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Computational Neuroscience

• Discover how the 
brain works
– Models that can 

reproduce and explain 
experimental results

• Emulate the brain in 
computational devices
– Models that retain only 

the important 
computational details
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(KIT Armar-1 Robot)

Artificial Neural Networks
• Networks of simple computing units (“neurons”)
• Binary or analog signals and connection weights
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Real Neural Networks

Y1 Y2 Yk

Complex neurons
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Complicated Neurons

• Neurons come in many shapes and sizes
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Complicated Neural Circuits
• CA1 region of hippocampus
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Information Coding

• Binary coding
– Presence or absence of spikes in a time window

• Rate (analogue) coding• Rate (analogue) coding
– Average firing frequency over a given time period

• Temporal coding
– Interspike intervals during temporal sequence of spikes

Computing Science & 
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CN Course, Kuala Lumpur & 
Singapore, June 2012
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Rate Coding in Sensorimotor System

• Muscle stretch receptors fire in proportion to 
stretch (weight)
– Experimental data from Adrian 1928Experimental data from Adrian, 1928

• Sensation of a stimulus proportional to firing rate
– Hypothesis by Adrian
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Rate Coding Over Time

• Measure rate in a 
short time interval 

100eg 100msec

• Filtered measure
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Temporal Coding in Visual System

• H1 neuron in the fly visual system

• Responds to movement of objects in the world
Angular velocity– Angular velocity

• Movements can be reconstructed from 
measurements of the interspike intervals
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(from Spikes, MIT Press, 1997)

Dynamic Range of Codes

• Neuron can fire up to 100 spikes per sec

• Neurons that receive inputs from this neuron have 
200 msecs to “decode” the signal from the neuron200 msecs to decode  the signal from the neuron
– Can “measure” spike times with 10 msec precision

• Given this scenario, what “code” is best?
– Rate versus temporal coding

– How many “states” could each code represent?

Computing Science & 
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Electrical Potential of a Neuron

• Differences in ionic 
concentrations

T t f i• Transport of ions
– Sodium (Na)

– Potassium (K)

(Fig 2 1 pg 14)
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(Fig. 2.1 pg 14)

(Fig. 2.13 pg 31)

Action Potential Model

• Empirical model by Hodgkin and Huxley, 1952
– Voltage-dependent Na and K channels
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Complete Action Potential Model
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(Fig. 3.10 pg 60)Box 3.5 pg 61

Compartmental Modelling
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(Fig. 4.1 pg 73)
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A Length of Membrane

• Membrane compartments connected by 
intracellular resistance

(Fig. 2.15 pg 36)

• Compartmental modelling equation
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Varying Levels of Detail

• Capture essential features of morphology

proximal

distal

apical

Simple structure
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Many, Many Ion Channels…
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(Table 5.2 pg 102)

Potassium A-current: KA

• Different characteristics from delayed rectifier: KDR

• Low threshold activating / inactivating current
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One Effect of A-current

• Type I: with KA
– Steady increase in 

fi i f ithfiring frequency with 
driving current

• Type II: without KA
– Suddent jump to 

non zero firing ratenon-zero firing rate
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(Fig. 5.9 pg 106)

A Detailed Pyramidal Cell Model
• 183 electrical compartments

• Heterogeneous ion channel population
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(Poirazzi & Pissadaki, in CU)
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Pyramidal Cell Model Responses
• Reproduces somatic and dendritic current 

injection experimental results
– Sodium spiking with distance
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(Poirazzi & Pissadaki, in CU)

Reduced Pyramidal Cell Model
• 2-compartment model

– Pinsky & Rinzel (1994)

• Captures essence of PC behaviour

Soma

Dendrite

Area p
Area 1-pg

p
– Single spikes and bursting

(Fig. 8.1 pg 199)
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Pinsky-Rinzel Model in Action
• Behaviour depends on 

– Compartment coupling strength (g)

Magnit de of dri ing c rrent (I)– Magnitude of driving current (I)

Low I, low g

High I, low g
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High I, high g

(Fig. 8.2 pg 201)

Simple Spiking Neuron Models

• Simple spiking models that DO NOT model the 
AP waveformAP waveform

• Generally single compartment
– Point neurons

• Family of “Integrate-and-fire” models

Computing Science & 
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Integrate-and-Fire Model

• RC circuit with spiking and reset mechanisms
– When V reaches a threshold 

• A spike (AP) event is “signalled”

• Switch closes and V is reset to Em

• Switch remains closed for refractory period

Computing Science & 
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I&F Model Response

• Response to constant current injection
– No refractory period

10ms refractory 
period
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(Fig. 8.5 pg 205)
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Networks of Neurons

• Neurons connected via synapses between 
axons and dendrites

• Need to account for: 
– action potential propagation along the axon

– Neurotransmitter release at presynaptic terminal

– Postsynaptic electrical response

– Parameters: delay + weight

Computing Science & 
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AP PSP
delay

synapse

The Chemical Synapse

• A temporal signal filter

• Complex biochemical p
signalling pathways
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(The Synapse Web)

(biochem.uni-erlangen.de)
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Synaptic Conductance

• 3 commonly used simple waveforms
a) Single exponential

b) Alpha function

c) Dual exponential

– Current: Isyn(t) = gsyn(t)(V(t)-Esyn)
Computing Science & 
Maths, Stirling U.K.

