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Computational Neuroscience

• Discover how the 
brain works
– Models that can 

reproduce and explain 
experimental results

• Emulate the brain in 
computational devices
– Models that retain only 

the important 
computational details
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Levels of Detail
• Whole brain
• Brain nuclei

• Lumped models

• Networks of neurons
• Single neurons
• Subcellular
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(Fig. 1.3 pg 7)
(confrontaal.org)

Artificial Neural Networks
• Networks of simple computing units (“neurons”)
• Binary or analog signals and connection weights
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Real Neural Networks
• Networks of complex neurons
• Pulse train signals (action potentials or spikes)
• Dynamic connection weights
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Complicated Neural Circuits
• CA1 region of hippocampus
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Neurons

• Neurons come in many shapes and sizes
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(Dendrites, Hausser et al (eds))

Compartmental Modelling
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Large Scale Model

• Cerebellar Purkinje cell
De Schutter & Bower– De Schutter & Bower, 
1994

• 4550 compartments

• 8021 ion channels

• 3500 synapses
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(www.neuroconstruct.org)

Varying Levels of Detail

• Capture essential features of morphology

proximal

distal

apical

Simple structure
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Electrical Potential of a Neuron

• Differences in ionic 
concentrations

T t f i• Transport of ions
– Sodium (Na)

– Potassium (K)

(Fig 2 1 pg 14)
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(Fig. 2.1 pg 14)

(Fig. 2.13 pg 31)

A Length of Membrane

• Membrane compartments connected by 
intracellular resistance

(Fig. 2.15 pg 36)

• Compartmental modelling equation
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Action Potential Model

• Empirical model by Hodgkin and Huxley, 1952
– Voltage-dependent Na and K channels
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(Fig. 3.1 pg 47)

Complete Action Potential Model
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Many, Many Ion Channels…
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(Table 5.2 pg 102)

Potassium A-current: KA

• Different characteristics from delayed rectifier: KDR

• Low threshold activating / inactivating current
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One Effect of A-current

• Low frequency 
(Type I) firing

• Type I: with KA
– Steady increase in 

firing frequency with 
driving current

• Type II: without KA
S ddent j mp to– Suddent jump to 
non-zero firing rate
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(Table 5.9 pg 106)

A Detailed Pyramidal Cell Model
• 183 electrical compartments

• Heterogeneous ion channel population
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Pyramidal Cell Model Responses
• Reproduces somatic and dendritic current 

injection experimental results
– Sodium spiking with distance
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(Poirazzi & Pissadaki, in CU)

Reduced Pyramidal Cell Model
• 2-compartment model

– Pinsky & Rinzel (1994)

• Captures essence of PC behaviour

Soma

Dendrite

Area p
Area 1-pg

p
– Single spikes and bursting

(Fig. 8.1 pg 199)
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Pinsky-Rinzel Model in Action
• Behaviour depends on 

– Compartment coupling strength (g)

Magnit de of dri ing c rrent (I)– Magnitude of driving current (I)

Low I, low g

High I, low g
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High I, high g

(Fig. 8.2 pg 201)

Simple Spiking Neuron Models

• Simplified equations for generating action 
potentials (APs)potentials (APs)
– FitzHugh-Nagumo; Kepler; Morris-Lecar

– 2 state variables: voltage plus one other
• H-H model contains 4 variables: V, m, h, n

• Simple spiking models that DO NOT model the 
AP waveformAP waveform
– Integrate-and-fire models
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Morris-Lecar Model

• 2-variable model of Ca-mediated Aps

I t t ti ti ki ti• Instantaneous activation kinetics
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(Box 8.1 pg 200)

Morris-Lecar Model (2)
• Type I firing: continuous increase in firing rate

• Type II firing: discontinuous jump to nonzero rate
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Integrate-and-Fire Model

• RC circuit with spiking and reset mechanisms
– When V reaches a threshold 

• A spike (AP) event is “signalled”

• Switch closes and V is reset to Em

• Switch remains closed for refractory period
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I&F Model Response

