Formal Testing of Distributed Systems

R. M. Hierons
Brunel University, UK
rob.hierons@brunel.ac.uk
http://people.brunel.ac.uk/~csstrmh
Work With

- Mercedes Merayo
- Manuel Nunez
- Jessica Chen
- Hasan Ural
Challenges in Testing

These include:

- Scale
- Concurrency
- Distribution
- The oracle problem.

Potential solution, model-based testing:

- Automate testing on the basis of a formal model or specification.
Model Based Testing

- We only observe interactions between the system under test (SUT) and its environment.
- To reason about test effectiveness we assume:
 - The behaviour of the SUT can be expressed in the same language as the model.
Models for distributed and networked systems

- Such systems typically:
 - Have states and actions
 - Are concurrent

- If we take a black-box view, the last issue is less important
Formal languages

- Typically use states and transitions between states triggered by actions.
- Many can be seen as one of:
 - Finite state machines
 - Labelled transition systems (and input output transition systems)
- Former less general but the models are easier to analyse.
Multi-port systems

- Physically distributed interfaces/ports.
- A tester at each port.
Distributed testing

- Mainly focus on the simplest approach:
 - The testers cannot communicate with one another
 - There is no global clock
 - Observations are ‘local’
Motivation

- Initially just testing/test generation.
- The discussion will be around both testing and implementation/conformance relations.
- Testing from:
 - input output transition systems and possibly deterministic finite state machines
 - nondeterministic finite state machines
Testing and Observations
A global trace is a sequence of inputs and outputs.

We assume there are m ports and:

- x_p will denote an input at port p (from X_p)
- $(y_1,\ldots,y_m) \in Y$, $Y=(Y_1 \cup \{-\}) \times \ldots \times (Y_m \cup \{-\})$, will be an output

A global trace is an element of $(X \times Y)^*$
Consequences

- Each tester observes only the interactions (*local trace*) at its port

- The tester at port 1 observes $x_1 y_1 x_1 y_1$ and the tester at 2 observes y_2 only.
What the testers observe

- Given global trace z, the tester at p observes a local trace $\pi_p(z)$.

![Diagram showing networked and distributed systems with testers observing traces x_1, y_1, and y_2.]
Controllability problems

- The following test has a controllability problem: introduces nondeterminism into testing.

![Networked and Distributed Systems](image-url)
Observability problems

- The following look the same

- Testers/users cannot ‘map’ output to input

Networked and Distributed Systems
Equivalent global traces

- Since we only observe local traces:
 - Global traces z and z' are indistinguishable if their projections are identical: the local traces are the same.
 - We denote this: $z \sim z'$
- The following are equivalent under \sim
 - $x_1/(y_1, y_2)$
 - $x_1/(y_1, -)$
 - $x_1/(y_1, y_2)$
- Both have $x_1 y_1 x_1 y_1$ at port 1 and y_2 at 2.
Problem: Test effectiveness is not monotonic

Example: x_1 detects a fault but x_1x_1 does not.
Two approaches to defining implementation relations

- We might have:
 - Agents at ports are entirely ‘independent’:
 - No external agent can receive information regarding observations at more than one port
 - Or the local traces observed at the ports can be ‘brought together’ later.
Differences

- Specification

- SUT

Networked and Distributed Systems
Using an external network

➢ If we connect the testers using an external network, *sometimes* we can overcome controllability and observability problems.
But

- If a system has physically distributed interfaces then the implementation relation should reflect this:

 - Even if we can connect the testers, we should be careful that we do not give the verdict fail when the behaviour is acceptable in use.

 - *The users will only observe local traces.*
Past research

➢ Mainly on testing from a deterministic finite state machine (DFSM):

• Generating test sequences that do not suffer from controllability and/or observability problems

• Adding coordination messages (possibly adding a minimum number).
Problems/issues

- A DFSM can have transitions that can’t be executed without controllability problems.
- Test generation algorithms place conditions on the DFSM – they are not general.
- The methods test against the ‘traditional’ implementation relation – aiming to do too much?
- Using DFSMs is restrictive.
The solution

- We need a good understanding of what it means to distinguish two models with distributed ports.

