side and projections from
the principal sulcus in the opposite hemisphere (Goldman-Rakic 1987).

Typically, the vertically organized connectivity patterns do not result in
columns with sharp boundaries, and the response properties tend to vary
continuously across the cortex. Hence the expression 

"vertical column" may
be slightly misleading. Thus for cells in visual area VI , orientation varies over
the cortex smoothly, save for some fractures and singularities (Blasdel and
Salama 1986), and a similar organization can be found in area V2 (Swindale et
al. 1987), which receives a topo graphic ally mapped projection from VI . There
are, however, places where vertical, cross-laminar columns with quite sharp
boundaries are seen, for example the ocular dominance columns in layer 4 of
area VI and the "barrels" in the rodent somatosensory cortex, where each
barrel contains cells preferentially sensitive to stimulation of a particular whisker
( Woolsey and van der Loos 1970) (figure 2.13). Sharp anatomical boundaries
are, however, the exception rather than the rule. Also, the spatial scale of
columnar organization can vary from about 0.3 mm for ocular dominance
columns to 2S .um for orientation columns in monkey visual cortex.

Topographic mapping, columnar organization, and laminae are special cases
of a more general principle: the exploitation of geometric properties in information 

processing design. Spatial proximity may be an efficient way for biological 
systems to assemble in one place information needed to solve aproblem

. To consider a simple case, suppose it is necessary to compare differences
between stimuli at neighboring locations, where comparison requires signals
be brought together. Then topographic organization may achieve this efficiently 

while minimizing the total length of the connections. This is desirable
since most of the volume of the brain is filled with axonal process es, and there
are limitations on how big the brain can be as well as temporal tolerances that
must be met. Lateral inhibitory interactions within the spatial maps are used to
make comparisons, enhance contrast at borders, and perform automatic gain
control. Mutual inhibition within a population of neurons can be used to
identify the neuron with the maximum activity, a type of winner-take-all circuit 

(Feldman and Ballard 1982). (See also chapterS, last section.)

Within a cubic millimeter of cortical tissue, there are approximately 10S neurons 
and about 109 synapses, with the vast majority of these synapses arising

from cells located within cortex (Douglas and Martin 1991) (figure 2.14). These

Local Networks
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Figure 2.13 (A) Snout of a mouse; the vibrissae (whiskers) are marked by dots. (8) Sections
across the somatosensory cortex that receive input &om the mout . Each of the rings or "barrels"

corresponds to an individual vibrissa, and are spatially organized to preserve the neighborhood
relations of the vibrissae (0 . ( Reprinted with permission &om Woolsey and van der Loos 1970.)
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Figure 2.14 Schematic diagram of a microcircuit in the cerebral cortex that may be repeated
again and again. Three populations of neurons interact with each other: inhibitory (GABA) ce Ds,
shown with solid synapses; and excitatory ce Ds (open synapses) representing (i) superficial
(P2 + 3) and (ii) deep (PS + 6) layer pyramidal cells. Each population receives excitatory input
from the thalamus, which is weaker (dashed line) to deep pyramidal ce Ds. (Reprinted with
permission from Douglas et at. 1989.)

Thalamus

Neuroscience Overview

local networks have been very difficult to study owing to the complexity of
the tangled mass of axons, synapses, and dendrites called the neuropil. Nevertheless

, some general features of local networks are beginning to emerge. For

example, the orientation tuning of cells in VI must emerge &om nonoriented

inputs and activity in local networks in ways that we are just beginning to
understand (Ferster and Koch 1987).

Most of the data available on local networks are based on single-unit recordings
, and to achieve a deeper understanding of the principles governing

networks, it will be necessary to monitor a large population of neurons (see

Appendix for recording techniques). Even a local network involves many cells,
but only small populations can be studied by exhaustive sequential recordings
&om single cells. Consequently, we run the risk of generalizing &om an atypical 

sample, and of missing circuit properties that can be inferred only &om a
richer profile. Therefore, to understand the principles of local networks, much
more work must be done to detennine the dynamical traffic within a larger
population of cells over an extended period of time (figure 2.15).