• Response to constant current injection
– No refractory period

10ms refractory 
period
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(Fig. 8.5 pg 205)
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Application of I&F Neurons
• Variability of neuronal firing

– Balance of excitation and inhibition

– I&F neuron driven by 100Hz Poisson spike trains

Excitation 
+ inhibition

Excitation 
only 
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Irregular firing More regular

More Realistic I&F Neurons
• Basic I&F model does not accurately capture the 

diversity of neuronal firing patterns
– Adaptation of interspike intervals (ISIs) over time

– Precise timing of AP initiation

– Noise
Computing Science & 
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(Fig. 8.8 pg 213)
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Modelling AP Initiation
• Basic I&F is a poor model of the 

ionic currents near AP threshold

• Quadratic I&F

• Exponential I&F
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(Fig. 8.9 pg 214)

The Izhikevich Model
• Quadratic I&F plus 

dynamic recovery 
variable
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The Chemical Synapse

• A temporal signal filter

• Complex biochemical p
signalling pathways
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(The Synapse Web)

(biochem.uni-erlangen.de)

Synaptic Conductance

• 3 commonly used simple waveforms
a) Single exponential

b) Alpha function

c) Dual exponential

– Current: Isyn(t) = gsyn(t)(V(t)-Esyn)
Computing Science & 
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(Fig. 7.2 pg 174)
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Learning in the Nervous System

• ANNs “learn” by adapting the connection weights
– Different learning rules

Real chemical synapses do change their strength in• Real chemical synapses do change their strength in 
response to neural activity
– Short-term changes 

• Milliseconds to seconds

• Not classified as “learning”

– Long term potentiation (LTP) and depression (LTD)g p ( ) p ( )
• Changes that last for hours and possibly lifetime

• Evidence that LTP/LTD corresponds to “learning”
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Hebbian Learning

• Hypothesis by Donald Hebb, “The Organization of 
Behaviour”, 1949

“When an axon of cell A excites cell B and repeatedly or– When an axon of cell A excites cell B and repeatedly or 
persistently takes part in firing it, some growth process or 
metabolic change takes place in one or both cells so that 
A’s efficiency, as one of the cells firing B, is increased.”

A
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B
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Associative Learning

• Increase synaptic strength if both pre- and 
postsynaptic neurons are active: LTP

• Decrease synaptic strength when the pre- or 
postsynaptic neuron is active alone: LTD
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Spiking Associative Network
• Sommers and Wennekers (2000, 2001)
• Pinsky-Rinzel 2-compartment PC model
• 100 PC recurrent network

– E connections determined by predefined binary 
Hebbian weight matrix that sets AMPA conductance

– All-to-all fixed weight inhibitory connections

Computing Science & 
Mathematics, Stirling UK

CN course, Kuala Lumpur & 
Singapore, June 2012
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Cued Recall in Spiking Network

• Cue: 4 of 10 PCs in a 
stored pattern receive 
constant excitationconstant excitation

• Network fires with 
gamma frequency

• Pattern is active cells 
on each gamma cycle

• Timing and strength ofTiming and strength of 
inhibition

Computing Science & 
Mathematics, Stirling UK

CN course, Kuala Lumpur & 
Singapore, June 2012

37

(Fig. 9.10 pg 253)

Spike Time Dependent Plasticity

• STDP depends on relative timing of pre- and 
postsynaptic spiking activity

Single spikes or short bursts– Single spikes or short bursts

Pre

Post
Pre

Post

LTPLTD
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STDP Learning Rule

• Synaptic weight change as a function of pre- and 
postsynaptic spike times for a single spike pair

(Song et al 2000; van Rossum et al 2000)

Typical parameter values:
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(Fig. 7.13 pg 190)

ALTP > ALTD

LTP = 20 msecs
LTD = 40 msecs

Text Book

Authors: David Sterratt, 
Bruce Graham, Andrew 
Gillies, David Willshaw

Cambridge University 
Press, 2011

Companion website at:

compneuroprinciples.orgp p p g
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