
Neural Computation

Practical 2: Connecting together stimuli and neurons

David C. Sterratt

7th February 2002

1 Aims

This practical has two aims:

• To show you how to connect spiking stimuli to neurons and neurons to each other

• To investigate temporal summation

2 Connecting neurons together — NetCon

We have not yet connected neurons together. The modern form of connecting neurons together is in an
event based simulation model. Events are usually things like action potentials, as it is the events (rather
than, for example, the specific voltage levels) that we need to pass or communicate between neurons.
By using an event based model, we can dramatically reduce the amount of inter-neuron communication.
This is important in simulation time optimisation and in simulations on parallel machines.

To link neurons together we use a NetCon object. The NetCon object is associated with a particular
source of events (usually a soma, where action potentials produce the binary events) and has a particular
target (usually a synapse). However, it can also have other sources (for example an artificially-generated
spike train) or targets (for example a spike recording device).

In our first program using NetCon, we will use a source of spikes called a NetStim. First of we must
create a section for the NetStim point process to live on. (Conceptually, it does not necessarily live there;
however Neuron demands that it is associated with a section.) To make our simulation more interesting
later on, we will construct the simple two-compartment neuron used in the second assignment.

load_proc("nrnmainmenu")

nrnmainmenu()

create somaA

somaA insert hh

somaA {

diam = 22

L = 37

Ra = 100

}

create dendA

dendA insert pas

dendA {

diam = 2

L = 500

nseg = 10

g_pas = 0.0001

}

connect somaA(1), dendA(0)

1



access dendA

Now we can create our NetStim:

objref spikesource

spikesource = new NetStim(0.5) // Location of NetStim is arbitrary

spikesource.interval = 10 // ms (mean) time between spikes

spikesource.number = 100 // (average) number of spikes

spikesource.start = 0 // ms (mean) start time of first spike

spikesource.noise = 0 // range 0 to 1. Fractional randomness

// 0 deterministic, 1 intervals have decaying

// exponential distribution

Note that the text after the // is a comment; Neuron ignores this text.
Now we need to place a synapse on our dendA compartment. In the second assignment we used an

AlphaSynapse. This allowed us to create one pulse of postsynaptic conductance change at a specified
time. We would like to change the conductance at the times specified by the NetStim input to the
synapse. To do this we need to use a different type of synapse. One type of synapse that works is the
Exp2Syn object:

objref synapse

synapse = new Exp2Syn(0.95) // Inserts ExpSyn 0.95 of way down dendA

synapse.tau1 = 1 // ms rise time

synapse.tau2 = 2 // ms decay time

synapse.e = 0 // mV reversal potential

This is a double-exponential synapse. Its conductance varies according to

gs = gs

1

N
(e−t/τ2 − e−t/τ1)

where gs is a weight (see later) and N is a normalisation factor that ensures that the peak of the curve
is 1. If τ1 and τ2 are the similar, the function is almost the same as the alpha function with the same
time constant. The values here are suitable for an excitatory AMPA synapse.

Now we need to connect the NetStim and the Exp2Syn. We do this using a NetCon:

objref connection

thresh = 10

delay = 0.1

weight = 0.002

connection = new NetCon(spikesource, synapse, thresh, delay, weight)

This links the source spikesource to the target synapse. The delay parameter (the fourth parameter)
specifies the delay in milliseconds of the connection. The weight connection specifies the strength of
the connection. The thresh parameter is important when the source is a real neuron rather than an
artificial one (see section 4).

3 Temporal summation

Now run the simulation for 50ms and observe the membrane potential in the soma and the distal end
of the dendrite. You should see regular EPSPs 10ms apart in the dendrites and attenuated EPSPs in
the soma. You can look at the synaptic conductances by opening a Current Graph, right-clicking
and selecting Plot What? then Show→Object refs the clicking on synapse and selecting g from the
middle column.

These conductances are responding to the events generated by the NetStim. You should be able to
convince yourself that they are created at intervals of 10ms starting at 0ms, as specified by the NetStim.

Now change the delay of the connection from the NetStim to the synapse:

2



connection.delay = 5

You should see that the spikes are delayed by 5ms, though the interval between inputs is the same.
In general, a single synaptic input is not enough to cause a neuron to fire. Many spikes arriving

within a short period of time are usually needed. Reduce the interval between the input spikes by typing

spikesource.interval = 0.5

You should now see that a train of action potentials is fired by the soma. Try intervals between 0.5ms
and 10ms to see the effects.

Try increasing the synaptic strength by typing

connection.weight=0.04

See what happens to the number of action potentials produced for a certain input spike interval.

4 Connecting neurons together

We’ll now make a second neuron, identical to the first

create somaB

somaB insert hh

somaB {

diam = 22

L = 37

Ra = 100

}

create dendB

dendB insert pas

dendB {

diam = 2

L = 500

nseg = 10

g_pas = 0.0001

}

connect somaB(1), dendB(0)

The principle for connecting neurons is similar for connecting spike sources to neurons. To connect
somaB to dendA we first need to make a synapse onto dendA:

objref synapseAB

dendA {

synapseAB= new Exp2Syn(0.95) // Inserts ExpSyn 0.95 of way down dend

synapseAB.tau1 = 1 // ms rise time

synapseAB.tau2 = 2 // ms decay time

synapseAB.e = 0 // mV reversal potential

}

Then we’ll need connect the synapse to somaB. Here it’s a bit different to the spike source above; the
threshold at which we count the neuron as having fired is important. The threshold of 10mV stored in
the variable threshold should do. We also need to specify what quantity we are measuring from the
soma and where we are measuring it from. The &somaB.v(0.5) part of the commands below tells us
that we are measuring the membrane potential halfway down the somaB section. The & tells us we are
dealing with an object reference — don’t worry about this.

objref connectionAB

connectionAB = new NetCon(&somaB.v(0.5), synapseAB, thresh, delay, weight)

Now we do the same for the synapse from somaA to dendB.

3



objref synapseBA

dendB {

synapseBA= new Exp2Syn(0.95) // Inserts ExpSyn 0.95 of way down dend

synapseBA.tau1 = 1 // ms rise time

synapseBA.tau2 = 2 // ms decay time

synapseBA.e = 0 // mV reversal potential

}

objref connectionBA

somaA connectionBA = new NetCon(&v(0.5), synapseBA, thresh, delay, weight)

Note that we can use a slightly different syntax when creating the NetCon.
Now you can play with this pair of reciprocally-connected neurons with input to one. You could try

varying the delay or weights between the neurons, the amount of input and change the properties of the
synapses (e.g. make them inhibitory). Have fun!

4