Computer simulations may help to interpret single-unit data by showing
how a population of cells could represent properties of objects and perfonn
coordinate transformations. For example, network models of spatial representations 

have been constructed that help to explain the response properties of

single cells in parietal cortex (Andersen and Mount castle 1983, Zipser and
Andersen 1988; figure 2.16). Another network model has been used to explain
how the responses of single neurons in visual cortex area V 4 could compute
color constancy, (Zeki 1983, Hurlbert and Poggio 1988). Network simulations
can also suggest alternative interpretations for known response properties. For
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neuron showing one of its inputs to a dendrite, one to the cen body, and one of its axonal
contacts. (Reprinted with permission from Dudal The Neurobiology of Memory: Concepts, Findings,
and Trends [1989]. Copyright ~ Oxford University Press.)

Ever since Cajal
's work in the late nineteenth century, the neuron has been

taken as an ele~ entary unit of processing in the nervous system (figure 2.17).
In contrast to Golgi, who believed neurons formed a continuous "reticulum,

"

or feltwork, Calal argued that neurons were distinct, individual cells, separated
from each other by a spatial gap, and that mechanisms additional to those

operating intracellularly would have to be found to explain how the signal

�

Neurons
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example, there are certain oriented cells in VI whose response sumrnates with
the length of the slit or edge of light up to the borders of the receptive ReId,
but then the response diminish es as the length increases. This property, called
"end-stopping,

" has recently been related to the extraction of the ID curvature 
of contours (Dobbins et ale 1987) and the 2-D curvature of shapes in

shaded images (Lehky and Sejnowski 1988). An example of this approach is

given in chapter 4 on visual processing.
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Figure 2.17 Examples of neurons illustrating the variety of shapes in different areas of the brain.
( With permission from Kuffler, Nicholis and Martin [1984]. From Neuron to Brain. Sunder land
MA: Sinauer Associates.)

passed Horn neuron to neuron. Physiological studies have borne out Cajal
's

judgment, though in some areas such as the retina, syncytia of cells that are

electrically coupled have been found (Dowling 1987). As it turns out, these are
rather more like the structures Golgi predicted because the cells are physically
joined by conducting 

"
gap junctions.

" These electrical synapses are faster and
more reliable than chemical transmission, but are more limited in flexibility .

There are many different types of neurons, and different parts of the nervous 

system have evolved neurons with specialized properties. There are Ave

general types of neurons in the retina, for example, each with a highly distinctive 

morphology, connectivity pattern, physiological properties, and embryo-

logical origin. In recent years, moreover, physiological and chemical differences
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Figure 2.18 Inhibitory and excitatory synapses on a neuron. (A) The inhibitory postsynaptic
potential (IPSP) means that the postsynaptic cell hyperpolarizes (dropping from - 70 mV to
- 72 mV), and the excitatory postsynaptic potential (EPSP) means that the postsynaptic cell
depolarizes (from - 70 mV to - 67 mY). (8) The EPSP was triggered about 1. 3, and S msec
after the onset of the IPSP. (C) The subsynaptic conductance changes occurring when excitatory
and inhibitory synapses are activated simultaneously (left) and when only the excitatory synapse 

is activated (right). (From Schmidt [1978). Fundamentals of Neurophysiology. Berlin: Springer-

Verlag.)

have been found within classes. For example, 23 different types of ganglion
cells (whose axons project to the brain through the optic nerve) and 22 different 

types of amacrine cells (which provide lateral interactions and temporal
differentiation) have been identified (Sterling et al. 1983). There are seven
general types of neurons in the cerebellum and about 12 general types in the
neocortex, with many subtypes distinguishable by their chemical properties
such as the neurotransmitters they contain. The definition of a neuronal type is
somewhat arbitrary, since judgments are often made on the basis of subtle
morphological differences, which can be graded rather than categorical. As
more chemical markers are found, however, it is becoming clear that the diversity 

of neurons within cerebral cortex has been vastly underestimated. On
anatomical and immunocytochemical criteria, therefore, the number of subtypes 

of cortical neurons is probably between 50 and 500 (Sereno 1988).

