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1. INTRODUCTION

NEURON (Hines1984; 1989; 1993; 1994provides a powerful and flexiblenvironment for
implementing biologicallyealisticmodels ofelectrical and chemical signaling in neurons and networks of
neurons. This article describes the concepts and strategtésve guided the design aimlplementation
of this simulator, with emphasis on those features that are particularly relevant to its most efficient use.

1.1 The problem domain

Information processing in therain results fronthe spread and interaction of electrical @heémical
signals within and among neuronghis involves nonlinear mechanisrtizat span avide range of spatial
and temporal scales (Carnevale and Rosenthal 1992) amdresteained to operate within the intricate
anatomy of neurons and their interconnections. Consequently the eqtleitatescribe braimechanisms
generally do not have analytical solutions, and intuition is not a reliable guide to understandiodyitioe
of the cells and circuits of tHeain. Furthermorehese nonlinearities and spatiotemporal complexities are
quite unlike thosehat areencountered in most nonbiological systems, so the utility of many quantitative
and qualitativemodeling tools that were developedvithout taking these features into consideration is
severely limited.

NEURON is designed toaddress these problems by enabling both dbevenientcreation of
biologically realistic quantitativenodels ofbrain mechanisms and the efficient simulation of the operation
of these mechanisms. In this context the term “biological realism” doeme®t “infinitely detailed.”
Instead it meanghat the choice of which details to include in thedeland which to omitare at the
discretion of the investigator who constructs the model, and not forced by the simulation program.

To the experimentalist NEURON offers a tdol cross-validatingdata, estimating experimentally
inaccessible parameters, atetiding whether knowfacts account foexperimental observations. To the
theoretician it is a mearfer testinghypotheses and determining the smaliegiset of anatomical and
biophysical propertiethat isnecessary and sufficient to accountgarticularphenomena. To the student
in a laboratory course it providesehiclefor illustrating andexploring the operation ddrainmechanisms
in a simplified formthat is more robust thanthe typical “wetlab” experiment. For experimentalist,
theoretician, and student alike, a powerful simulation tool such as NEURON can be an indispensable aid to
developing the insigtand intuitionthat isneeded if one is tdiscover the ordehnidden within thantricacy
of biological phenomena, the order that transcends the complexity of accident and evolution.

1.2 Experimental advances and quantitative modeling

Experimental advances drive and support quantitative modeling. Oveadtieo decades the field of
neuroscience has seen striking developments in experimental techniques that include
» high-quality electrical recording from neuransvitro andin vivo using patch clamp
* multiple impalements of visually identified cells
* simultaneous intracellular recording from paired pre- and postsynaptic neurons
» simultaneous measurement of electrical and chemical signals
» multisite electrical and optical recording
» uantitative analysis of anatomical and biophysical properties from the same neuron
» photolesioning of cells
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» photorelease of caged compounds for spatially precise chemical stimulation
* new drugs such as channel blockers and receptor agonists and antagonists
* genetic engineering of ion channels and receptors
» analysis of MRNA and biophysical properties from the same neuron
* “knockout” mutations
These and other advanaa®responsible formpressive progress in tigefinition of the molecular biology
and biophysics of receptors and channels, the construction of libraigentfied neurons and neuronal
classes thabave beercharacterized anatomically, pharmacologically, and biophysically, and the analysis
of neuronal circuits involved in perception, learning, and sensorimotor integration.
The result is a data avalanche that catalyzes the formulatr@woliypotheses dirain functionwhile
at the same time serving as the empirical basis for the biologically realistic quantitative models that must be
used to testhese hypotheses. Some examples fromaige list of topics thahave been investigated
through the use of such models include
» the cellular mechanisnihat generate and regulate chemical and electrical signals (Destexhe et al.
1996; Jaffe et al. 1994)
» drug effects on neuronal function (Lytton and Sejnowski 1992)
» presynaptic (Lindgren and Moof®89) and postsynaptic (Destexhe &sjhowskil995; Traynelis et
al. 1993)mechanisms underlying communication between neurons
» integration of synaptic inputs (Bernander et al. 1991; Cauller and Connors 1992)
» action potential initiation and conductigHausser et al. 199%{ines and Shragdr991;Mainen et al.
1995)
o cellular mechanisms of learning (Brown et al. 1992; Tsai et al. 1994a)
o cellular oscillations (Destexhe et al. 1993a; Lytton et al. 1996)
» thalamic networks (Destexhe et al. 1993b; Destexhe et al. 1994)
* neural information encoding (Hsu et al. 1993; Mainen and Sejnowski 1995; Softky 1994)

2. OvVERVIEW OF NEURON

NEURON isintended to be a flexible framewaitr handling problems in which membrane properties
are spatially inhomogeneous and where membrane currents are complex. \Bastkegigned specifically
to simulate the equatiortisatdescribe nerve cellyEURON hashree important advantages over general
purpose simulation programsirst, the user is not required to transldabe problem into another domain,
but instead is able to deal directly with concefitat are familiar athe neuroscience level. Second,
NEURON contains functionthat aretailored specifically forcontrolling the simulation and graphing the
results of real neurophysiological problem&hird, its computationakngine isparticularly efficient
because of the use of speaiathods andricks that take advantage thfe structure ofnerve equations
(Hines 1984; Mascagni 1989).

However, the general domain of nerve simulation is still too léwgeany single program todeal
optimally with every problem. Ipractice, each prograimas itsorigin in a focused attempt tolve a
restricted class of problem®Both speed of simulation and the ability of thger to maintain conceptual
control degrade when any program is applied to problems outside the class for which it is best suited.

NEURON is computationally most efficiefdar problemsthat rangdrom parts ofsingle cells to small
numbers of cells in which cabjgoperties play a crucial role. In terms of conceptual control, it is best
suited to tree-shaped structuresvimich the membrane chanrggrameters are approximated ggcewise
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linear functions of position. Two classes of problemsafioich it is particularly useful aré¢hose inwhich

it is important to calculate ionic concentrations, and tivdsere one needs to compute thdracellular
potential just next to the nerve membrane. It is especially capalitevdstigatingnew kinds of membrane
channels since thegre described in a high levéhnguage (NMODL (Moore and Hines 199Gyjich
allows the expression ohodels interms of kinetic schemes @ets of simultaneous differential and
algebraic equations. To maintain efficiencger defined mechanisms iINMODL are automatically
translated into C, compiled, and linked into the rest of NEURON.

The flexibility of NEURON comes from a built-in object orientéaterpreterwhich is used talefine
the morphology and membrapsoperties of neurons, control the simulation, and establish the appearance
of a graphical interface. The default graphical interface is suitable for exploratory simulaimngsg
the setting of parameters, control of voltage and current stimuli, and graphing variables as a function of
time and position.