COGCOMP, Stirling, Aug 2013 31

(Fig. 7.2 pg 174)

Excitation and Inhibition
• Equilibrium potential of postsynaptic current:

– Isyn(t) = gsyn(t)(V(t)-Esyn)

– Excitatory postsynaptic potential (EPSP) if Esyn>Vry

– Inhibitory postsynaptic potential (IPSP) if Esyn<Vr

Vr

EPSP

IPSP

• A presynaptic neuron is either excitatory or 
inhibitory to all of its targets

Computing Science & 
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IPSP
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Application of I&F Neurons
• Variability of neuronal firing

– Balance of excitation and inhibition

– I&F neuron driven by 100Hz Poisson spike trains

Excitation 
+ inhibition

Excitation 
only 

Computing Science & 
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Irregular firing More regular

More Realistic I&F Neurons
• Basic I&F model does not accurately capture the 

diversity of neuronal firing patterns

• Adaptation of interspike intervals (ISIs) over timep p ( )

Computing Science & 
Maths, Stirling U.K.
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(Fig. 8.8 pg 213)
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Modelling AP Initiation
• Basic I&F is a poor model of the 

ionic currents near AP threshold
– Timing of AP initiation

• Quadratic I&F

• Exponential I&F
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(Fig. 8.9 pg 214)

The Izhikevich Model
• Quadratic I&F plus 

dynamic recovery 
variable

Computing Science & 
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Learning in the Nervous System

• ANNs “learn” by adapting the connection weights
– Different learning rules

Real chemical synapses do change their strength in• Real chemical synapses do change their strength in 
response to neural activity
– Short-term changes 

• Milliseconds to seconds

• Not classified as “learning”

– Long term potentiation (LTP) and depression (LTD)g p ( ) p ( )
• Changes that last for hours and possibly lifetime

• Evidence that LTP/LTD corresponds to “learning”

Computing Science & 
Maths, Stirling U.K.
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Hebbian Learning

• Hypothesis by Donald Hebb, “The Organization of 
Behaviour”, 1949

“When an axon of cell A excites cell B and repeatedly or– When an axon of cell A excites cell B and repeatedly or 
persistently takes part in firing it, some growth process or 
metabolic change takes place in one or both cells so that 
A’s efficiency, as one of the cells firing B, is increased.”

A

Computing Science & 
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B
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Associative Learning

• Increase synaptic strength if both pre- and 
postsynaptic neurons are active: LTP

• Decrease synaptic strength when the pre- or 
postsynaptic neuron is active alone: LTD

Computing Science & 
Maths, Stirling U.K.

COGCOMP, Stirling, Aug 2013 39

Spike Time Dependent Plasticity

• STDP depends on relative timing of pre- and 
postsynaptic spiking activity

Single spikes or short bursts– Single spikes or short bursts

Pre

Post
Pre

Post

LTPLTD

Computing Science & 
Maths, Stirling U.K.

COGCOMP, Stirling, Aug 2013 40(Bi & Poo, 1998, 2001)

0   prepost ttt 0   prepost ttt
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STDP Learning Rule

• Synaptic weight change as a function of pre- and 
postsynaptic spike times for a single spike pair

(Song et al 2000; van Rossum et al 2000)

Typical parameter values:
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(Fig. 7.13 pg 190)

ALTP > ALTD

LTP = 20 msecs
LTD = 40 msecs

Associative Memory
• Recurrent network of binary state “neurons”

– Hopfield

• Binary “patterns” stored by Hebbian learning
– Each bit corresponds to state of a neuron

• Recall via initial state that is a noisy or partial 
version of a stored pattern

Computing Science & 
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Spiking Associative Memory
• What constitutes a “pattern” over a set of 

neurons whose activity changes with time?
– (near) synchronous firing of neurons

• What is an update cycle during recall?
– A gamma frequency (40 Hz) oscillation cycle

• What is the weight of a synaptic connection?• What is the weight of a synaptic connection?
– Amplitude of excitatory synaptic conductance

• How is firing threshold for recall set?
– Inhibition in proportion to excitatory activity
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Example Spiking Network
• 100 PC recurrent network

– Sommers and Wennekers (2000, 2001)
– Pinsky-Rinzel 2-compartment neuron model

• Excitatory connections determined by predefined 
binary Hebbian weight matrix that sets synaptic 
conductance
– Conductance either 0 or gmax

• Threshold setting via all-to-all fixed weight 
inhibitory connectionsinhibitory connections
– Should really be provided by a separate population of 

inhibitory neurons driven by the excitatory neurons

Computing Science & 
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Cued Recall in Spiking Network

• Cue: 4 of 10 PCs in a 
stored pattern receive 
constant excitationconstant excitation

• Network fires with 
gamma frequency

• Pattern is active cells 
on each gamma cycle

• Timing and strength ofTiming and strength of 
inhibition
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(Fig. 9.10 pg 253)

Rhythmic Neural Circuits
• CA1 region of hippocampus
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NEURON Exercises

1. Frequency-Input Current (F-I) Firing Curve

2. Simple Excitation-Inhibition (E-I) Oscillatorp ( )

3. Excitation-Inhibition Balance in an I&F Neuron

4. Excitation-Inhibition Balance in a Network

5. STDP in Action
a. Phase precession of spike timing

b Sequence learningb. Sequence learning

6. Associative Memory in a Network
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