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Abstract 

Bovine Viral Diarrhoea (BVD), a cattle disease endemic in the United Kingdom and other parts 
of the world, has huge reproductive, health and economic impacts. In 2010, the Government 
embarked on a scheme to eliminate BVD from Scotland. As a result of this scheme, some farms 
are free from BVD. However, there are some farms that have never been free from the BVD 
virus. A third group of farms become BVD free for some time only to lose their BVD-free status 
after some time. This study was conducted to identify, rank and visualise, by the use machine 
learning techniques, the unique characteristics of Scotland’s cattle farm that make them pre-
dispose the BVD exposure using data available in the Epidemiology Research Unit’s database. 
The outcomes of this study present opportunities to use customised management programs 
and preventive management strategies to control the BVD disease. This could accelerate the 
eradication of BDV from Scotland. 

The cross-industry standard process for data mining methodology was adopted to manage this 
project. An experimental approach in which 10 potential supervised learners and seven da-
tasets were assessed to find which is best suited to achieve the objectives of the project was 
used. Recursive Feature Elimination with Cross-Validation was run on top of the best algorithm 
to ensure that the identification and ranking of the optimal risk factors do not suffer from the 
inter-correlations among the features. In addition, the relative importance of the potential risk 
factors was assessed and ranked. Probability calibration was run to ascertain whether the prin-
cipal algorithm requires an Isotonic or Sigmoid calibration to deal with the effect that the bias 
due to uneven class in the response variable may have on model’s performance. In order to 
improve of the model performance, a grid search was run to find the best hyper-parameters. 
Finally, three graphical models were produced and evaluated to find which of them could be 
interpreted easily by a non-data science professional. 

The eXtreme Gradient Boost (XGBoost) model and the Last Status dataset proved to best suited 
to achieve the goals of this study. It was observed that the XGBoost model did not need either 
Isotonic or Sigmoid calibration to handle the effect of the bias that may be introduced by the 
uneven classes in the dataset. Eight of the 11 farm characteristics were identified and ranked 
as optimal risk factors by the main model. The surprise risk factor was presence of Pigs on a 
farm. In terms of relative importance, the number of calves under one-year old had the highest 
influence. Also, the study found that cattle farms in Scotland are highly open and interconnect-
ed. The average farm was found to be influenced by at least seven other farms a year. Again, 
over 31% of all cattle in 2017 were involved in unidirectional movement. Similarly, a farm in 
Scotland may be connected to as many as ten countries outside the United Kingdom in a year. 
Such a high level of ‘openness’ and interconnectivity increase the opportunity for the spread of 
the BVD virus. Furthermore, the presence of cattle kept as dairy was found to be the most de-
ciding risk factor on a farm. Finally, the J48 graphics model was found more useful for 
explaining its decisions to a non-data science expert. 

Based on the findings of this study, it is recommended that cattle movement policies be 
strengthened and rigorously enforced to protect farms from outside influence. Also, more at-
tention be given to farms with dairy breeds and more calves under one-year old. Finally, 
further study be undertaken to explore why pigs were identified as an important risk factor. 
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1 Introduction 

In Scotland, the Epidemiology Research Unit (ERU) at the Scotland’s Rural College (SRUC) is re-
sponsible for “improving and maintaining animal population health and welfare by integrating 
a range of science, including epidemiology, to develop our understanding of animal disease 
control” (SRUC) [1]. To achieve this, the ERU has gathered a large number of diverse datasets 
ranging from individual animal records to environmental factors in a central database. These 
data come from a variety of resources including the Centre of Expertise on Animal Disease 
Outbreaks (EPIC) Data Repository and potentially hold a wealth of valuable insights that could 
be harnessed by the use of machine learning techniques. 

In the past, the ERU has relied on their traditional data analytical techniques to derive 
knowledge from the data. However, modern data mining / machine learning techniques offer 
enhanced opportunities for identifying patterns hidden in such datasets. From these patterns 
prediction, classification or clustering models can be built, sometimes in real-time, to aid deci-
sion making. This can be used to benefit the livestock industries and the general population in 
several ways. For instance, by clustering cattle farms into groups, customised management 
programs could be applied to control diseases. Also, a classification model could predict which 
breed of cattle, which herd of cattle, or which regions of Scotland are more vulnerable to (for 
example) the Bovine Viral Diarrhoea disease. Furthermore, diseases risk factors could be identi-
fied and ranked with the aid of a classification model. The outcomes of such predictions could 
be inputs in preventive management strategies. All these would enhance Biosecurity in Scot-
land. 