Simulation speed is excellent since membrane voltage is computed by an implicit intagedtiod
optimized for branched structures (Hines 1984). The performance of NEURON degradsswigrwith
increased complexity of morphology and membrane mechanisms, badbeen applied to very large
network models (10cells with 6 compartments eadotal of 10 synapses in the ngT. Sejnowski,
personal communication]).

3. MATHEMATICAL BASIS

Strategies for numerical solution tife equationsghat describe chemical and electrical signaling in
neurons have been discussed in many places. Elsewhere we have briefly presented an intuitive rationale for
the mosttcommonlyused methods (Hines and CarneviE®85). Here weatartfrom this base angroceed
to address those aspects which are most pertinent to the design and application of NEURON.

3.1 The cable equation

The application of cable theory to the study of electrical signaling in nebhasnaong history, which
is briefly summarized elsewhe(Rall 1989). The basic computational task isntomerically solve the
cable equation

vV A
A V.t)= 6—2 1)
ot ox

which describes the relationship betweemrent and voltage in ane-dimensionatable. The branched
architecture typical of most neurons is incorporateddoybining equations dhis form withappropriate
boundary conditions.
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Figure 3.1. The net current entering a region must equal zero.

Spatial discretization of thipartial differential equation is equivalent to reducing the spatially
distributed neuron to a set obnnected compartments. Tharliest example of a multicompartmental
approach to the analysis of dendritic electrotonus was provided by Rall (1964).

Spatial discretization produces a family of ordinary differential equations of the form

(2)

Equation 2 is a statement of Kirchhoff's current lawjch asserts thatet transmembrane currdaaving
the jth compartment must equal the sumaaial currentsentering this compartment from all sources
(Fig. 3.1). The left hand side dEq. 2 isthe total membranecurrent,which is the sum o€apacitive and
ionic components. The capacitigemponent iC; dvj / dt, wherec is the membraneapacitance of the

compartment. The ionic compondy@,tnj includes allcurrents througlionic channel conductances. The

right hand side ofEq. 2 isthe sum ofaxial currents thaenter this compartment fronts adjacent
neighbors. Currentimjected through a microelectrode would be added taitfit hand side. Thsign
conventiondor current are: outward transmembrane current is positive; axial ctiongnibto a region is
positive; positive injected current drivesn a positive direction.

Equation 2 involves twapproximations.First, axial current ispecified in terms of the voltage drop
between the centers of adjacent compartmentbe second approximation ihat spatiallyvarying
membraneurrent is represented litg value athe center of each compartment. Thimisch lesgirastic
than the often heard statement that a compartment is assumed to be “isopotential.” It is far better to picture
the approximation in terms of voltage varying linedsgtween the centers of adjacent compartments.
Indeed, the lineavariation in voltage is implicit in thesualdescription of a cable in terms of discrete
electrical equivalent circuits.

If the compartmentgare ofequal size, it is easy to use Taylor's serieshtow that both ofthese
approximations haverrors proportional tthe square of compartment lengthhusreplacing thesecond
partial derivative byits central difference approximation introducesrors proportional taAx?, and
doubling the number of compartments reduces the error by a factor of four.

It is often not convenient for the size of all compartments to be equal. Unequal compartmmuigfhsize
be expected to yielsimulationsthat areonly first order accurate However, comparison of simulations in
which unequal compartmerase halved or quartered in size generally reveals a second-order reduction of
error. A rough rule ofhumb isthatsimulationerror is proportional tthe square of the size of the largest
compartment.

The first oftwo special cases of Eq.tl2at wewish to discuss allows us to recover tlsial parabolic
differential form of the cable equation. Consider the interior of an unbranched cable with constant
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diameter. The axial current consistswb termsinvolving compartments with theaturalindicesj—1 and
j+1,i.e.

dv;, . Vieg— Vi Vig =V
Cj 4 ion = 71 + 1Y
dt ]

fj-1,j Mjj+1

If the compartments have the same lenfgthand diameted, then thecapacitance of a compartment is
C, 1t d Ax and theaxial resistance i&, Ax / 1t (d/2¢. C,, is called the specific capacitance of the
membrane, which is generally taken to be 1 uf . ciR, is theaxial resistivity, which has different
reported values for different cell classes (e.g. 8bcin for squid axon). Eg. 2 then becomes

d Vi1~ 2Vi t Vi
4R, NG

de+_
Mdt

where we have replaced thatal ionic currentiionj with the currentlensityij. The right hand term, as

Ax - 0O, is justa2\// dx? at the location of the now infinitesimal compartment

The second specigbse of Eq. 2 allows us to recodbe boundary condition.This is an important
exercise since naive discretizations at the ends of the cable have destroyed the secanduoedgr of
many simulations. Nerve boundary conditiame that no axial curreffiows at the end of theable, i.e.
the end issealed. This ismplicit in Eq. 2, where theright hand side consistnly of the single term

(vj 17 Y )/q -1j When compartmeitlies at the end of an unbranched cable.

3.2 Spatial discretization in a biological context: sections and segments

Every nerve simulatiorprogram solvesfor the longitudinal spread of voltage and current by
approximating the cable equation as a series of compartowniected byesistors (Fig3.4 and Eq. 2).

The sum of all the compartmeateas ighe total membranearea ofthe whole nerve.Unfortunately, it is
usually not clear at the outshbw manycompartments should be used. Both #weuracy of the
approximation and the computatitime increase as the number of compartments useeptesent the
cable increasesWhen thecable is “short,” asingle compartmerntan bemade to adequately represent the
entire cable.For long cables ohighly branchedstructures, itmay be necessary to use a large number of
compartments.

This raises the question of how best to manage all the paratheteesistwithin these compartments.
Consider membrane capacitance, which has a different value in each compartment. Rather than specify the
capacitance of each compartment individually, it is better to deal in termsigla specific membrane
capacitancewhich is constant over the entireell and have thgrogram compute the values of the
individual capacitances from the areas of the compartments. Other parameters such as didraates or
density mayary widely overshort distances, so the graininess of their representatiomanayfittle to do
with numerically adequate compartmentalization.

Although NEURON is a compartmentalodelingprogram, the specification of biological properties
(neuron shape and physiologiasbeenseparated from the numerical issue of compartment size. What
makes this possible is the notion adection which is a continuous length of unbranckeadle. Although
each section is ultimately discretized into compartments, vilaégan varyith position along théength
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of a sectiorarespecified in terms of a continuous param#tat range$rom 0 to 1 (normalized distance).
In this way, section properti@ediscussed without regard to the numbes@jments used to represent it.
This makes it easy térade offbetweenaccuracy and speed, ardables convenient verification of the
numerical correctness of simulations.