NeuroscienceOverview
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On the basis of their effects, neurons divide in two general classes: excitatory 
and inhibitory (figures 2.18, 2.19). The effect of an excitatory signal is to

increase the probability that the postsynaptic cell fires, and the effect of an

inhibitory signal is to decrease that probability (figure 2.19). Some neurons
also have modulatory effects on other neurons, principally by releasing pep-

tides or monoamines (see section 4). Another useful classification concerns

projections: some cells ramify only within a confined area such as a column, for

example stellate cells in cortex; other neurons, such as pyramidal cells, have

long-range projections out of an area, where the route goes via the white
matter rather than directly through the cortex itself. Research on the properties
of neurons shows that they are much more complex processing devices than

previously imagined (table 2.1). For example, dendrites of neurons are themselves 

highly specialized, and some parts can probably act as independent
processing units (Shepherd et al. 1985, Koch and Poggio 1987).

Synapses

Chemical synapses are found in nervous systems throughout phylogeny, and

they are a basic unit of structure that has been highly conserved during evolution
. A synaptic bouton has a surface area of a few square micrometers and

forms a highly stereotyped apposition with the postsynaptic membrane, which
itself is highly specialized (figure 2.20). Synapses are the primary gateways by
which neurons communicate with one another, and they consist of specialized

O1apter 2

Dendrites

Myelinated axon
Axon hillock

~
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Graded EPSP Trigger: Conducted all - or - none spike

all -or-none (conduction of spike to next cell )
sDike initiated

Figure 2.19 Summary diagram showing the location on a motor neuron of various electrical
events. In many neurons, dendrites and cell bodies respond with graded EPSPs or I P S Ps; the
action potential is triggered in the axon hillock and travels undiminished down the axon. (From

Thompson 1967.)



Table 2.1 Selected biophysical mechanisms, possible neural operations they could

implement , and computations they might help perform

potentia ]I initiation

Repetitivespiking

Electrically' mediated

gangliol1

retinal input to

geniculate X-cells

Hair cells in lower
vertebrates

Transmitter regulation of
voltage-dependent
channels (M -current
inhibition)
Calcium sensitivity of
cAMP -dependent
phosphorylation of
potassium channel protein

Long~ stance action of
neurotransmitter

Modulating and
transmission of
infonnation

routing

activity

Action potential
conduction

Conduction failure at
axonal branch points

Chemically mediated
synaptic transduction

Coupling of rod

photoreceptors to
enhance detection of

synaptic transduction

Linear addition

Analog AND-NOT, veto
operation

Functional connectivity

Neuroscience Overview
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Biophysical Mechanism Neural Operation Example of Computation

Action

signals
~, P cat retinal
cells

Midbrain sites

controlling gain of
retinogeniculate
transmission

Adaptation and
associative storage of
information in Aplysia

�

From Koch and Poggio (1987).

Distributed excitatory
synapses in dendritic tree

Interaction between
excitatory and (silent)
inhibitory conductance
inputs

Excitatory synapse on
dendritic spine with
calcium channels

Excitatory and inhibitory
synapses on dendritric
spine

Quasi-active membranes

Analog OR/AND one-bit
analog-to-digital converter

Current-to-&equency
transducer

Impulse transmission

Temporal/ spatial filtering
of impulses

Nonreciprocal two-port"
negative

" resistance
Sigmoid 

"threshold"

Reciprocal one-port
resistance

Long-distance
communication in axons

Opener muscle in
cray6sh

Postsynaptic modification
in functional connectivity

Local AND-NOT
"
presynaptic inhibition"

