Mathematical Models of Invasive Species

Brian Lee (Mathematician)

Prof. Rachel Norman & Paul Stebbing (CEFAS)
Department of Mathematics and Computing Science
University of Stirling
Tuesday 21st April: PhD Day
Don’t get your hopes up
Invasive species: Why bother?

Yes or no?

- Second greatest threat to global biodiversity

- Contributing factor in the extinction of no less than 91 species

- Cost Great Britain approximately £1.7 billion
Examples (1)

The Good

Rhododendron

Coniferous Forests

Buddleias (Butterfly bush)

Rhizophagus grandis
Examples (2)

The Bad

Black rat (Rattus rattus)

Common/European rabbit

Kudzu
Examples (3)

The Downright Ugly

- **Signal Crayfish**
 - Native to North America
 - Carriers of *Aphanomyces astaci*
 - Mate with the native White-clawed crayfish
 - Culling thus far unsuccessful
The problem (1)

The Set-up

- Create a general model of trapping/removal
- Compare constant removal rate with both increasing and decreasing effort over time
- Investigate the effects of growth rate on “time to eradication”
The problem (2)

The Maths

- Start off with a basic logistic growth model: $\frac{dN}{dt} = rN(1 - \frac{N}{K})$
- Then add in a trapping rate: $\tau = -f(t)N$
- Evaluate the effects of τ on $N(t)$ with differing $f(t)$s

\[f(t) = \begin{cases} kmt \ln(t+1) \delta(1 - 2\cos\left(\frac{2\pi(t-2.5)}{12}\right))\rho(10 + t/2 - 10\cos(2\pi t)) & \text{for } 0 \leq t \leq 300 \text{ and } k, m, \gamma, \delta, \rho \text{ constant} \end{cases} \]
The problem (3)

Trapping/removal functions

Constant

Decreasing - Log

Increasing – Straight Line

Seasonal

Increasing - Log

Increasing - Rastrigin
Results

- Constant
- Decreasing - Log
- Increasing – Straight Line
- Seasonal
- Increasing - Log
- Increasing - Rastrigin
Results II

But wait, there’s more

<table>
<thead>
<tr>
<th>r</th>
<th>Log</th>
<th>St.Line</th>
<th>Rastrigin</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2.3</td>
<td>12.2</td>
<td>0</td>
</tr>
<tr>
<td>0.2</td>
<td>5.2</td>
<td>42.2</td>
<td>88.7</td>
</tr>
<tr>
<td>0.4</td>
<td>11.3</td>
<td>72.2</td>
<td>119.7</td>
</tr>
<tr>
<td>0.6</td>
<td>25.1</td>
<td>102.2</td>
<td>143.7</td>
</tr>
<tr>
<td>0.8</td>
<td>57.3</td>
<td>132.2</td>
<td>163.8</td>
</tr>
<tr>
<td>1</td>
<td>135</td>
<td>162.2</td>
<td>181.7</td>
</tr>
<tr>
<td>1.2</td>
<td>326.5</td>
<td>192.2</td>
<td>198.5</td>
</tr>
<tr>
<td>1.4*</td>
<td>222.2</td>
<td>213.5</td>
<td></td>
</tr>
<tr>
<td>1.6*</td>
<td>252.2</td>
<td>227.5</td>
<td></td>
</tr>
<tr>
<td>1.8*</td>
<td>282.2</td>
<td>240.5</td>
<td></td>
</tr>
<tr>
<td>2*</td>
<td>312.2</td>
<td>252.6</td>
<td></td>
</tr>
<tr>
<td>2.2*</td>
<td>*</td>
<td>264.5</td>
<td></td>
</tr>
<tr>
<td>2.4*</td>
<td>*</td>
<td>275.6</td>
<td></td>
</tr>
<tr>
<td>2.6*</td>
<td>*</td>
<td>286.5</td>
<td></td>
</tr>
<tr>
<td>2.8*</td>
<td>*</td>
<td>296.7</td>
<td></td>
</tr>
<tr>
<td>3*</td>
<td>*</td>
<td>306.7</td>
<td></td>
</tr>
</tbody>
</table>
Future work

Are we there yet?

- Biologically realistic model

- Look at effects on ecosystem at varying stages of invasion:
 - Signal crayfish – already here
 - King crab – starting to invade
 - Killer shrimp – not here yet

- Different stages, different maths
THANKS FOR LISTENING!