- This gives us new implementation relations.

- We want to test against these.
Input Output Transition Systems (IOTSSs)
The models

- These are labelled transition systems in which we distinguish between input and output.
- We have states and transitions between the states.
- Notation:
 - Normally we precede the name of an input by ? and the name of an output by !.
Internal events and quiescence

- We have two special types of events:
 - Internal events (τ) are state transitions that do not require input and do not produce output.
 - A state s is quiescent if from s output cannot be produced without first providing input.
 - If s is quiescent then we add a self-loop transition from s with label δ.
A simple example

- A (very) simple coffee machine

- We have not shown the self-loops for quiescence.
IOTS models

- IOTS models are more general than FSMs:
 - They can be infinite state models
 - Input and output need not alternate
 - There can be internal (unobservable) actions.

- We assume:
 - IOTs are input enabled
 - We can observe quiescence
Implementation relations

- There is a standard implementation relation (for testing) called ioco
- It requires:
 - If σ is a (suspension) trace of the specification s and the implementation can produce output $!o$ after σ then s must be able to produce output $!o$ after σ
Correct implementations?

Networked and Distributed Systems
Two equivalent processes

We cannot distinguish the following:

Note: assume processes completed to make them input-enabled.
Issue

➢ When can we ‘bring together’ local observations?

➢ In this example not after $?i_1!o_1$ or $?i_1!o_2$
When do we make observations?

- For an FSM we observe the projections of input/output sequences - we can ‘stop’ after an input/output sequence.
- When can we ‘stop’ when considering IOTSSs? Possibly:
 - Whenever we have quiescence.

- We can then ‘bring together local traces’
An implementation relation \(\text{dioco} \)

- We say that \(i \) \(\text{dioco} \) \(s \) if:

 - For every trace \(z \) of \(i \) that can take \(i \) to a quiescent state, there is some trace \(z' \) of \(s \) such that \(z' \sim z \).

- This means:

 - If \(i \) has a ‘run’ \(z \) that ends in quiescence then \(s \) has a specified behaviour that is ‘equivalent’ to \(z \).
dioco does not imply ioco

Example:

\[
\begin{array}{c}
?i_1 \\
!o_2 \\
!o_1 \\
\end{array}
\quad \Downarrow
\quad \Downarrow
\quad \Downarrow

\begin{array}{c}
?i_1 \\
!o_1 \\
!o_2 \\
\end{array}
\]
Result

- If s and i are input enabled then:
 - i ioco s implies that i dioco s
- Normally IOTS implementations are required to be input enabled.
- So:
 - For input enabled specifications we have that dioco is weaker than ioco.
Test cases

- These can be defined as processes that can interact with the SUT.
- We can have:
 - A global tester that interacts with every port
 - One local tester for each port.
- In our context, we cannot implement a global tester (but we can map it to a set of local testers).
Controllability

- A local tester observes only the events at its port.

- As a result, if it has to supply an input then it can only know when to do this on the basis of its observations.
A controllability problem

- The tester at port 2 does not know when to send its input.
The effect of nondeterminism

- We might have pairs of allowed traces with prefixes like the following:

```
<table>
<thead>
<tr>
<th>tester</th>
<th>Spec</th>
<th>tester</th>
<th>tester</th>
<th>Spec</th>
<th>tester</th>
</tr>
</thead>
<tbody>
<tr>
<td>x_1</td>
<td></td>
<td>x_1</td>
<td>x_1</td>
<td>y_2</td>
<td>y_2</td>
</tr>
<tr>
<td>y_1</td>
<td></td>
<td>y_1</td>
<td>y_2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>x_2</td>
<td></td>
<td></td>
<td></td>
<td>x_2</td>
<td></td>
</tr>
</tbody>
</table>
```

Networked and Distributed Systems
Choice

- A tester makes a choice based on its observations.
- This is the notion of ‘local choice’.
- Also studied in the context of Message Sequence Charts (e.g. non-local choice pathologies).
- Difference in problems considered and our problem has additional ‘structure’
Defining controllability

A test case t is controllable if each tester can make ‘local choices’

- there should not be two prefixes z and z' of traces that can be produced using t that look the same to a tester at port p and yet this tester should behave differently after these.