Electrical resonant filter
analog
Differentiation delay
Gain control

Bipolar cells

Directional-selective
retinal ganglion cells
Disparity-selective
cortical cells

Short- and long-term
information storage

Enabling/disabling
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Figure 2.20 Schematic diagram of a synapse on a dendritic spine. Dense projections in the

presynaptic membrane are surrounded by vesicles that presumably contain neurotransmitter
molecules. This morphology characterizes a type I synapse, which is excitatory. Type II synapses 

(not shown) have Battened vesicles as viewed in the electron microscope following
glutaraldehyde fixation, and they are often inhibitory. (From Gershon et al. 1985.)

presynaptic structures for the release of neurochemicals and postsynaptic
structures for receiving and responding to those neurochemicals. Evidence is

accumulating that signaling between neurons at synapses can be selectively
altered by experience (Alkon 1984). Other, structural components of neurons

might also be modified through experience, such as the shape and topology of
dendrites as well as the spatial distribution of membrane channels (Purves and

Voyvodic 1987).
Our understanding of the nervous system at the subcellular level is changing 

rapidly, and it is apparent that neurons are dynamic and complex entities
whose computational. properties cannot be approximated by memory less response 

functions, a common idealization. It remains an open scientific question
how the integrity of memories that span decades can remain intact if the neural
substrate is as fluid as preliminary reports indicate, especially if, as it seems,
networks of neurons both process and store information.
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Molecules

The integrity of neurons and synapses depends on the properties of membranes 
and the internal cytoskeleton of the neuron . The membrane serves as a

barrier a few nanometers (10
- 9) thick separating the intracellular and extracellular 

aqueous compartments . The membrane itself is a two -dimensional fluid
medium in which integral membrane proteins and other molecules form associations

. Some integral membrane proteins have an important role inmaintaining 
the ionic milieu inside and outside the cell. For example, membrane

proteins that serve as ion channels can be voltage sensitive,9 
chemically activated

, or both . They may thus permit or prevent the passage of ions across the
membrane, which in turn can affect the propagation of a signal down the

length of the axon or neurotransmitter release at the presynaptic terminal
(figure 2.21). In a sense, the membrane allows the intracellular compartment of
a neuron to respond selectively to extracellular signals, and it is this selec-

tivity that endows different neurons with specialized information -processing
capabilities . Axon membrane typically contains channels and conductances

Figure 2.21 Working hypothesis for a voltage-gated channel. The transmembrane protein is
shown with a pore that allows sodium ions to flow between the extracellular and intracellular
sides of the membrane when the gate is open. ( With permission from Hille [1984]. Ion;c Channels
of Excitable Membranes. Sunder land MA: Sinauer Associates.)



that permit it to spike when depolarization reaches a certain threshold. Exactly
how dendrite membrane works is much less well understood. Dendrite spiking
has been seen in the cerebellum (Uinas ' and Sugimori 1980), and the
conventional wisdom according to which axon membrane is "active" while
dendrite membrane is "passive

" is undoubtedly a simplification that obscures
the subtle, complex, and computationally critical respects in which dendrite
membrane is active.

Electrical signaling in neurons is achieved by ionic currents which are regulated 
by ion channels and ion pumps in the cell membrane. Signaling between 
neurons is mediated by neurotransmitter receptors in the postsynaptic

membrane that respond to particular neurotransmitter molecules by transiently
and selectively changing the ionic conductance of the membrane. There are
also receptor molecules along the membrane outside of the synaptic site that

appear to be functional, but their role is not known (Somogyi et al. 1989).
In addition, some receptors can activate one or more second-messenger molecules 

that can mediate longer-term changes (figure 2.22). Second-messengers
in neurons can be activated by more than one receptor. Hence there is a
network of interacting chemical systems within a neuron, which can itself be
considered a chemical parallel distributed processor.

