A General Performance Evaluation Framework for Network Selection Strategies in 3G-WLAN Interworking Networks

Hao Wang¹, Dave Laurenson¹, and Jane Hillston²

¹Institute for Digital Communications ²Laboratory for Foundations of Computer Science The University of Edinburgh

Heterogeneous wireless networks

Users are able to use a wide range of wireless networks, often with multiple networks available at the same time.

Heterogeneous wireless networks

Heterogeneous wireless networks have complementary characteristics such as data rate and coverage, e.g.

	Coverage Area	Data Rate
3G	~ 1 – 2 km	2 Mbps (3G)
WLAN	~ 100 – 200 m	54 Mbps (802.11a)
Bluetooth	~ 10m	24 Mbps (version 3.0)

Therefore, it is envisioned that next-generation wireless communications will focus on the integration of these heterogeneous networks.

3G-WLAN interworking architecture

It is becoming necessary to integrate wireless LANs (WLANs) and 3G cellular networks, to form 3G-WLAN interworking networks.

Horizontal and vertical handovers

- In heterogeneous wireless networks, a mobile node may perform handovers during its communications:
 - □ horizontal handover (HHO): a mobile node moves across cells that use the same type of access technology.
 - □ vertical handover (VHO): the movement between different types of wireless networks.

Handover decision of HHO and VHO

- Before a mobile node performs either handover it must:
 □ collect information to confirm the need for a handover, and
 □ decide whether to perform the handover.
- For a HHO, the handover criterion is usually just the signal strength received by the mobile node.
- For a VHO, various handover criteria can be taken into account when making a handover decision e.g.:
 - □ cost of service: cost is a major consideration, and could be sometimes be the decisive factor.
 - network conditions: network-related parameters such as bandwidth and network latency.
 - □ mobile node conditions: the node's dynamic attributes such as mobility pattern, account balance and power consumption.
 - □ user preference: a user may have preference for one type of network over another.

Network selection strategies

To facilitate the above evaluation process, mathematical expressions are introduced: network selection strategies (NSSs).

Traffic model

- The traffic model of a mobile node is modelled in the session model, which includes two parameters: session arrival rate and session duration.
- Field data suggests that the statistical session duration of multi-type-services has a coefficient of variation (CoV) larger than one.
- To capture this feature, we use the hyper-exponential distribution (HED) to model the session duration. A twophase HED is used in this work, where one phase represents non-real time (NRT) sessions and the other represents real time (RT) sessions.

Two assumptions are made:

□ WLAN cells do not overlap with each other;

HHO between WLAN cells is not considered

□ WLAN cells that overlap with adjacent cellular cells belong to all the cellular cells;

the start point of the track of the mobile node in a 3G-WLAN compound cell is always the 3G area

PEPA models for NSSs (general description)

- In the PEPA model for NSSs, a mobile node
 - \Box can generate different types of sessions, and these sessions are submitted to different networks according to NSSs (parameters P_C and P_W are used in the definitions of PEPA models);
 - □ can perform different types of handovers according to the NSSs;
 - □ is aware of network blocking for both new and handover sessions in 3G and WLAN networks (parameters $P_B^{\ C}$ and $P_B^{\ W}$ are used in the definitions of PEPA models);
 - □ is aware of the different data rates that are provided by different RATs; (NRT sessions (e.g. file downloading) usually need less time using WLAN RAT than using 3G RAT)

A the percentage of time
the mobile node spends
using different RATs for
different types of sessions
$$T_{C,NRT} = \sum_{i=1}^{N} \pi(s_i^{C,NRT}), \qquad T_{C,RT} = \sum_{i=1}^{N} \pi(s_i^{C,RT}),$$
$$T_{W,NRT} = \sum_{i=1}^{N/2} \pi(s_{2i}^{W,NRT}), \qquad T_{W,RT} = \sum_{i=1}^{N/2} \pi(s_{2i}^{W,RT}),$$

then, calculate the total engaged time of the mobile node:

 $T_{Engaged} = T_{C,NRT} + T_{C,RT} + T_{W,NRT} + T_{W,RT}$

Average throughput

then, the average throughput is defined as a weighted sum:

$$THP = D_{NRT}^{C} * \frac{T_{C,NRT}}{T_{Engaged}} + D_{RT}^{C} * \frac{T_{C,RT}}{T_{Engaged}} + D_{NRT}^{W} * \frac{T_{W,NRT}}{T_{Engaged}} + D_{RT}^{W} * \frac{T_{W,RT}}{T_{Engaged}},$$

$$r_{C-C}^{inter} = \sum_{i=1}^{N/2} P_{W} * a_{2i-1} * v_{2i-1} * \pi(s_{2i}^{W}),$$

$$r_{C-C}^{inter} = \sum_{i=1}^{N/2} P_{W} * a_{2i-1} * \pi(s_{2i}^{W}),$$

$$r_{C-W}^{inter} = \sum_{i=1}^{N/2} P_{W} * a_{2i-1} * \pi(s_{2i}^{W}),$$

$$r_{W-C}^{intra} = \sum_{i=1}^{N/2} P_{W} * a_{2i-1} * \pi(s_{2i}^{W}),$$

Network blocking probability

- Like network selection probabilities, these network blocking probabilities can be used as input parameters.
- In this work, they are derived from a 2D-CTMC that models the resource consumption of a 3G-WLAN compound cell.
 - \Box the state of the 2D-CTMC is denoted by two integers (*c*,*w*), where *c* and *w* represent the numbers of engaged users in 3G and WLAN networks respectively;

Network blocking probability

Network blocking probability

The blocking probabilities of 3G and WLAN networks are then calculated as:

$$P_B^C = \sum_{\substack{c=N_C\\0\leqslant w\leqslant N_W}} p(c,w), \quad P_B^W = \sum_{\substack{w=N_W\\0\leqslant c\leqslant N_C}} p(c,w),$$

An implicit problem

As presented above, the derivation of network blocking probabilities from the 2D-CTMC model requires handover rates as input parameters.

