Modelling network performance with a spatial stochastic process algebra

Vashti Galpin
Laboratory for Foundations of Computer Science
University of Edinburgh

17 June 2010
Introduction

- model network performance
Introduction

- model network performance
- introduce spatial concepts to a stochastic process algebra
Introduction

- model network performance
- introduce spatial concepts to a stochastic process algebra
- analysis using continuous time Markov chains (CTMCs)
Introduction

- model network performance
- introduce spatial concepts to a stochastic process algebra
- analysis using continuous time Markov chains (CTMCs)
- demonstrate through an example
Introduction

- model network performance
- introduce spatial concepts to a stochastic process algebra
- analysis using continuous time Markov chains (CTMCs)
- demonstrate through an example
- other approaches to network modelling
Introduction

» model network performance
» introduce spatial concepts to a stochastic process algebra
» analysis using continuous time Markov chains (CTMCs)
» demonstrate through an example
» other approaches to network modelling
 » using the same spatial stochastic process algebra
Introduction

▶ model network performance
▶ introduce spatial concepts to a stochastic process algebra
▶ analysis using continuous time Markov chains (CTMCs)
▶ demonstrate through an example
▶ other approaches to network modelling
 ▶ using the same spatial stochastic process algebra
 ▶ using a process algebra with stochastic, continuous and discrete aspects
Introduction

- model network performance
- introduce spatial concepts to a stochastic process algebra
- analysis using continuous time Markov chains (CTMCs)
- demonstrate through an example
- other approaches to network modelling
 - using the same spatial stochastic process algebra
 - using a process algebra with stochastic, continuous and discrete aspects
- conclusions and further work
Motivation

- PEPA [Hillston 1996]

▶ compact syntax, rules of behaviour

\[
P(\alpha, r) \rightarrow P'\]

▶ transitions labelled with \((\alpha, r) \in A \times R^+\)

▶ interpret as continuous time Markov chain or ODEs

▶ various analyses to understand performance

▶ add a general notion of location

- location names, cities

- points in \(n\)-dimensional space
Motivation

▶ PEPA [Hillston 1996]
 ▶ compact syntax, rules of behaviour

\[
P \xrightarrow{(\alpha,r)} P' \\
\]
\[
P + Q \xrightarrow{(\alpha,r)} P' \\
\]

Vashti Galpin
Modelling network performance with a spatial stochastic process algebra
June 2010
Motivation

- PEPA [Hillston 1996]
 - compact syntax, rules of behaviour

\[P \xrightarrow{(\alpha, r)} P' \]
\[P + Q \xrightarrow{(\alpha, r)} P' \]

- transitions labelled with \((\alpha, r) \in A \times \mathbb{R}^+\)
Motivation

- PEPA [Hillston 1996]
 - compact syntax, rules of behaviour

\[P \xrightarrow{(\alpha, r)} P' \]

\[P + Q \xrightarrow{(\alpha, r)} P' \]

- transitions labelled with \((\alpha, r) \in \mathcal{A} \times \mathbb{R}^+\)
- interpret as continuous time Markov chain or ODEs
Motivation

▶ PEPA [Hillston 1996]
 ▶ compact syntax, rules of behaviour

\[
P (\alpha, r) \rightarrow P' \\
P + Q (\alpha, r) \rightarrow P'
\]

▶ transitions labelled with \((\alpha, r) \in A \times \mathbb{R}^+\)
▶ interpret as continuous time Markov chain or ODEs
▶ various analyses to understand performance
Motivation

▶ PEPA [Hillston 1996]
 ▶ compact syntax, rules of behaviour
 \[P \xrightarrow{(\alpha, r)} P' \]
 \[P + Q \xrightarrow{(\alpha, r)} P' \]
 ▶ transitions labelled with \((\alpha, r) \in \mathcal{A} \times \mathbb{R}^+\)
 ▶ interpret as continuous time Markov chain or ODEs
 ▶ various analyses to understand performance
 ▶ add a general notion of location
Motivation