Result:
- We can decide in polynomial time whether a test case is controllable.
Additional implementation relations?

- In dioco we assume traces can be brought together at the end of testing.
- We have allowed the use of test case with controllability problems.
- So, there are alternative implementation relations.
An example

- We can require that local traces are not brought together.
- Makes sense if this corresponds to expected usage.
- We require:

 - For every trace z of the implementation and port p there is a trace z' of the specification such that $\pi_p(z) = \pi_p(z')$
Can be weaker

- Specification and implementation

- Looks ok if we cannot bring together local traces.
Can be stronger

- No quiescence:

\[
\begin{align*}
&\circlearrowleft \quad !o_1 \\
&\circlearrowright \quad !o_2
\end{align*}
\]

- Suggests: only allowing traces ending in quiescence is problematic.
Additional alternatives

Instead of only considering quiescent traces we could:

- Combine (conjoin) the previous two implementation relations.
- Consider infinite traces.
Using infinite traces

- We can compare the infinite traces of the implementation with those of the specification.
- This is an answer to ‘when do we bring together local traces’.
- In practice we will have to define conservative decision procedures for oracles.
Other Types of Models
The following are equivalent

- \(!o_1!o_2, !o_2!o_1 \)
- \(!o_1!o_1!o_2, !o_2!o_1!o_2 \)
- \(... \)
- \((!o_1)^{1000}!o_2, !o_2(!o_1)^{1000} \)
- \(... \)

- When does this stop being reasonable?

Networked and Distributed Systems
One possible approach

- We could include time in our model.

- Problem:
 - Local clocks need not synchronise.

- We might have e.g.:
 - bounds in drift,
 - information about time taken by messages,
 - messages between testers

- This is future work.
Using scenarios

➤ An alternative:
 • Allow the users and testers to effectively synchronise at certain points.

➤ We can
 • consider scenarios and;
 • add explicit synchronisation points in a specification.
Adding probabilities

- Some systems have probabilistic requirements.
- We can add probabilities to transitions.
- It is straightforward to extend IOTSSs to probabilistic IOTSSs.
A Generative Approach

- In a state \(s \) the sum of probabilities of transitions leaving \(s \) add up to 1.
- The implementation relations are similar to dioco – we just add requirements regarding probabilities.

- However, if we have inputs and outputs this approach requires us to have probabilistic information regarding the environment.
A reactive/generative approach

Instead we can assume that:

- There is no probabilistic information regarding inputs from the environment (a reactive approach).

- In state s, the sum of the probabilities of outputs from the SUT (including δ) is 1: outputs are generative.
Probabilities of observations

- Consider the following

```
?i_1  ?i_2
   /    \
  /      \\  
?i_2   ?i_1
  |     |   |
  |     |   |
!tea  !coffee
```

- What is the probability of observing !coffee after ?i_1 ?i_2
The problem

- We can have races between events at different ports.
- We have no probabilistic information regarding the outcome of these races.
Possible solutions

Two alternatives:

- Outlaw such situations (effectively say that we know nothing about the probabilities).

- Assume that the (unknown) environment has such probabilities and define corresponding implementation relations.
Finite State Machines
Finite State Machines

• The behaviour of M in state s_i is defined by the set of input/output sequences (traces) from s_i
An implementation relation for distributed systems

We say that DFSM N conforms to DFSM M if:

- Every global trace of N is indistinguishable from a global trace of M.