Soma

Soma

Figure 3.2. Top: cartoon of aneuron indicating the approximate boundaries betwietogically
significant structures.. The left hand side of the loetly Soma is attached to an axon hillocRK) that
drives a myelinated axon (myelinated internofjeslternating with nodes of Ranvidk). Fromthe right
hand side of the celbody originates a branched dendritic tre,)( Bottom: howsections would be
employed in a NEURON model to represent these structures.

Sectionsare connected together to form any kind of branched steecture. Fig. 3.2 illustrates how
sectionsare used to represent biologically significant anatomfealtures. The top of this figure is a
cartoon of a neuron with a sortlatgivesrise to a branched dendritic tree and an aitbock connected
to a myelinatecdxon. Eaclbiologically significant component dhiis cell has its counterpart ione of the
sections of the NEUROModel, as shown in the bottom feig. 3.2: the cell body $omg, axonhillock
(AH), myelinated internodes;), nodes of Ranvierl;), and dendriteslY;). Sections allow thi&ind of
functional/anatomical parcellation of the cell to remain foremost immihel of thepersonwho constructs
and uses a NEURON model.

To accommodate requiremerits numericalaccuracy, NEURON represergach section byne or
moresegmentsof equal lengtl{Figs. 3.3and3.4). The number of segments is specified byghemeter
nseg , which can have a different value for each section.

At the center of each segment isnade, the location where the internal voltage of the segment is
defined. The transmembracarrents over the entireurface area of aegmentare associatedith its
node. The nodes of adjacent segments are connected by resistors.

It is crucial to realizehat the location of the second ordeorrect voltage is not at thedge of a
segmenbut rather at itgenter i.e. at itsnode. This is the discretizatiomethod employed bNEURON.

To allow branching and injection ofirrent at the precignds of a section while maintaining second order
correctness, extra voltagedesthat representompartments with @rea aralefined at the section ends. It

is possible to achieve second ordmecuracy with sections whoseend nodes have nonzemrea
compartments. However, tla@eas othese terminal compartments would have to be exactlythnatifof

the internal compartments, aagtracomplexity would be imposed on administration of channel density at
branch points.

Based on the position of the nodes, NEURON calculates the values of imedeparameters such
as the average diameteaxial resistance, and compartmenta that areassigned to each segment.

Copyright [ 1997 by the Massachusetts Institute of Technology, all rights reserved 7



Hines and Carnevale: The NEURON Simulation Environment

Figs.3.3and3.4 show how amunbranched portion of a neuron, called a neurite G=BR), isrepresented
by a section with one or more segments. orplhometric analysis generates a series of diameter
measurements whose centers lie on rthdline of theneurite (thin axialline in Fig. 3.3B). These
measurements and tpathlengths between their centeasethe dimensions of the section, whican be
regarded as a chain of truncated cones or frusta (Fig. 3.3C).

Distance along the length of a section is discussed in terms of the normalized pesaioreter.
That is, one end of the section corresponds+d) and the other end xo= 1. In Fig. 3.3C thedecations
are depicted as being on the left and right hand ends of the section. The locationsafebend the
boundariebetween segmengseconveniently specified iterms of this normalized positiggarameter. In
general, a sectiohasnseg segmentghat aredemarcated byvenly spaced boundaries at intervals of
1/nseg. The nodes at the centers of these segraeatscated atx = (2i — 1) / 2nseg wherei is an
integer in the rangfl, nseg]. As we shall sedater, x is also used in specifyingodel parameters or
retrieving state variables that are a function of position along a sectioh4s&ange variables

Figure 3.3. A: cadon of an unbranchedeurite (thick lines) that is to be represented Iseetion in a
NEURON model. Computer-assisted morphomgayerates a file that storegccessive measurements of
diameter (thin circles) centered at x, ycaordinateqthin crosses). B: each adjacent pair of diameter
measurements (thick circles) becomes the parfalbels of a truncatecbne orfrustum, the height afvhich

is the distance between the measurement locations. The outline of each frusitomrisviththin lines,
and a thin centerline passt#soughthe central axis of the chain of solids. C: the centerline has been
straightened so thfaces of adjacent frustare flush witheach other. The scale underneath fthare
showsthe distancealongthe midline of the section in terms of the normalized position parametéihe
vertical dashed line at = 0.5 divides the section intwo halves of equal length. D: Electrical equivalent
circuit of the section as represented by a single segmeat (= 1). Theopen rectangle includes all
mechanisms for ionic (non-capacitive) transmembrane currents.

The special importance gfandnseg lies in thefact thatthey free thaiser fromhaving to keegprack
of the correspondence between segment nuarizéposition on the nerve. In early versions of NEURON,
all nerve propertieswere stored in vectovariableswhere the vector indewas the segment number.
Changing the number of segmewigs an erroprone and laborious procesgmtdemanded aemapping of
the relationship between thiser'smental image of the biologicalljnportant features of thamodel, on the
one hand, and the implementation of this model in a digital computer, on the other. The aselioteg
insulates the user from the most inconvenient aspects of such low-level details.
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Whennseg = 1 the entire section is lumped into a single compartméhis compartmenhasonly
one node, which i®cated midway alongs length, i.e. ak = 0.5 (Fig. 3.3Gand D). Thantegral of the
surface areaver the entire length of the sectiongx < 1) is used to calculate the membrane properties
associated with this node. The values ofdkial resistors ardetermined by integrating the cytoplasmic
resistivity along theathsfrom the ends of the section its midpoint (dashed line ifig. 3.3C). The left
and right hand axial resistances of F3g3D areevaluated over the& intervals[0, 0.5] and [0.5, 1],
respectively.

x=0 0.25 075 1.0
) | ) | )
}«— Rl1 ‘ R|2 ‘ R|3
| | |
\ M \ M, \
x=0 05 1.0
Riy Ri, Riy

Figure 3.4. How the neurite of Fig. 3.8/ould be represented by a section with two segmesisg( = 2).

Now the electrical equivalent circuit (bottom) has two nodes. The membrane properties attached to the first
andsecond nodeare based on neurite dimensions &iaphysical parameteverthe x intervals [0, 0.5]

and [0.5, 1], respectively. The three axial resistamcesconputed fromthe cytoplasmic resistivity and
neurite dimensions over theintervals [0, 0.25], [0.25, 0.75], and [0.75, 1].

Fig. 3.4 shows what happens wheseg = 2 . Now NEURONbreaks the section into tvgegments
of equal lengttthat correspond tox intervals[0, 0.5] and[0.5, 1]. The membrane properties oubese
intervals are attached to the nodes at 0.290ar, respectively. The thresxial resistors Rj Ri, and R
are determined by integrating the path resistance overititervals [0, 0.25], [0.25, 0.75], and [0.75, 1].