- PEPA [Hillston 1996]
 - compact syntax, rules of behaviour
 \[P \xrightarrow{(\alpha,r)} P' \]
 \[P + Q \xrightarrow{(\alpha,r)} P' \]
 - transitions labelled with \((\alpha, r) \in A \times \mathbb{R}^+\)
 - interpret as continuous time Markov chain or ODEs
 - various analyses to understand performance
- add a general notion of location
 - location names, cities
Motivation

- PEPA [Hillston 1996]
 - compact syntax, rules of behaviour

\[
P \xrightarrow{(\alpha, r)} P' \\
\frac{P + Q \xrightarrow{(\alpha, r)} P'}{}
\]

- transitions labelled with \((\alpha, r) \in A \times \mathbb{R}^+\)
- interpret as continuous time Markov chain or ODEs
- various analyses to understand performance

- add a general notion of location
 - location names, cities
 - points in \(n\)-dimensional space
Spatial stochastic process algebra

- locations, \mathcal{L} and collections of locations, $\mathcal{P}_\mathcal{L}$
Spatial stochastic process algebra

- locations, \mathcal{L} and collections of locations, $\mathcal{P}_\mathcal{L}$
- structure over $\mathcal{P}_\mathcal{L}$, weighted graph $G = (\mathcal{L}, E, w)$
Spatial stochastic process algebra

- locations, \mathcal{L} and collections of locations, $\mathcal{P}_\mathcal{L}$
- structure over $\mathcal{P}_\mathcal{L}$, weighted graph $G = (\mathcal{L}, E, w)$
 - undirected hypergraph or directed graph
Spatial stochastic process algebra

- locations, \(\mathcal{L} \) and collections of locations, \(\mathcal{P}_\mathcal{L} \)
- structure over \(\mathcal{P}_\mathcal{L} \), weighted graph \(G = (\mathcal{L}, E, w) \)
 - undirected hypergraph or directed graph
 - \(E \subseteq \mathcal{P}_\mathcal{L} \) and \(w : E \rightarrow \mathbb{R} \)
Spatial stochastic process algebra

- locations, \mathcal{L} and collections of locations, $\mathcal{P}_\mathcal{L}$
- structure over $\mathcal{P}_\mathcal{L}$, weighted graph $G = (\mathcal{L}, E, w)$
 - undirected hypergraph or directed graph
 - $E \subseteq \mathcal{P}_\mathcal{L}$ and $w : E \to \mathbb{R}$
 - weights modify rates on actions between locations
Spatial stochastic process algebra

- locations, \mathcal{L} and collections of locations, $\mathcal{P}_\mathcal{L}$
- structure over $\mathcal{P}_\mathcal{L}$, weighted graph $G = (\mathcal{L}, E, w)$
 - undirected hypergraph or directed graph
 - $E \subseteq \mathcal{P}_\mathcal{L}$ and $w : E \rightarrow \mathbb{R}$
 - weights modify rates on actions between locations
- $L \in \mathcal{P}_\mathcal{L} \quad \alpha \in \mathcal{A} \quad M \subseteq \mathcal{A} \quad r > 0$
Spatial stochastic process algebra

- locations, \mathcal{L} and collections of locations, $\mathcal{P}_\mathcal{L}$
- structure over $\mathcal{P}_\mathcal{L}$, weighted graph $G = (\mathcal{L}, E, w)$
 - undirected hypergraph or directed graph
 - $E \subseteq \mathcal{P}_\mathcal{L}$ and $w : E \rightarrow \mathbb{R}$
 - weights modify rates on actions between locations
- $L \in \mathcal{P}_\mathcal{L}$, $\alpha \in \mathcal{A}$, $M \subseteq \mathcal{A}$, $r > 0$
- sequential components

 $$S ::= (\alpha@L, r).S \mid S + S \mid C_s@L$$
Spatial stochastic process algebra