A central part of the basic strategy for figuring out how a novel device works
is reverse engineering. That is, when a new camera or chip appears on the
market, competitors will take it apart to find out how it works. Typically, of
course, they already know quite a lot about devices of that general kind, so the

problem can be manageable. Although we have to use reverse engineering to

study the brain, our starting point is much further back, inasmuch as we know
so little about devices of that general kind. From our vantage point, the brain is

essentially a bit of alien technology, and hence it is especially difficult to know,
among the facts available to us, which are theoretically important and which
are theoretically uninteresting. We may actually misunderstand some aspects
of brain organization and as a consequence be blocked from having some

important insight into mechanisms crucial for cognition. For example, some
distinctions made in gross anatomy may turn out to conceal close relationships
between distant .brain regions, or it may turn out that the functional properties
of some synapses in the central nervous system are very different from peripheral 

synapses in autonomic ganglia and neuromuscular junctions, which have
been very well studied.

Since this chapter looks at neuroscience against a background of computa-

tional aims, it seems appropriate to raise this question: what are the most basic
structural features relevant to neural computation? It goes without saying that

many more constraints will be relevant in the context of a specific problem, but
we present these 13 as a kind of prolegomenon to problems generally. Short of

having formally conducted a proper survey, we conjecture that the following
baker's dozen are among those likely to find their way on to a must-know list,

4 A SHORT LIST OF BRAIN FACTS
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Figure 2.22 Summary of some of the main biochemical mechanisms that have been identified
at chemical synapses. A- E, Long-tenn steps in synthesis, transport, and storage of neurotransmitters 

and neuromodu1ators; insertion of membrane channel proteins and receptors, and
neuromodu Jatory effects. 1- 12, these summarize the more rapid steps involved in immediate
signaling at the synapse.1P3, inositol triphosphate; CaM n, Ca2+ /cal moduli n-dependent protein
kinase II; DAG, diacylglycerol; PK, protein kinase; R. receptor; G, G protein; AC, adenylate
cyclase. (Reprinted with pennission &om Shepherd 1988.)
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Figure 2.23 Logarithmic scales for spatial and temporal magnitudes. Brackets indicate the
scales especially relevant to synaptic processing. (Reprinted with pennission from Shepherd
1979.) ��
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Landmark DiscriminationObjectDiscrimination

Figure 2.24 Two behavioral tasks that distinguish between the functions of the inferior temporal 
(IT) and posterior parietal (PP) cortex. (Left) IT lesions, in black, cause a severe impainnent in

learning to discriminate between two objects based on their features, but the lesions do not
affect spatial capadties. (Right) PP lesions cause an impainnent to spatial tasks, such as judging
which of two identical plaques is closer to a visual landmark (cylinder), but do not affect object
discrimination learning. (From Mishkin, Ungerleider and Macko [1983J. Object vision and spatial 

vision: two cortical pathways. T mrds in Neurosciences 6: 414- 417.)

although we understand very well that opinion can diverge in considerable
and surprising ways, and also that a current list will undoubtedly be quickly
outdated (for comparable lists, see Crick and Asanuma 1986 and Shepherd
1988). (See figure 2.23 for scales of magnitudes.)

1. Specialization of Function There is specialization of function in different

regions of nervous systems. This is a ubiquitous and critical feature of nervous

system organization, seen.in animals from the lowly leech to the human. The

specialization enjoyed by regions more distant from the periphery, such as
orbitalfrontal cortex of humans, is difficult to determine, though by using a

convergence of techniques, including lesions, staining, single-cell recording,
evoked potential, and developmental data, the range of likely possibilities can
be narrowed (figure 2.24). Specialization so characterized is actually a large-

grain feature of an area, based on the statistical distribution of cell response
properties and the major input and output pathways. Thus VI , for example, is
referred to as a visual area and S 1 as a somatosensory area. At a finer grain,
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however , the specialization of areas is consistent with the existence of atypical
cell types and connectivity . Thus while the preponderance of tested cells in VI
are indeed visually tuned, there exist some ce Ms coding for nonvisual signals,
such as eye movement .