3.3 Integration methods

Spatial discretizatiomeduced the cable equation,partial differential equation with derivatives in
space and time, to a set of ordinary differential equationsfingtrorderderivatives in time. Selection of
an integration method to solve thesgations is guided by concernsstdibility, accuracy, andfficiency
(Hines and Carnevale 1995).

NEURON offers thauser achoice of twostable implicit integratiommethods: backward Euler, and a
variant of Crank-Nicholson (C-N). Backward Eulethe default because @§ robustnumerical stability
properties. Backward Euler can be used wittremely largdime steps in order téind the steady-state
solution for a linear (“passive”) system. It produces good qualitative results even with large time steps, and
it works even if some or all of the equations are strictly algebraic relations among states.

A method which is moraccurate for smalflime steps is available by setting the global parameter
secondorder to 2. NEURONthenuses a variant ahe C-N method, in which numericarror is
proportional toAt?.

Both of theseareimplicit integration methods, in whichll current balance equations mustsoé/ed
simultaneously. The backward Euler algorithm does not resort to iterati@altaith nonlinearities, since
its numericalerror is proportional td\t anyway. The special feature of t8eN variant is its use of a
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staggered timstep algorithm to avoid iteration of nonlinear equati(se®3.3.1 Efficiency below). This
converts the current balangart of the problem to on¢hat requiresonly the solution of simultaneous
linear equations.

Although theC-N method is formallystable, it issometimes plagued bspurious largeamplitude
oscillations (se€ig. 7 in Hines and Carnevale (1995)). This oceuhienAt is too large, as may occur in
modelsthat involve fast voltage clamps othat have compartments whichre coupled by very small
resistances. HoweveC-N is safe inmost situations, and it can Ipeuch more efficienthan backward
Euler for a given accuracy.

These two methodare almostidentical in terms of computational cost pene step (see 3.3.1
Efficiency below). Since the current balance equatimmee thestructure of a tre¢thereare no current
loops), direct gaussiaglimination is optimafor their solution (Hines 1984). This takes exatily same
number of computer operations as would be requdweén unbranched cablgith the same number of
compartments.

For any particular problem, the best way to determine which is the method of choice is to compare both
methods with several values &f to see which allows thargestAt consistent with the desirextcuracy.

In performing suctirials, one mustremembeitthat the stability properties of a simulatiaiepend on the
entire systemthat isbeing modeled Because of interactiormetween the “biological” componerasd any
“nonbiological” elementssuch as stimulators or voltage-clamps, tihee constants of the entirgystem
may be different from those of the biological components aloneur#ent source (perfect current clamp)
does nogaffect stability because does not change the tingenstants.Any other signal source imposes a
load on the compartment to which itatachedgchanging the timeonstants and potentially requiring use
of a smaller timestep to avoid numerical oscillations in #BeN method. The more closely a signal source
approximates a voltage source (perfect voltage clamp), the greater this effect will be.

3.3.1 Efficiency

Nonlinear equations generallyeed to be solvederatively to maintain second order correctness.
However, voltage dependent membranepertieswhich are typicallyformulated in analogy télodgkin-
Huxley (HH) type channels, allow the cable equation tods in ainear form, still second ordeorrect,
that can besolved withoutiterations. A direct solution of the voltage equations at ¢iawhstept —

t + At using the linearized membrawearrenti(V,t) = G - (V — E)is sufficient as long as the slope
conductanc& and the effective reversal potentiadre known to second order at titne 0.5At. HH type
channelsare easy tsolve att + 0.5At since the conductance is a functiorstafte variables/hich can be
computed using aeparatdime step that ioffset by0.5 At with respect to the voltage equatiime step.
That is, to integrate a state fram 0.5At tot + 0.5At we only require a second ordmrrect value for the
voltage dependent rates at the midpoint time

Figure 3.5 contrastshis approachwith the common technique afplacing nonlinear coefficients by
their values at thbeginning of a timestep. For HHequations in a single compartment, the staggtresl
grid approach converts four simultanemaglinear equations at each tirsiep to fouindependent linear
eguations that have the same order of accuracy atigacttep. Since the voltage dependeates use the
voltage at the midpoint of the integratistep, integration ofhannelstates can bdoneanalytically in just
a single addition and multiplication operation and talde lookup operationsWhile this efficientscheme
achieves second order accuracy, the tradeoff is that the tables depend on the value of the time step and must
be recomputed whenever the time step changes.
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X' = -1.4xy
y'=-xy
y Single iteration

Staggered time step

Figure 3.5. The equatiostiown athe top of the figura@re conputed usinghe Crank-Nicholson method.
Top: x(t + At) andy(t + At) are determined using their values at tim&ottom: staggered time steps yield
decoupledinear equationsy(t + At/2) is determined using(t), after whichx(t + At) is determined using
y(t + At/2).

Neuronal architecture can also bgploited to increase computational efficiency. Since neurons
generally have a branched treteucturewith no loops, the number of arithmetic operations required to

solve the cable equation aussiarelimination is exactly the same &8 an unbranched cableith the
same number of compartment$hat is, weneed onlyO(N) arithmetic operations fdhe equationshat
describe N compartments connected in the form trfea, eventhough standard Gaussiaalimination

generally takes O operations to solve N equations in N unknowns. The tremendous efficiency increase

results from théact that, in a treegnecan alwaydind a leaf compartmentthat isconnected to only one

other compartmerjt so that:

1) the equation for compartmernEq. 3a) involves only the voltages in compartmeatsdj, and

2) the voltage in leaf compartmeinis involved only in theequations for compartmenitsandj (Eq. 3a
and b).

aGiV+gy=p (3a)
aj\ + g; Y +[terms from other compartmehts b (3b)

Using Eq. 3a toeliminate theV; term from Eq.3b, which requiresO(1) (instead of N) operationgives
Eqg. 4 and leaves N-1 equations in N—1 unknowns.

ajV; +[terms from other compartmehtsHf (4)
whereaij= 3 =(3 § /ip) andbj=b ~(b 3 /@)

This strategy can be applied until there is only one equation in one unknown.
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Assume that we know the solution to thdkel equations, and in particular that kvewV,. Then we
canfind V; from Eq. 3awith O(1) step. Thereforéhe effort to solve these N equationgigl) plus the
effort needed to solvdl-1 equations. Theumber of operations requiredirglependent of the branching
structure, so a tree of Bbmpartments uses exactly the same number of arithmetic operatiormes a
dimensional cable of N compartments.