- locations, \mathcal{L} and collections of locations, $\mathcal{P}_{\mathcal{L}}$
- structure over $\mathcal{P}_{\mathcal{L}}$, weighted graph $G = (\mathcal{L}, E, w)$
 - undirected hypergraph or directed graph
 - $E \subseteq \mathcal{P}_{\mathcal{L}}$ and $w : E \rightarrow \mathbb{R}$
 - weights modify rates on actions between locations
- $L \in \mathcal{P}_{\mathcal{L}}$, $\alpha \in \mathcal{A}$, $M \subseteq \mathcal{A}$, $r > 0$
- sequential components

$$S ::= (\alpha@L, r).S \mid S + S \mid C_s@L$$
Spatial stochastic process algebra

- locations, L and collections of locations, P_L
- structure over P_L, weighted graph $G = (L, E, w)$
 - undirected hypergraph or directed graph
 - $E \subseteq P_L$ and $w : E \rightarrow \mathbb{R}$
 - weights modify rates on actions between locations
- $L \in P_L \quad \alpha \in A \quad M \subseteq A \quad r > 0$
- sequential components
 \[S ::= (\alpha @ L, r).S \mid S + S \mid C_s @ L \]
- locations defined at sequential level only
Spatial stochastic process algebra

- locations, \(\mathcal{L} \) and collections of locations, \(\mathcal{P}_\mathcal{L} \)
- structure over \(\mathcal{P}_\mathcal{L} \), weighted graph \(G = (\mathcal{L}, E, w) \)
 - undirected hypergraph or directed graph
 - \(E \subseteq \mathcal{P}_\mathcal{L} \) and \(w : E \rightarrow \mathbb{R} \)
 - weights modify rates on actions between locations
- \(L \in \mathcal{P}_\mathcal{L} \), \(\alpha \in \mathcal{A} \), \(M \subseteq \mathcal{A} \), \(r > 0 \)
- sequential components
 \[
 S ::= (\alpha @ L, r).S \mid S + S \mid C_s @ L
 \]
- locations defined at sequential level only
- model components
 \[
 P ::= P \boxtimes \!_M P \mid P / M \mid C
 \]
Parameterised operational semantics

- define abstract process algebra parameterised by three functions
Parameterised operational semantics

- define abstract process algebra parameterised by three functions
- transitions labelled with $\mathcal{A} \times \mathcal{P}_L \times \mathbb{R}^+$
Parameterised operational semantics

- define abstract process algebra parameterised by three functions
- transitions labelled with $\mathcal{A} \times \mathcal{P}_L \times \mathbb{R}^+$
- Prefix

$$L' = \text{apref}((\alpha @ L, r).S)$$
Parameterised operational semantics

- define abstract process algebra parameterised by three functions
- transitions labelled with $\mathcal{A} \times \mathcal{P}_L \times \mathbb{R}^+$
- Prefix

$$\frac{L' = \text{apref}((\alpha \otimes L, r).S)}{(\alpha \otimes L, r).S \xrightarrow{(\alpha \otimes L', r)} S}$$

- Cooperation

$$\frac{P_1 \xrightarrow{(\alpha \otimes L_1, r_1)} P'_1}{P_1 \bowtie_M P_2 \xrightarrow{(\alpha \otimes L, R)} P'_1 \bowtie_M P'_2} \quad \frac{P_2 \xrightarrow{(\alpha \otimes L_2, r_2)} P'_2}{\alpha \in M}$$

$$L = \text{async}(P_1, P_2, L_1, L_2) \quad R = \text{rsync}(P_1, P_2, L_1, L_2, r_1, r_2)$$
Parameterised operational semantics

- define abstract process algebra parameterised by three functions
- transitions labelled with $\mathcal{A} \times \mathcal{P}_{\mathcal{L}} \times \mathbb{R}^+$
- Prefix

\[
(\alpha \otimes L, r).S \xrightarrow{(\alpha \otimes L', r)} S
\]