2. Numbers: Neurons and Synapses The estimated number of neurons in the
human nervous system is about 1012; the number of synapses is about 1015.
The rat brain has about 1010 neurons, and about 1013 synapses. In 1 mm3 of
cortical tissue there are about 105 neurons and 109 synapses. A handy rule of
thumb is 1 synapse/ .um3. A single neuron may have thousands or tens of
thousands of synapses. Stevens (1989) has calculated that the number of synapses 

per neuron for a piece of cortex 1 mm thick from a cat or a monkey is
4.12 x 103. The main exception to this is the primary visual cortex of primates

, where cells are more densely packed and the number of synapses is
about 1.17 x 103 for a piece of cortex 1 mm thick .

3. Numbers: Connectivity ( Who Talks to Whom) Not everything is connected
to everything else. Each cortical neuron is connected to a roughly constant
number of other neurons, irrespective of brain size, namely about 3% of
the neurons underlying the surrounding square millimeter of cortex (Stevens
1989). Hence, although the absolute number of input lines to a .cortical neuron

may be quite large, cortical neurons are actually rather sparsely connected
relative to the population of neurons in a cell's neighborhood . Most connections 

are between, not within , cell classes (Sereno 1988). Forward projections
to one area are generally matched by recurrent projections back to the area of

origin .
4. Analog Inputs/ Discrete Outputs The input to a neuron is analog (continuous 

values between 0 and 1), and a neuron 's output is discrete (either it spikes
or it does not ), though some neurons may have analog outputs . Whether a
neuron has an output is governed by a threshold rule; that is, whether the cell

spikes depends on whether the integration of the inputs exceeds a certain
threshold . The profusion of input lines to a single neuron probably represents
sensible computational and engineering design for a network of neurons with
these properties (Abu -Mostafa 1989a).10

S. Timing: General Considerations Getting the timing right is an essential
feature of nervous systems and, more particularly , of analog computation
(Mead 1989). Whether and how dendritic signals traveling soma-wards will
interact depends on the time of their arrival at the common node. The magnitude 

of signals eventually reaching the axon hillock depends on such interactions
. In perception , the time scale of the computation must be matched to the

time scale of events in the external world , and in motor control it must be
matched to the time it takes for the body parts to move ( Mead 1989). When

outputs of different computational components need to be integrated , the
time scales of the various processors contributing values must also match. In
short , the system has to operate in real time . Hence nervous systems must be

architecturally rigged so that when a process takes time, it takes the right
amount of time .

Neuroscience Overview



Figure 2.25 Four types of synapses from the sympathetic ganglion of the frog. (A) Innervation
of a sympathetic neuron in the ninth ganglion of the paravertebral chain of the bullfrog; the

diagram shows the separation of the cholinergic (ACt) and noncholinergic (LHRH) innervation.
(B) A single preganglionic stimulus produces a fast EPSP. (C) Repetitive stimulation produces a
slow IPSP lasting about 2 sec; the fast EPSP is blocked with a nicotinic blocking agent. ( 0)
Repetitive stimulation also produces a slow EPSP which occurs after the first two responses and
lasts about 30 sec. (E) The late slow EPSP, produced by stimulating preganglionic fibers, lasts
more than 5 min after repetitive stimulation. ( With permission from KufRer, Nicholis and Martin
[1984]. From Neuron to Brain. Sunder land MA: Sinauer Associates.)

6. Timing: Particular Values An action potential (spike) lasts about 1 msec.

Synaptic transmission, including electrotonic conduction in dendrites, takes
about 5 msec. Synaptic potentials can last from a millisecond to many minutes

(Kuffler 1980) (figure 2.25). Transmission velocity in myelinated axons is about
meters     / sec; in unmyelinated axons it is less than 1 meter/ sec. These

are general ranges, not precise values.
7. Cell-ta-cell Effects The effect of an individual synaptic input on a postsynaptic 

cell is weak, amounting to 1%- 5% of the firing threshold. There may
be some important exceptions to this trend, such as. the strong effects of an
individual synapse of a chandelier cell or a basket cell in the cerebral cortex

(Martin 1984).
8. Firing Patterns Different types of neurons have different firing patterns