Efficient Gaussiarelimination requires an orderirtgat can bdound by a simple algorithm: choose
the equation with the current minimum number of terms as the equation to use in the elirsi@ptionhis
minimum degree ordering algorithm is commonly employed in standard sparse matrix solver packages. For
example, NEURON’'sMatrix” class useghe matrixlibrary written by Stewart antdeyk (1994). This
and many other sparse matrix packages are freely available on the Intetipgivatw.netlib.org

4. THE NEURON SIMULATION ENVIRONMENT

No matterhow powerfuland robust its computationahgine maybe, the real utility of any software
tool depends largely dts ease of use. Therefore a gréedl of efforthasbeen invested in the design of
the simulation environment provided BfeURON. In this section wigrst briefly consider general aspects
of the high-level language used for writing NEURON programs. Then we turn to an exampieds| &f
a nerve cell to introduce speciispects ofhe userenvironmentafterwhich we cover theskeaturesmore
thoroughly.

4.1 Thehoc interpreter

NEURON incorporates a programming language basétbon a floating point calculator wit-like
syntax described by Kernighan and Pike (Kernighan and Pike 1984). This interprdteerastended by
the addition of object-orienteglyntax (notincluding polymorphism or inheritancéat can beused to
implementabstract datéypes andlataencapsulation. Other extensions include functibas arespecific
to the domain of neural simulations, and functions that implement a graphical user interface (see below).

With hoc one can quickly write short programs thameet most problem-specific needs. The
interpreter is used to execute simulations, customizeusiee interfacepptimize parametersanalyze
experimental data, calculate new variables such as impulse propagation velocity, etc..

NEURON simulationgrenot subject to the performance penalty often associated with interpreted (as
opposed to compiled) languade=cause computationally intensiasks are carried out thghly efficient
precompiled code. Some of thassks are related tmtegration of the cable equation and others are
involved in the emulation of biological mechanisthait generate and regulate chemical and electrical
signals.

NEURON provides a built-inmplementation of the microematsxt editor. Since thehoice of a
programming editor is highlgersonal, NEURONvill also accephoc code in the form o$traight ASCII
files created with any other editor.

4.2 A specific example

In the following example we show how NEURON might be used to model the cell in the top of
Fig. 4.1. Comments in thec code are preceded by double slashe$,(@and code blocks are enclosed in
curly brackets{} ).
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4.2.1 First step: establish model topology

One very importanteature of NEURON is that dllows theuser tothink aboutmodels interms that
are familiar tothe neurophysiologist, keeping numericsaues (e.g. number gpatialsegments) entirely
separate fronthe specification of morphology and biophysipabperties. Asioted in a previous section
(3.2 Spatial discretization . . .), this separation iachieved through the use ohe-dimensional cable
“sections” as thévasicbuilding block from whichmodel cells are constructed.These sections can be
connected together to form akind of brancheatable andendowedwith propertiesvhich mayvary with
position along their length.

dendrite[ ]

soma
axon

1

Figure 4.1. Top: cartoon of ameuron with a soma, three dendrites, and an unmyelinated axon (not to
scale). The diameter of the spherisaina is 5qum. Each dendrite is 200 piong and tapersiniformly
alongits lengthfrom 10 pmdiameter at its site adrigin on the soma, to 3 um #s distal end. The
unmyelinated cylindrical axon is 1000 um loagd has a diameter offm. Anelectrode (not shown) is
inserted into thesoma forintracellular injection of a stimulating currenBottom: topology of a NEURON
model that represents this cell (see text for details).

The idealized neuron irfFig. 4.1 has severahnatomical featuresvhose existenceand spatial
relationships we want thmodel to include: a cell bodgoma), three dendrites, andwammyelinatedaxon.
The followinghoc code sets up the basic topology of the model:

create soma, axon, dendrite[3]
connect axon(0), soma(0)
for i=0,2 { connect dendrite[i](0), soma(1) }

The progranstarts bycreatingnamed sectionthat correspond to the important anatomical features of the
cell. These sectiorsre attached teach other usingonnect statements. As noted previously, each
sectionhas anormalized positioparametex whichranges from 0 abne end to 1 at thether. Because
the axon and dendrites arise from opposite sides akthbody, theyareconnected to the 0 and 1 ends of
the soma section (see bottom &fig. 4.1). Achild sectioncan be attached to any location on the parent,
but attachment at locations other than 0 or 1 is genesallyloyed only irspecial cases such as spines on
dendrites.
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4.2.2 Second step: assign anatomical and biophysical properties

Next we set the anatomical and biophysical properties of each section. Each lsastits® own
segmentation, length, and diameter parameters, so it is necessary to wiicatesection isbeing
referenced. Therareseveral ways to declakehich is thecurrently accessed sectidmjt here the most
convenient is to precede blocks of statements with the appropriate section name.

/I specify anatomical and biophysical properties

soma {
nseg=1 /l compartmentalization parameter
L =50 /l [um] length
diam =50 /[ [um] diameter
insert hh /I standard Hodgkin-Huxley currents
gnabar_hh = 0.5*0.120 /I max HH sodium conductance
}
axon {
nseg = 20
L =1000
diam=1
insert hh

}
for i=0,2 dendrite][i] {

nseg =5

L =200

diam(0:1) = 10:3 // dendritic diameter tapers along its length

insert pas /l standard passive current

e_pas =-65 /I [mv] equilibrium potential for passive current

g_pas = 0.001 [l [siemens/cm 2] conductance for passive current

The fineness of thepatial grid isdetermined by the compartmentalizatiparametemseg (see
3.2 Spatial discretization . . ). Here the soma is lumped into a single compartnmsgg(= 1 ), while
the axon and each of the dendrita® broken into several subcompartmentsgg = 20 and5,
respectively).

In this example, we specify tlirometry of each section by assigning values directly to sdetigth
and diameter. This creates a “stylizeddel.” Alternatively,one can use thé3-D method,” in which
NEURON computes sectiolength and diameter from bst of (x, y, z, diam) measurements (see
4.5 Specifying geometry: stylized vs. 33D

Since the axon is a cylinder, the corresponding section fireedadiameter alongs entire length. The
spherical soma is represented by a cylinder with the sanfigce area abe sphere. Thdimensions and
electrical properties of the sona@e such that itsnembrane will be nearly isopotential, so the cylinder
approximation is not a significant source efror. If chemical signalssuch as intracellular ion
concentrations were important in this model, it would be necessary to approximate not only thexsemface
but also the volume of the soma.