- Cooperation

\[
\begin{align*}
P_1 & \xrightarrow{(\alpha \otimes L_1, r_1)} P'_1 \\
P_2 & \xrightarrow{(\alpha \otimes L_2, r_2)} P'_2 \\
\otimes_{\mathcal{M}} P_1 & \xrightarrow{(\alpha \otimes L, R)} \otimes_{\mathcal{M}} P_2
\end{align*}
\]

\[
L = \text{async}(P_1, P_2, L_1, L_2) \quad R = \text{rsync}(P_1, P_2, L_1, L_2, r_1, r_2)
\]

- other rules defined in the obvious manner
Parameterised operational semantics

- define abstract process algebra parameterised by three functions
- transitions labelled with $A \times P_L \times \mathbb{R}^+$
- Prefix

$$\frac{(\alpha \otimes L, r).S}{(\alpha \otimes L', r)} \xrightarrow{\alpha \otimes L', r} S$$

$$L' = \text{apref}((\alpha \otimes L, r).S)$$

- Cooperation

$$\frac{P_1}{P_1} \xrightarrow{(\alpha \otimes L_1, r_1)} P'_1 \quad \frac{P_2}{P_2} \xrightarrow{(\alpha \otimes L_2, r_2)} P'_2$$

$$\frac{P_1 \boxdot \downarrow \boxdot M P_2}{P_1 \boxdot \downarrow \boxdot M P_2} \xrightarrow{(\alpha \otimes L, R)} P'_1 \boxdot \downarrow \boxdot M P'_2$$

$$L = \text{async}(P_1, P_2, L_1, L_2) \quad R = \text{rsync}(P_1, P_2, L_1, L_2, r_1, r_2)$$

- other rules defined in the obvious manner
- instantiate functions to obtain concrete process algebra
Concrete process algebra for modelling networks

- networking performance
Concrete process algebra for modelling networks

- networking performance
- scenario
Concrete process algebra for modelling networks

- networking performance
- scenario
 - arbitrary topology
Concrete process algebra for modelling networks

- networking performance
- scenario
 - arbitrary topology
 - single packet traversal through network
Concrete process algebra for modelling networks

- networking performance
- scenario
 - arbitrary topology
 - single packet traversal through network
 - processes can be colocated
Concrete process algebra for modelling networks

- networking performance
- scenario
 - arbitrary topology
 - single packet traversal through network
 - processes can be collocated
- want to model different topologies and traffic
Concrete process algebra for modelling networks

- networking performance
- scenario
 - arbitrary topology
 - single packet traversal through network
 - processes can be colocated
- want to model different topologies and traffic
- choose functions to create process algebra
Concrete process algebra for modelling networks

- networking performance
- scenario
 - arbitrary topology
 - single packet traversal through network
 - processes can be colocated
- want to model different topologies and traffic
- choose functions to create process algebra
 - each sequential component must have single fixed location
Concrete process algebra for modelling networks

- networking performance
- scenario
 - arbitrary topology
 - single packet traversal through network
 - processes can be collocated
- want to model different topologies and traffic
- choose functions to create process algebra
 - each sequential component must have single fixed location
 - communication must be pairwise and directional
Concrete process algebra for modelling networks

- networking performance
- scenario
 - arbitrary topology
 - single packet traversal through network
 - processes can be collocated
- want to model different topologies and traffic
- choose functions to create process algebra
 - each sequential component must have single fixed location
 - communication must be pairwise and directional
- let $\mathcal{P}_\mathcal{L} = \mathcal{L} \cup (\mathcal{L} \times \mathcal{L})$, singletons and ordered pairs
Functions for concrete process algebra

- functions
Functions for concrete process algebra

- \(\text{apref}(S) = \begin{cases} \ell & \text{if } ploc(S) = \{\ell\} \\ \bot & \text{otherwise} \end{cases} \)
Functions for concrete process algebra