(figure 2.26). Some neurons in the thalamus have multiple intrinsic firing patterns
, and the particular pattern displayed on a given occasion is a function of
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B Fast-spiking

Figure 2.26 Differences in intrinsic firing patterns of cortical neurons. (A) When stimulated with
a suprathreshold step of depolarizing current, regu Jar-spiking neurons respond with an initial
high-frequency spike output that rapidly declines to much lower sustained &equendes. Intracellular 

voltages are displayed in the top trace, injected current steps in the bottom trace. (8)
Under similar conditions, fast-spiking cells generate high frequencies that are sustained for the
duration of the stimulus. (0 Repetitive intrinsic bursting to a prolonged stimulus. Mean interburst 

frequency was about 9 Hz. (From Connon and Gutnick [1990]. Intrinsic firing patterns of
diverse neocortical neurons. Trends in Neuroscimas 13: 98- 99.)
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the cell's recent depolarization or hyperpolarization history (Uinas and Jahnsen
1982). The ionic conductances of some cells, for example in the brain stem,
endow those cells with oscillatory properties. Such a cell may act as a pacemaker 

or as a resonator (responding preferentially to certain firing hequencies)
(Uinas 1988). Most neurons are spontaneously active, spiking at random intervals 

in the absence of input. Different neuron types have different characteristic 
spontaneous rates, ranging from a few spikes per second to about so spikes

per second.
9. Receptive Fields: Size and Center-Surround Organization Under the classical

definition, the receptive field is that region of the sensory field from which an
adequate sensory stimulus will elicit a response. In the somatosensory system,
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stimulus ~ L -

center II 111111

surround I 1111111111111
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Figure 2.27 Two types of circular center- surround receptive fields in the retina. When the light
is shone on the center of the receptive field, the on-center ceO responds vigorously, the off-

center ceO is silent. When the light is shone in the annular surround, the opposite effect is
achieved. Under diffuse illumination of both the center and the surround, both ce Os respond
weakly. ( With permission &om Coren Ward [1989]. Sensation and Perception, Jrd ed. Copyright
~ 1989 Harcourt Brace Jovanovich, Inc.)

the receptive field size varies over the body surface: those for the fingertips are

smaller than those for the palm of the hand, and very much smaller than those

for the arm. Receptive fields of cells in higher areas of visual cortex tend to be

much larger than those in the earlier stages (one sixth of a degree in the foveal

region of VI , compared to values ranging from 10 to the whole visual field in

inferotemporal cortex). Retinal ganglion cells (cells carrying signals from the

retina) have what is called a center-surround organization (figures 2.27, 2.28).

This organization comes in two variations: (1) a stimulus in the center of the

cell's receptive field excites it, but a stimulus in an area surrounding the receptive 
field inhibits it . This arrangement is known as "on-center/ off-surround."

(2) The opposite arrangement, namely, a central stimulus inhibits but a surround
stimulus excites the cell, is known as "off-center/ on-surround." Off-center cells

respond maximally to dark spots, while on-center cells respond maximally to

light spots. The information carried by the ganglion cells pertains to the comparison 
between the amount of light falling on the center of the field and the

average amount of light falling on the surround, not absolute values of light
intensity at the transducer. A center-surround organization is also evident in

ON-CENTER CELL

stimulus ~ L -

OFF-CENTER CELL
center

surround
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Figure 2.29 Response of a neuron with antagonistic direction-selective surround. (Left) The cell

responds vigorously when the dots in the center of the stimulus move (shown above) in the

preferred direction but the dots in the surround are stationary. Negative percentages in the

graph indicate inhibition relative to the level of spontaneous activity . (Right) The same cell

responds very differently to its preferred direction of motion in the center when the dots in the
surround also move in the cell's preferred direction. (From Allman et al. 1985.)