Equivalently:

- For every global trace \(z \) of N there is a global trace \(z' \) of M such that \(z \sim z' \).
Conformance is weaker than equivalence

- This also shows that it is not an equivalence relation (second can have output y_2).

- Is the first an acceptable design for second?

Networked and Distributed Systems
Key components of testing

- When testing from an FSM we want to be able to:
 - Reach states
 - Distinguish states (and machines)
 - Check output against the specification (oracle problem).
The Oracle Problem

For DFSMs this:
- Can be solved in polynomial time for controllable test sequences
- Otherwise is NP-hard

For NFSMs:
- NP-hard even for controllable testing
- Polynomial if we restrict further

Networked and Distributed Systems
Reaching and distinguishing states

Problem

- Is there a strategy for each tester that leads to testing taking the FSM to a particular state (or distinguishes two states)?

This problem is undecidable.

Decidable for controllable testing from a DFSM (result does not hold for NFSMs).
Controllable testing
Distinguishing states

- If we restrict ourselves to controllable testing we need:
 - x causes *no controllability problems* from s and s'
 - x leads to different sequences of interactions, for s and s', at *some port*.

- We say that x *locally s-distinguishes* s and s'.
- If no input sequence locally distinguishes s and s' they are *locally s-equivalent*.
Testing is weaker

- We cannot locally s-distinguish s_1 and s_4, but x_1x_2 locally distinguishes them.
Distinguishing two states

- Given port p and states s_1 and s_2 of a m-port FSM M with n states:

 - s_1 and s_2 are locally s-distinguishable by an input sequence starting at p if and only if they are locally s-distinguishable by some such input sequence of length at most $m(n-1)$.

- This bound is ‘tight’.
- The sequences can be found in low-order polynomial time.
Minimality

- Two possible definitions:
 - Def 1: A DFSM is locally s-minimal if it has no locally s-equivalent states.
 - Def 2: A DFSM M is locally s-minimal if no DFSM with fewer states is locally s-equivalent to M.

- For initially-connected, completely specified, single-port DFSMs, these are the same.
Minimal DFSMs are not always locally s-minimal

- We have seen that s_1 and s_4 are locally s-equivalent.
Merging s-equivalent states

➢ A smaller acceptable design?

Networked and Distributed Systems
Minimising: smallest FSM

➢ Even smaller:

Networked and Distributed Systems
Consequences

- We had two alternative definitions.
 - Def 1: A DFSM is locally s-minimal if it has no locally s-equivalent states.
 - Def 2: A DFSM M is locally s-minimal if no DFSM with fewer states is locally s-equivalent to M.
- For multi-port DFSMs these differ.
- Def 2 is ‘better’?
Canonical FSMs

- Given DFSM M, we can find:
 - Maximal M_{max} that is locally s-equivalent to M
 - Minimal M_{min} that is locally s-equivalent to M

- We can find them efficiently.
Results

- DFSM N is locally s-equivalent to DFSM M if and only if N is a reduction of M_{max}.

- The set of DFSMs that are s-equivalent to a DFSM M forms a bounded lattice.
We now know that:

\[\text{FSM } M \rightarrow \text{FSM } M_{\text{max}} \]

- s-equivalence
- reduction

implementation N
Summary: controllable testing

- Benefits of restricting to controllable test sequences for DFSMs
 - Oracle problem can be solved in polynomial time
 - Have unique ‘min’ and ‘max’ machines
 - Can test against ‘max’ model for reduction using traditional methods
 - Could develop from ‘max’ model?

- However: limits testing
Future work

- Generating test cases to satisfy a test criterion.
- Generating complete test suites.
- Minimising an FSM.
- Testing using coordination messages but the ‘new’ implementation relations
- Timed models.
- Enriching models with data, stochastic time, ...
Papers (FSMs)

Papers (IOTSSs)

Conclusions

- If a system has distributed interfaces/ports then we have different implementation relations.
- This can affect testing but also development.
- We get new notions of e.g. a design being minimal.
- The effect is even greater for nondeterministic models/systems.
Questions?