- functions

\[
apref(S) = \begin{cases}
 \ell & \text{if } ploc(S) = \{\ell\} \\
 \bot & \text{otherwise}
\end{cases}
\]

\[
async(P_1, P_2, L_1, L_2) = \begin{cases}
 (\ell_1, \ell_2) & \text{if } L_1 = \{\ell_1\}, L_2 = \{\ell_2\}, (\ell_1, \ell_2) \in E \\
 \bot & \text{otherwise}
\end{cases}
\]
Functions for concrete process algebra

- functions

\[\text{apref}(S) = \begin{cases} \ell & \text{if } \text{ploc}(S) = \{\ell\} \\ \bot & \text{otherwise} \end{cases} \]

\[\text{async}(P_1, P_2, L_1, L_2) = \begin{cases} (\ell_1, \ell_2) & \text{if } L_1 = \{\ell_1\}, L_2 = \{\ell_2\}, (\ell_1, \ell_2) \in E \\ \bot & \text{otherwise} \end{cases} \]

\[\text{rsync}(P_1, P_2, L_1, L_2, r_1, r_2) = \begin{cases} \frac{r_1}{r_\alpha(P_1)} \cdot \frac{r_2}{r_\alpha(P_2)} \cdot \min(r_\alpha(P_1), r_\alpha(P_2)) \cdot w((\ell_1, \ell_2)) & \text{if } L_1 = \{\ell_1\}, L_2 = \{\ell_2\}, (\ell_1, \ell_2) \in E \\ \bot & \text{otherwise} \end{cases} \]
Example network

Sender

A

P1

B

P2

C

P3

D

P4

E

P5

F

P6

Receiver

Example network

Vashti Galpin
Modelling network performance with a spatial stochastic process algebra
June 2010
PEPA model

\[
\begin{align*}
\text{Sender}@A & \overset{\text{def}}{=} (\text{prepare}, \rho).\text{Sending}@A \\
\text{Sending}@A & \overset{\text{def}}{=} \sum_{i=1}^{6} (c_{Si}, r_{s}).(\text{ack}, r_{ack}).\text{Sender}@A \\
\text{Receiver}@F & \overset{\text{def}}{=} \sum_{i=1}^{6} (c_{iR}, r_{6}).\text{Receiving}@F \\
\text{Receiving}@F & \overset{\text{def}}{=} (\text{consume}, \gamma).(\text{ack}, r_{ack}).\text{Receiver}@F
\end{align*}
\]

\[
\begin{align*}
P_i@l_i & \overset{\text{def}}{=} (c_{Si}, \top).Q_i@l_i + \sum_{j=1,j\neq i}^{6} (c_{ji}, r).Q_i@l_i \\
Q_i@l_i & \overset{\text{def}}{=} (c_{iR}, \top).P_i@l_i + \sum_{j=1,j\neq i}^{6} (c_{ij}, r).P_i@l_i
\end{align*}
\]

\[
\text{Network} \overset{\text{def}}{=} (\text{Sender}@A \Join (P1@B \Join (P2@C \Join (P3@C \Join (P4@D \Join (P5@E \Join (P6@F \Join \text{Receiver}@F)))))})
\]
Graphs

rates: \(r = r_R = r_S = 10 \)
Graphs

rates: \(r = r_R = r_S = 10 \)

the weighted graph \(G \) describes the topology

\[
\begin{array}{cccccc}
 & A & B & C & D & E & F \\
A & 1 & 1 & & & & \\
B & & 1 & 1 & & & \\
C & 1 & 1 & 1 & & & \\
D & 1 & & 1 & 1 & & \\
E & & 1 & 1 & 1 & & \\
F & 1 & & 1 & 1 & 1 & \\
\end{array}
\]
Graphs

- G_1 represents heavy traffic between C and E

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td></td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td>0.1</td>
</tr>
<tr>
<td>D</td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>E</td>
<td></td>
<td>0.1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Graphs