the receptive fields of somatosensory neurons in the thalamus and cortex

( Mount castle 1957) (figures 2.27, 2.28).
10. Receptive Fields: Nonclassical Events outside the classical receptive field of

a cell have been found to modulate selectively the responses of the cell ( Nelson
and Frost 1978, Allman et al. 1985) (figure 2.29). The effects are selective since

they vary as a function of the type of surround stimuli. Nelson and Frost

(1985) reported an inhibition as well as a highly spedfic form of facilitation of
the responses of orientation-tuned cells in visual cortex of cats as a nonclassical
field effect. Some area 17 cells that were normally responsive to a vertical
bar in their receptive fields showed enhanced responses when distant11 area
17 cells, co-oriented and co-axial to the first, were experimentally stimulated.
Zeki (1983) has shown that certain wavelength-dependent neurons in V4 are
influenced by the color balance in the surround. The surround effects of cells in
the middle temporal ( MT) area, where receptive fields are typically S

 - 10 , can
extend 40 - 80  (Allman et al. 1985). Receptive fields are almost certainly
more dynamical than previously assumed. For example, repeated stimulation
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to the Angertips results in an expansion of the regions of thesomat Qsensory
cortex whose neurons have receptive fields in the Angertips (figure 2.30). Recent 

experiments in in VI of visual cortex also suggests that receptive fields
are labile in that a cell's receptive field may expand when its preferred area on
the retina is lesioned (Gibert and Wiesel, in press).

11. Specific and Nonspecific Systems In addition to the specific system projecting 
to the neocortex via the thalamus, such as is seen in the visual, auditory,

and somatosensory systems, there are five sources of widely projecting neurons 
each associated with a specific neurotransmitter, which may play important 
roles in the sleep- dreaming- waking cycle, in memory, and in awareness

and attention. The five are as follows: the locus coeruleus in the brain stem

(norepinephrine), the raphe nucleus in the midbrain (serotonin), the substantia

nigra in the midbrain (dopamine), the nucleus basalis in the basal forebrain

(acetylcholine), and special groups of cells in the mammillary region of the

hypothalamus (GABA) (figure 2.31).

Neuroscience Overview

Figure 2.30 Alteration of cortical maps after habitual stimulation. (A) The experimental protocol 
showing the fingertips stimulated by the rotating disk. (B) Map in the somatosensory cortex

of the left hand of the monkey before the stimulation experiment. Stippled area corresponds to

fingertips 2, 3, and 4. (C) Map of the same region after the stimulation experiment. (From
Merzenich et al. 1990.)
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Figure 2.32 Methods of communication of the honnonal and nervous systems. Although auto-
cine honnones (a) act on the ceO that releases them and paracine honnones (b) act on adjacent
cells, most honnones are in the endocrine system and act on ce Us or organs anywhere in the

body. Endocrine glands (c) release honnone molecules into the bloodstream, where they come
in contact with receptors on target ce Us, which recognize the honnones meant to act on those
cells and pull them out of the bloodstream. Neurons (d) communicate by releasing neurotransmitters 

close to target ce Us. In neuroendocrine action (e) a neuron releases substances that
act as honnones directly into the blood. (Reprinted with permission from Snyder 1985.)

12. Action-at-a-distance Some neurotransmitters may be released not only at
a synaptic site, but may also be dumped into the extracellular space to have an
action at a nonsynaptic site some distance from the point of release Oan et al.
1978) (figure 2.32). Originating in the endocrine system, hormones, such as
estradiol, can also reach neurons after traveling through the circulatory system
and can alter neural activity .

13. Parallel Architecture The brain appears to be highly parallel in that there
are many parallel streams of input for a given function. For example, in the
monkey two parallel streams from the retina, starting with different types of
ganglion cells, project to two distinct sets of layers of the lateral geniculate
nucleus- the parvocellular and magnocellular layers, respectively- which in
turn project to distinct sublaminae in layer 4 of cortical area VI of the visual
cortex (Hubel and Livingston~ 1987, Living stone and Hube I1987). The streams
are not cleanly segregated, however, and there are probably interactions at
every stage (Schiller et al. 1990, Logothetis et al. 1990).
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