Unlike the axon, the dendritedbecome progressivelynarrower with distance from the soma.
Furthermore unlike thesoma, theyare too long to be lumped into a single compartment withstant
diameter. Theaper ofthe dendrites is accommodated by assigning a sequence of decreasing diameters to
their segmentsThis isdonethrough the use of “range variableshich arediscussed below4(4 Range
variables).

In this modelthe soma and axon contain Hodgkin-Hux{e{H) sodium, potassium, and leakannels
(Hodgkin and Huxley 1952), while the dendrites have constant, linear (“passive”) ionic conductances . The
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insert  statement assigns the biophysioachanismdhat govern electrical signals in each section.
Particularvalues are set fdhe density of sodium channels on the sograbar_hh ) and forthe ionic
conductance and equilibrium potential of the passive current in the denglripes (ande_pas ). More
information aboutmembrane mechanisms is presented later section 4.6 Density mechanisms and
point processek

4.2.3 Third step: attach stimulating electrodes

This code emulates these of an electrode to inject a stimulatmgrent into the soma by placing a
current pulse stimulus in thmiddle ofthe soma section. The stimukigrts at = 1 ms, lasts fod.1 ms,
and has an amplitude of 60 nA.

objref stim

soma stim = new IClamp(0.5)  // put it in middle of soma
stim.del =1 I/l [ms] delay

stim.dur = 0.1 // [ms] duration
stim.amp = 60 /Il [nA] amplitude

The stimulating electrode is an example of a ppiotess. Point processes digcussed in more detail
below @.6 Density mechanisms and point procesges

4.2.4 Fourth step: control simulation time course

At this point allmodel parameters havieeen specified. Althat remains is to define the simulation
parameterswhich govern the timecourse of the simulation, and wrisbme codethat executes the
simulation.

This isgenerally done in twprocedures. The first procedurgtializes the membrane potential and
the states ofthe inserted mechanisms (chansiltes,onic concentrationsextracellular potential next to
the membrane). The second procedure repeatsly the built-insingle step integration function
fadvance() and saves, plots, or computes functions of the desirgulit variables at each step. this
procedure it is possible to change the values of model parameters during a run.

dt =0.05 /I [ms] integration time step
tstop =5 I/l [ms]
finitialize(-65)  // initialize membrane potential, state variables, and time

proc integrate() {
print t, soma.v(0.5) /I show starting time
/I and initial somatic membrane potential
while (t < tstop) {

fadvance() /l advance solution by dt
/ function calls to save or plot results would go here
print t, soma.v(0.5) /I show present time

/I and somatic membrane potential
/I statements that change model parameters would go here
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The built-in functionfinitialize() initializes timet to 0, membrane potential to —65 mv
throughout thenodel,and the HHstate variables m, n and h to their steady state values at65 mv.
Initialization can also be performed with a user-written routine if tlaeee speciarequirementsthat
finitialize() cannot accommodate, such as nonuniform membrane potential.

Both the integration timstepdt and the solutiotimet areglobal variables.For this examplelt =
50 us. Thewhile(){} statement repeatedly caledvance() , which integrates theodelequations
over the intervaldt and increments by dt on each call. For this example, the timend somatic
membrane potential are displayed at each step. This loop exitd veistop

Whenthis program is firsprocessed by the NEURON interpreter, thadel isset up and initiated but
theintegrate() procedure is not executed. Whentiser enters amtegrate() statement in the
NEURON interpreter window, the simulation advances for 5 ms using 50 us time steps.

4.3 Section variables

Three parameters apply to the section as a whole: cytoplasmic resRayi®ycm), the section length
L, and the compartmentalization parameigeg . The firsttwo are “ordinary” inthe sens¢hatthey do
not affect thestructure ofthe equationshat describe the model. Nothatthe hoc code specifies values
for L butnot forRa. This is because each section im@del is likely tohave a different length, whereas
the cytoplasm (and therefoRa) is usually assumed to be uniform throughout the cell. The default value
of Rais 35.4Q cm, which isappropriate for invertebrate neuronske L it can be assignedrew value
in any or all sections (e.g. ~2@Dcm for mammalian neurons).

The user carhange the compartmentalizatiparametenseg without having to modifyany of the
statementshat set anatomical dsiophysical properties. However, if parameteasy with position in a
section, care must be taken to ensure thantidelincorporates thepatialdetail inherent in the parameter
description.

4.4 Range variables

Like dendritic diameter imur example, most cellular propertiasefunctions of the position parameter
x. NEURON has special provisions fealing with thespropertieswhich are called “range variables.”
Other examples of range variabieslude the membrane potential and ionic conductangearameters
such as the maximum HH sodium conductaytabar_hh (siemens/ cﬁ).

Range variables enable theer to separate property specification freegment number. A range
variable is assigned a valueadne of twoways. The simplest and magtmmon is as @onstant. For
example, the statemeston.diam = 10  asserts thahe diameter of the axon is uniform ovesrentire
length.

The syntax for a property theahanges along a length of a sectionaisgevar( xmin : xmax) =
el: e2. The four italicizedsymbolsare expressionwith e1 andeZ2 being the values of tharoperty at
xmin andxmax, respectively. The position expressions nmiset theconstraint &< xmin < xmax < 1.
Linear interpolation is used to assign the values of the property atetiment centerthat lie in the
position rangeXmin , xmax]. In this manner a continuously varying property can be approximated by a
piecewise linear function. If the rangariable is diameter, neitheel nor e2 should be 0, or
corresponding axial resistance will be infinite.
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In our modelneuron, the simple dendritiaper isspecified bydiam(0:1) = 10:3 andnseg =
5. This results irfive segmentshat have centers at = 0.1, 0.3, 0.5, 0.and0.9 and diameters .3,

7.9, 6.5, 5.1 and 3.7, respectively.

The value of a range variable at the center sggmentan appear in angxpression using the syntax
rangevar(x) in which 0< x < 1. The value returned is the value at the center ofséigenent
containingx, NOT the linear interpolation of the values stored at the centers of adjacent segments. If the
parentheses are omitted, the position defaults to a value of 0.5 (middle of the section).

A special form of thdor statement is availablefor (var) stmt . For each value of the
normalized positioparametex thatdefines the center of each segment in the selected section (along with
positions 0 and.), thisstatement assignar thatvalue and executes tils¢émt . Thishoc code would
print the membrane potential as a function of physical position (in um) along the axon:

axon for (x) print x*L, v(x)

4.5 Specifying geometry: stylized vs. 3-D

As noted above4(2.2 Second step . . ), therearetwo ways to specify section geometry. Our
example uses the stylized method, which simply assigns values to section length and diametemoshis is
appropriate when cable length and diameter are authoritative and 3-D shape is irrelevant.