- G_2 represents no connectivity between C and E

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td></td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td></td>
<td>1</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td></td>
<td>1</td>
<td></td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td></td>
<td>0</td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>
Graphs

- G_3 represents high connectivity between colocated processes

\[
\begin{array}{ccccccc}
 & A & B & C & D & E & F \\
A & 1 & 1 & & & & \\
B & & & 1 & 1 & & \\
C & & & 1 & 10 & 1 & \\
D & & & 1 & & 1 & 1 \\
E & & & 1 & 1 & 1 & 1 \\
F & & 1 & 1 & 1 & & 10 \\
\end{array}
\]
Analysis

- cumulative density function of passage time

Comparison of different network models

Vashti Galpin
Modelling network performance with a spatial stochastic process algebra
June 2010
Evaluation

- uniform description for each node in the network
Evaluation

- uniform description for each node in the network
- network topology captured by graph
Evaluation

- uniform description for each node in the network
- network topology captured by graph
- graph modifications capture network variations
Evaluation

- uniform description for each node in the network
- network topology captured by graph
- graph modifications capture network variations
- existing analysis framework
Evaluation

- uniform description for each node in the network
- network topology captured by graph
- graph modifications capture network variations
- existing analysis framework
- abstract process algebra is flexible
Different concrete process algebras

- multiple packets
Different concrete process algebras

- multiple packets
 - each located node in network is one or more buffers
Different concrete process algebras

- multiple packets
 - each located node in network is one or more buffers
 - similar approach
Different concrete process algebras

- multiple packets
 - each located node in network is one or more buffers
 - similar approach
 - throughput, loss rates
Different concrete process algebras

- multiple packets
 - each located node in network is one or more buffers
 - similar approach
 - throughput, loss rates
- wireless sensor networks
Different concrete process algebras

- multiple packets
 - each located node in network is one or more buffers
 - similar approach
 - throughput, loss rates
- wireless sensor networks
 - actual physical location
Different concrete process algebras

- multiple packets
 - each located node in network is one or more buffers
 - similar approach
 - throughput, loss rates

- wireless sensor networks
 - actual physical location
 - weights capture performance characteristics over distance
Different concrete process algebras

- multiple packets
 - each located node in network is one or more buffers
 - similar approach
 - throughput, loss rates
- wireless sensor networks
 - actual physical location
 - weights capture performance characteristics over distance
- scope for many other scenarios
Different concrete process algebras

- multiple packets
 - each located node in network is one or more buffers
 - similar approach
 - throughput, loss rates
- wireless sensor networks
 - actual physical location
 - weights capture performance characteristics over distance
- scope for many other scenarios
 - different types of networks
Different concrete process algebras

- multiple packets
 - each located node in network is one or more buffers
 - similar approach
 - throughput, loss rates

- wireless sensor networks
 - actual physical location
 - weights capture performance characteristics over distance

- scope for many other scenarios
 - different types of networks
 - virus transmission in vineyards
And now for something slightly different

- Stochastic HYPE, joint with Jane Hillston and Luca Bortolussi
And now for something slightly different

- Stochastic HYPE, joint with Jane Hillston and Luca Bortolussi
- process algebra to model discrete, stochastic and continuous behaviour
And now for something slightly different

- Stochastic HYPE, joint with Jane Hillston and Luca Bortolussi
- process algebra to model discrete, stochastic and continuous behaviour
- semantic model
 - piecewise deterministic Markov processes
 - transition-driven stochastic hybrid automata

Vashti Galpin
Modelling network performance with a spatial stochastic process algebra

June 2010
And now for something slightly different

- Stochastic HYPE, joint with Jane Hillston and Luca Bortolussi
- process algebra to model discrete, stochastic and continuous behaviour
- semantic model
 - piecewise deterministic Markov processes
 - transition-driven stochastic hybrid automata
- delay-tolerant networks
And now for something slightly different