On the other hand to derive handover rates from the DEDA

Convergence speed

The convergence speed of the above iterative method is dependent on the parameter settings but very fast.
 □ four types of NSSs have been investigated with 10 increasing session durations --- as the table shows in each case only a low number of iterations was needed.

Model	Numbers of iterations
Random	$\left[2, 2, 3, 4, 5, 7, 9, 11, 11, 13\right]$
RRSS	[2, 2, 3, 4, 5, 7, 8, 11, 12, 13]
WLAN-first	[2, 2, 3, 4, 5, 6, 8, 10, 12, 13]
Service-based	[2, 2, 3, 4, 5, 6, 8, 10, 12, 13]

moreover, the results of the method are NOT dependent on the initial values of network blocking probabilities

Four types of NSSs

Random:

□ the mobile node selects 3G and WLAN with equal probabilities, i.e., 0.5;

- Relative received signal strength (RRSS):
 - □ the mobile node selects the network with the strongest signal strength;

WLAN-first:

□ the mobile node always choose WLAN when it is available, because of its high bandwidth, small delay and cheap cost;

Service-based:

□ the mobile node selects 3G for RT sessions (for less handovers) and WLAN for NRT sessions (for high data rate);

Parameter settings

Network selection probabilities of different NSSs are:

Network selection probabilities			
Random	$P_{C} = 0.5$	$P_{W} = 0.5$	
RRSS	$P_{C} = 0.4$	$P_W = 0.6$ [10]	
WLAN-first	$P_C = 0$	$P_W = 1$	
Service-based	$P_C = 1$ (for RT session)		
corrice subout	$P_W = 1$ (for NRT session)		

Controlled parameters

Effect of two mobility patterns
 mobility pattern 1 (t_{3G-WLAN}=474, P_{NRT}=P_{RT}=0.5)
 mobility pattern 2 (t_{3G-WLAN}=1200, P_{NRT}=P_{RT}=0.5)

mobility pattern 2 ($t_{3G-WLAN}=1200$, $P_{NRT}=P_{RT}=0.5$)

mobility pattern 1 ($t_{3G-WLAN}$ =474, P_{NRT} = P_{RT} =0.5)

mobility pattern 1 ($t_{3G-WLAN}$ =474, P_{NRT} = P_{RT} =0.5) and mobility pattern 2 ($t_{3G-WLAN}$ =1200, P_{NRT} = P_{RT} =0.5)

mobility pattern 1 ($t_{3G-WLAN}$ =474, P_{NRT} = P_{RT} =0.5)

mobility pattern 1 ($t_{3G-WLAN}$ =474, P_{NRT} = P_{RT} =0.5) and mobility pattern 2 ($t_{3G-WLAN}$ =1200, P_{NRT} = P_{RT} =0.5)

mobility pattern 1 ($t_{3G-WLAN}$ =474, P_{NRT} = P_{RT} =0.5)

mobility pattern 2 ($t_{3G-WLAN}=1200$, $P_{NRT}=P_{RT}=0.5$)

traffic pattern 1 ($t_{3G-WLAN}$ =1200, P_{NRT} =0.3 P_{RT} =0.7)

traffic pattern 2 ($t_{3G-WLAN}$ =1200, P_{NRT} =0.7 P_{RT} =0.3)

traffic pattern 1 ($t_{3G-WLAN}$ =1200, P_{NRT} =0.3 P_{RT} =0.7)

traffic pattern 1 ($t_{3G-WLAN}$ =1200, P_{NRT} =0.3 P_{RT} =0.7) and traffic pattern 2 ($t_{3G-WLAN}$ =1200, P_{NRT} =0.7 P_{RT} =0.3)

traffic pattern 1 ($t_{3G-WLAN}$ =1200, P_{NRT} =0.3 P_{RT} =0.7)

traffic pattern 1 ($t_{3G-WLAN}$ =1200, P_{NRT} =0.3 P_{RT} =0.7)

traffic pattern 2 ($t_{3G-WLAN}$ =1200, P_{NRT} =0.7 P_{RT} =0.3)

Conclusions

In conclusion

- For deterministic strategies (service-based and WLAN-first):
 □ easy to implement;
 - □ user knows which network is connected to;
 - □ their performance in terms of the investigated measures are usually the boundaries of the studies strategies;
- For non-deterministic strategies (RRSS and random):
 not easy to implement
 - □ users experience uncertainty during handover;
 - □ they produce more balanced performance on the investigated measures;

Thank You!

mobility pattern 1 ($t_{3G-WLAN}$ =474, P_{NRT} = P_{RT} =0.5)

mobility pattern 2 ($t_{3G-WLAN}=1200$, $P_{NRT}=P_{RT}=0.5$)

traffic pattern 1 ($t_{3G-WLAN}$ =1200, P_{NRT} =0.3 P_{RT} =0.7)

traffic pattern 2 ($t_{3G-WLAN}$ =1200, P_{NRT} =0.7 P_{RT} =0.3)