If the model is based on anatomical reconstructidata (quantitative morphometry), or if 3-D
visualization is paramount, it is best to use3He method. This approachkeeps the anatomicdhta in a
list of (x, y, z,diam) “points.” Thdfirst point is associated with trend of the sectiothat isconnected to
the parent (this is not necessarily ther@'!)and thelast point is associated with the opposite end. There
must be at least two points per section, and they should be ordered in terms of monotonically increasing arc
length. Thispt3d list, which is theauthoritativedefinition of theshape of the section, automatically
determines the length and diameter of the section.

When thept3d list isnon-empty, the shapaodelused for asection is a sequence fofista. The pt3d
points define thelocations and diameters of the ends of thessta. The effectivearea,diameter, and
resistance of eackegmentirecomputed from thisequence of points lyapezoidal integration along the
segment length.This takes into account thextra aredntroduced by diameter changesen degenerate
cones of 0 lengtican be specified (i.e. two points with same coordinatgglifferent diametersyvhich
addarea bunot length to the section. Ndtempt ismade to deal with the effects of centroigtvature on
surface area.The number oB-D points used to describe a shéyasnothing to do withseg anddoes
not affect simulation speed.

4.6 Density mechanisms and point processes

The insert  statement assigns biophysical mechanismtgch govern electrical and (if present)
chemical signals, to a sectiorMany sources of electrical arahemical signalsire distributecbver the
membrane of the cell. Theskensity mechanismsare described in terms of current per uaitea and
conductance per unit area; examples include voltage-gated ion channels such as the HH currents.

However, density mechanisn@e not the mostappropriate representation of all signal sources.
Synapses and electrodase bestdescribed in terms of localized absolug@rent in nanoamperes and
conductance in microsiemens. These are cpiatt processes
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An object syntax is used tmanage the creation, insertioattributes, and destruction gdoint
processes. For example, a current clamp (electrode for injecting a current) is created by declaring an object
variable and assigning it mew instance of the IClamp objeciass(see4.2.3 Third step: attach
stimulating electrodeg. When a poinprocess is no longer referenced by any objadable, thepoint
process isemoved from the secticand destroyed. lour example, redeclaringtim with the statement
objref stim would destroy the pulse stimulus, since no other object variable is referencing it.

The location of a point process candbimnged with no effect ats otherattributes. In ouexample
the statemerdendrite[2] stim.loc(1) would movethe current stimulus to the disthd of the
third dendrite.

Many user-defined densitmechanisms and point processa® be simultaneously presentedach
compartment of a neuron. One important differelbpeveen density mechanismasd point processes is
that any number of the same kind of point process can exist at the same location.

User-defined density mechanisms and point processedelinked into NEURON using themodel
description languagdMODL. This letsthe user focus ospecifying the equatiorfer a channel or ionic
process without regard to its interactionth other mechanisms. TIMMODL translatorthenconstructs
theappropriate C programwhich is compilecand becomeavailable for use in NEURON. This program
properly and efficiently computes thatal current of eaclonic species used, agll as the effect ofhat
current onionic concentration, reversal potential, and membrane potential. An extensive discussion of
NMODL is beyond the scope of this article, but its major advantages can be listed succinctly.

1. Interface details to NEURON are handled automatically — and there are a great many such details.
* NEURON needs to know that model states are range variables and which model parameters can be
assigned values and evaluated from the interpreter.
* Point Processes need to be accessible via the interpreter object syntax and density mechanisms need
to be added to a section when the “insert” statement is executed.
» If two or more channels use the same ion at the same place, the individual current contributions
need to be added together to calculate a total ionic current.
. Consistency of units is ensured.
Mechanisms described by kinetic scheareswvritten with a syntax irwhich thereactions arelearly
apparent. The translatprovides tremendous leverage by generating a large blockood€that
calculates the analytic Jacobian and the state fluxes.
4. There is often great increase in claritgince statementare atthe model levelinstead of the C
programming leveand arendependent of the numerical methdélor example, sets of differential and
nonline?(r sim;ultaneous equations are written using an expression syntax such as

X =f(x,y,t

~9(x,y) =h(x,y)
where the primeaefers to the derivative with respectttme (multiple primessuch asx” refer to
higher derivatives) and the tilde introduces an algebraic equation. The algebraic portion of such
systems of equations is solved by Newton’s method, and a variety of matkaalgilable fosolving
the differential equations, such as Runge-Kutta or backward Euler.

Function tables can be generated automatically for efficient computation of complicated expressions.
Default initialization behavior of a channel can be specified.

w N

oo

4.7 Graphical interface

The user is nolimited to operating within théraditional “code-basedommand-mode environment.”
Among its many extensions thoc, NEURON includes functionfor implementing a fullygraphical,
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windowed interface. Through this interface, and without having to write ade atall, the user can

effortlessly create and arrange displays of menus, parameter value egéphs of parameters and state

variables, andriews of themodel neuron. Anatomical views, callégpace plots,” can bexplored,
revealing what mechanisms and point processes are present and where they are located.

The purpose of NEURON's graphical interface is to promote a mataledi@vhat theuser thinks is
inside the computer, anghat is actually there. These visualizatemhancementare a major aid to
maintaining conceptual control over the simulation because they piowidediateanswers to questions
about what is being represented in the computer.

The interface has narovision for constructing neuronal topology, a consciesgn choicdased on
the strondikelihood that a graphicaioolbox forbuilding neuronal topologies would find littiese. Small
models with simple topologgre soeasily created imoc that a graphicalopology editor is unnecessary.
More complexmodelsaretoo cumbersome to deal with using a graphical editor. Hess to express the
topological specifications of complex stereotypeadelsthrough algorithms, written ihoc, thatgenerate
the topology automatically. Biologically realistitodels often involve hundreds thousands of sections,
whose dimensions and interconnections are contained indatgdablegenerated by hours of painstaking
quantitative morphometry. These tabés commonlyread byhoc procedures that in turn create and
connect the required sections without operator intervention.

The basic features tifie graphical interface arfbw touse it to monitor and control simulations
arediscussed elsewhere (Moaxad Hines 1996). However, several sophisticated analyisiandation
tools that have special utility for nerve simulation are worthy of mention.

* The “Function Fitter” optimizes a parameterized mathematical expression to minimize the least squared
difference between the expression and data.

 The “Run Fitter” allows one to optimizeseveral parameters of eomplete neuronmodel to
experimentablata. This igmost useful in the context of voltage claoigtawhich is contaminated by
incomplete space clamp or mod#iatcannot be expressed in closed fosuch askinetic schemes for
channel conductance.