- Stochastic HYPE, joint with Jane Hillston and Luca Bortolussi
- process algebra to model discrete, stochastic and continuous behaviour
- semantic model
 - piecewise deterministic Markov processes
 - transition-driven stochastic hybrid automata
- delay-tolerant networks
 - packets modelled as a continuous flow
And now for something slightly different

- Stochastic HYPE, joint with Jane Hillston and Luca Bortolussi
- process algebra to model discrete, stochastic and continuous behaviour
- semantic model
 - piecewise deterministic Markov processes
 - transition-driven stochastic hybrid automata
- delay-tolerant networks
 - packets modelled as a continuous flow
 - periods of connectivity modelled stochastically
And now for something slightly different

- Stochastic HYPE, joint with Jane Hillston and Luca Bortolussi
- process algebra to model discrete, stochastic and continuous behaviour
- semantic model
 - piecewise deterministic Markov processes
 - transition-driven stochastic hybrid automata
- delay-tolerant networks
 - packets modelled as a continuous flow
 - periods of connectivity modelled stochastically
 - full buffers modelled discretely
And now for something slightly different

- Stochastic HYPE, joint with Jane Hillston and Luca Bortolussi
- process algebra to model discrete, stochastic and continuous behaviour
- semantic model
 - piecewise deterministic Markov processes
 - transition-driven stochastic hybrid automata
- delay-tolerant networks
 - packets modelled as a continuous flow
 - periods of connectivity modelled stochastically
 - full buffers modelled discretely
 - determine storage required at nodes
Conclusion and further work

- conclusion
Conclusion and further work

- conclusion
 - stochastic process algebra with location

Vashti Galpin
Modelling network performance with a spatial stochastic process algebra
June 2010
Conclusion and further work

- conclusion
 - stochastic process algebra with location
 - designed to be flexible
Conclusion and further work

- conclusion
 - stochastic process algebra with location
 - designed to be flexible
 - useful for modelling network performance

Vashti Galpin
Modelling network performance with a spatial stochastic process algebra
June 2010
Conclusion and further work

- conclusion
 - stochastic process algebra with location
 - designed to be flexible
 - useful for modelling network performance
- further research
Conclusion and further work

- conclusion
 - stochastic process algebra with location
 - designed to be flexible
 - useful for modelling network performance

- further research
 - explore how it can be applied in modelling networks
Conclusion and further work

- conclusion
 - stochastic process algebra with location
 - designed to be flexible
 - useful for modelling network performance

- further research
 - explore how it can be applied in modelling networks
 - explore how it can be applied elsewhere
Conclusion and further work

- conclusion
 - stochastic process algebra with location
 - designed to be flexible
 - useful for modelling network performance

- further research
 - explore how it can be applied in modelling networks
 - explore how it can be applied elsewhere
 - comparison with other location-based formalism
Conclusion and further work

- conclusion
 - stochastic process algebra with location
 - designed to be flexible
 - useful for modelling network performance

- further research
 - explore how it can be applied in modelling networks
 - explore how it can be applied elsewhere
 - comparison with other location-based formalism
 - theoretical results for abstract process algebra
Conclusion and further work

- conclusion
 - stochastic process algebra with location
 - designed to be flexible
 - useful for modelling network performance

- further research
 - explore how it can be applied in modelling networks
 - explore how it can be applied elsewhere
 - comparison with other location-based formalism
 - theoretical results for abstract process algebra
 - behavioural equivalences
Thank you

This research was funded by the EPSRC SIGNAL Project.
More comments

- related research
More comments

- related research
 - PEPA nets (Gilmore et al)
More comments

- related research
 - PEPA nets (Gilmore et al)
 - StoKlaim (de Nicola et al)
More comments

- related research
 - PEPA nets (Gilmore et al)
 - StoKlaim (de Nicola et al)
 - biological models – BioAmbients, attributed π-calculus
More comments

- related research
 - PEPA nets (Gilmore et al)
 - StoKlaim (de Nicola et al)
 - biological models – BioAmbients, attributed π-calculus
- locations and collections of location
More comments

- related research
 - PEPA nets (Gilmore et al)
 - StoKlaim (de Nicola et al)
 - biological models – BioAmbients, attributed π-calculus

- locations and collections of location
 - $\mathcal{P}_L = 2^L$, powerset
More comments

- related research
 - PEPA nets (Gilmore et al)
 - StoKlaim (de Nicola et al)
 - biological models – BioAmbients, attributed π-calculus

- locations and collections of location
 - $\mathcal{P}_L = 2^L$, powerset
 - $\mathcal{P}_L = L \cup (L \times L)$, singletons and ordered pairs
More comments

- related research
 - PEPA nets (Gilmore et al)
 - StoKlaim (de Nicola et al)
 - biological models – BioAmbients, attributed π-calculus

- locations and collections of location
 - $\mathcal{P}_L = 2^\mathcal{L}$, powerset
 - $\mathcal{P}_L = \mathcal{L} \cup (\mathcal{L} \times \mathcal{L})$, singletons and ordered pairs

- different choices for \mathcal{P}_L give different semantics
More comments

- related research
 - PEPA nets (Gilmore et al)
 - StoKlaim (de Nicola et al)
 - biological models – BioAmbients, attributed π-calculus

- locations and collections of location
 - $\mathcal{P}_L = 2^\mathcal{L}$, powerset
 - $\mathcal{P}_L = \mathcal{L} \cup (\mathcal{L} \times \mathcal{L})$, singletons and ordered pairs

- different choices for \mathcal{P}_L give different semantics
 - locations associated with processes and/or actions
More comments

▶ related research
 ▶ PEPA nets (Gilmore et al)
 ▶ StoKlaim (de Nicola et al)
 ▶ biological models – BioAmbients, attributed \(\pi \)-calculus

▶ locations and collections of location
 ▶ \(\mathcal{P}_L = 2^L \), powerset
 ▶ \(\mathcal{P}_L = L \cup (L \times L) \), singletons and ordered pairs

▶ different choices for \(\mathcal{P}_L \) give different semantics
 ▶ locations associated with processes and/or actions
 ▶ singleton locations versus multiple locations
More comments

- related research
 - PEPA nets (Gilmore et al)
 - StoKlaim (de Nicola et al)
 - biological models – BioAmbients, attributed π-calculus
- locations and collections of location
 - $\mathcal{P}_\mathcal{L} = 2^\mathcal{L}$, powerset
 - $\mathcal{P}_\mathcal{L} = \mathcal{L} \cup (\mathcal{L} \times \mathcal{L})$, singletons and ordered pairs
- different choices for $\mathcal{P}_\mathcal{L}$ give different semantics
 - locations associated with processes and/or actions
 - singleton locations versus multiple locations
- longer terms aims
More comments

- related research
 - PEPA nets (Gilmore et al)
 - StoKlaim (de Nicola et al)
 - biological models – BioAmbients, attributed π-calculus

- locations and collections of location
 - $\mathcal{P}_L = 2^\mathcal{L}$, powerset
 - $\mathcal{P}_L = \mathcal{L} \cup (\mathcal{L} \times \mathcal{L})$, singletons and ordered pairs

- different choices for \mathcal{P}_L give different semantics
 - locations associated with processes and/or actions
 - singleton locations versus multiple locations

- longer terms aims
 - prove results for parametric process algebra
More comments

- related research
 - PEPA nets (Gilmore et al)
 - StoKlaim (de Nicola et al)
 - biological models – BioAmbients, attributed π-calculus

- locations and collections of location
 - $P_L = 2^L$, powerset
 - $P_L = L \cup (L \times L)$, singletons and ordered pairs

- different choices for P_L give different semantics
 - locations associated with processes and/or actions
 - singleton locations versus multiple locations

- longer terms aims
 - prove results for parametric process algebra
 - then apply to concrete process algebra