» The “Electrotonic Workbench” plots small signal input &rashsferimpedance and voltage attenuation
as functions of space and frequency (Carnevald. €1996). These plotsnclude the neuromorphic
(Carnevale etll. 1995)and L vs. x(O'Boyle etal. 1996)renderings of the electrotonic transformation
(Brown etal. 1992; Tsai et al. 1994b; Zador et al. 1995). r8yealing the effectiveness of signal
transfer, the Workbench quickly provides insight into the “functional shape” of a neuron.

All interaction with these and other toolakes place in the graphical interface and no interpreter

programming isieeded taise them. However, theye constructedntirely within the interpreter and can

be modified when special needs require.

4.8 Object-oriented syntax
4.8.1 Neurons

It is often convenient to deal witfroups of sectionthat are relatedTherefore NEURON provides a
data classalled aSectionList that can beised to identifysubsets of sections. Section listanftely with
the “regular expression” method of selecting sections, used in earlier implementations of NEURON, in that
1. the section list is easily constructed by using regular expressions to add and delete sections
2. after the list is constructed it is available for reuse
3. itis much more efficient to loop over the sections in a section list than to pick out the sections accepted
by a combination of regular expressions
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This code

objref alldend

alldend = new SectionList()
forsec "dend" alldend.append()
forsec alldend print secname()

forms a list of all the sections whose names contain the string “dend” and then iterates lsteptheing
the name of each sectionitn Forthe example program presented in tigigort, thiswould generate the
following output in the NEURON interpreter window

dendrite[0]
dendrite[1]
dendrite[2]

although in this very simple example it would clearly haeeneasyenough to loop over tharray of
dendrites directly, e.qg.

fori=0,2{
dendrite[i] print secname()
}

4.8.2 Networks

To help theusermanage very large simulations, the interpretgrtax haeen extended tfacilitate
the construction of hierarchical objects. This is illustrated bydll@ving codefragment, which specifies
a pattern for aimple stylized neuron consisting of three dendrites connected to one esdrodand an
axon connected to the other end.

begintemplate Celll
public soma, dendrite, axon
create soma, dendrite[3], axon
proc init() {
for i=0,2 connect dendrite[i](0), soma(0)
connect axon(0), soma(1)
axon insert hh

endtemplate Celll

Whenever a nevinstance of this pattern is creatéke init() procedure automatically connects the
soma, dendrite , and axon sections together. A complefattern would also specify default
membrane properties as well as the number of segments for each section.

Namesthat can beeferenced outside thgattern ardisted in thepublic  statement. In this case,
sinceinit  is not in thelist, the usercould not re-initialize by calling thanit() procedure. Public
names are referenced through a dot notation.

The particulabenefit of using templates (“classes’standard objeabriented terminology) is thiact
that they can be employed to create any number of instances of a pattern. For example,

objref cell[10][10]
for i=0,9 for j=0,9 cell[i][j]J=new Cell1()
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creates amarray of 100objects of typeCelll that can beeferenced individually via the object variable
cell . In this examplecell[4][5].axon.gnabar_hh(0.5) is the value of the maximum HH
sodium conductance in the middle of the axoneiif{4][5]

As this example implies, templates offenatural syntax fothe creation of networks. However it is
entirely up to thauser tologically organize the templates in such a gt they appropriately reflect the
structure ofthe problem. Generally, argiven structuralorganization can bgiewed as &ierarchy of
container classes, such as cells, microcircuits, layers, or networks. The importantissumigheffort
is required fothe concrete network representatiorstipport a range dbgical views of the samabstract
network. A logicalview that organizes the cells differently may not be easy to compute if the network is
built as an elaborate hierarchy. Thisd of pressure tends to encourage relatifigy organizations that
make iteasier tamplementfunctionsthat search fospecific information. The bottotme is that network
simulation design remains an ad hoc process that requires careful programming judgement.

One very importantlass oflogical viewsthat arenot generally organizable as a hierarelngthose of
synaptic organization. loonnecting cells witlsynapsesone is often driven to deal with genegabphs,
which is to say, no structure at all.

In addition to the notions of classes and objects (a synapse is an object with a pre- and a postsynaptic
logical connection) the interpreter offepge other fundamental language featuhat can be useful in
dealing with objectshat arecollections of other objectsThis is thenotion of“iterators,” takenfrom the
Satherprogramming languag@Murer et al. 1996). This is a separationtted process of iteratiofiom
that of “what is to bedonefor eachitem.” If a programmer implementene or moreiterators in a
collectionclass,the user ofthe classdoes notneed to know howvthe classindexesits items. Instead the
classwill return eachtem inturn for execution in the context of the loop bodyhis allows theuser to
write

for layerl.synapses(syn, type) {
/I statements that manipulate the object reference named "syn"
/I (The iterator causes "syn" to refer, in turn,
/l to each synapse of a certain type in the layerl object)

}

without beingaware ofthe possibly complicated process of pickog these synapses from the laydrat
is the responsibility of the author of the class of witéglerl is an instance).
It is to be sadly emphasizéldat these kinds of languadeaturesthough very useful, do nanpose
any policy with regard to thdesign decisionsisers musimake in building their networks. Different
programmers express very different designs on the same langasggvith the consequenaiat it is
more often than not infeasible to reconcile slightly different representations of even very similar concepts.
An example of a useful way to deal uniformly with the issue of synaptic connectivity olibg
implemented IMNEURON by Lytton (1996). Thisnplementatioruses the normalMODL methodology
to define asynaptic conductancenodel and enclose it within a frameworthat manages network
connectivity.

5. SYMMARY

The recent striking expansion in the use of simulation tools irfiglte of neurosciencéas been
encouraged by theapid growth of quantitative observatioisat both stimulate and constrain the
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formulation ofnew hypotheses dafieuronal function, and enabled by the availability of ever-increasing
computational power at lowost. Thesdactors have motivated the design and implementation of
NEURON, the goal ofwhich is to provide a powerful and flexiblenvironmentfor simulations of
individual neurons and networks of neurons. NEURD#®$ special features thatcommodate the
complex geometry and nonlinearities of biologicalistic models, without interfering wiits ability to
handle more speculative models that involve a high degree of abstraction.

As we note in this paper, one particularly advantageous feature ibdliger can specifihe physical
properties of aell withoutregard forthe strictly computational concern bbw manycompartments are
employed to represent each of the cable sections. In a future publication we will examine how the NMODL
translator isused to definiew membranehannels and calculate ionic concentration changesother
will describe the Vectoclass. Inaddition to providing very efficient implementations of frequentgded
operations on lists of numbers, the vediaiss offers a greateal of programming leverage, especially in
the management of network models.

NEURON source code, executables, and docungestavailable alttp://neuron.duke.edu
andhttp://www.neuron.yale.edu , and by ftp fronftp.neuron.yale.edu
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