Modern data science and big data techniques have been successfully applied in many areas of 
human life (McAfee and Brynjolfsson) [2]. Their application in veterinary epidemiology could 
significantly enhance our capability to see and respond to patterns in trends that affect animal 
health and populations and to devise appropriate interventions (VanderWaal et al.) [3]. There 
is, therefore, great potential in the application of data science on these relatively unexplored 
(in machine learning terms) datasets. 

Part of this exercise was to take a preliminary view of a variety of datasets, then choose an an-
imal health related problem / project that might be address with an appropriate machine 
learning technique in order to demonstrate, as a proof of concept, the potential of Data Sci-
ence techniques to veterinary epidemiology. The success of this project will help inform the 
ERU of potential future research directions in applied data science for animal health. In consul-
tation with experts at the ERU, the “discovering, ranking and visualising risk factors of farms 
that are not negative for Bovine Viral Diarrhoea (BVD)” was identified as the most promising 
project because of the following factors: 

1. The occurrence of BVD represents a real problem whose solution will have immediate 
and far reaching impacts; 

2. Data regarding BVD and the population in which it is found is available; 

3. The study is reproducible with other data resources; and 

4. The project has wider scope, in that the approaches used are applicable to other ques-
tions in animal disease. 

First, BVD affects the health, reproduction and population of cattle (Fray et al.) [4]. This leads to 
huge economic losses. BVD is also a threat to the biosecurity of Scotland (Vets’ Guide) [5]. In 
recognition of these adverse impacts the Government has embarked on a programme to eradi-
cate BVD from Scotland. The outcomes of this study (identified risk factors and predicted 
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vulnerable herds) present opportunities to use customised management programs and preven-
tive management strategies to control the BVD disease. This could accelerate the eradication of 
BDV from Scotland and thereby improving the general biosecurity. This would mean that not 
only animals / herds and farmers will benefit from this project but the wider cattle industry and 
the general population in Scotland also benefit. Also, the variety of data available in the ERU 
database present a potential wealth of insights that could be exploited to solve this and future 
projects. Furthermore, the machine learning algorithms, the solution strategy/procedure used 
to solve the problem of this project can be used as replicable templates tailored to solve other 
veterinary or epidemiological problems (The only caution that should be is to ensure that the 
dataset in converted to matrix form before presenting to the modelling algorithm). Finally, the 
scope of the project (all cattle herds in Scotland, potentially over 10,000 farms and hundreds of 
thousands of animals) implies a far reaching impact. 

1.1 Background and Context 

Bovine Viral Diarrhoea (BVD) is a cattle disease endemic in UK and other parts of the world (EP-
IC) [6], [5] and (Scottish Government) [7]. It has huge reproductive [4], health [6] and economic 
impacts. In 2010, the Government embarked on a scheme to eliminate BVD from Scotland [6] 
and [7]. As a result of this scheme, some farms are now free from BVD. However, there are 
some farms that are not yet free from the virus. There is yet a third group of farms which be-
come BVD free for some time only to subsequently lose their BVD-free status. Are there some 
peculiar characteristics of farms that are not yet free from BVD and those whose BVD status 
keep changing? Can machine learning techniques be employed to discover the hidden charac-
teristics, if any, of these farms? Can these techniques help to predict vulnerable herds? These 
are the questions whose solution this study seeks to explore. 

1.2 Scope and Objectives 

The aim of this project is to use machine learning techniques to discover, rank and visualise the 
hidden characteristics or risk factors of cattle farms that are not yet free from BVD disease in 
Scotland using data available in the ERU’s database. To achieve this, the following specific ob-
jectives were set up: 

1. To explore and extract relevant data from the ERU’s database using SQL and determine 
which machine learning types are applicable 

2. To identify or construct features / variables that are potential BVD risk factors and cre-
ate dataset(s) for the analysis 

3. To select some candidate machine learning models and evaluate their performance on 
the datasets 

4. To build a machine learning model to identify, rank and visualise the peculiar character-
istics of BVD infected farms 

Hypothesis: In management and other applications such as that of this project, it is often re-
quired or desired to be able to explain why or how certain decisions were made. This means 
that one should be able to explain / interpret the decision given by an automated decision 
making system / model [18]. But different models present different levels of readability / inter-
pretability to non-technical persons. Therefore, it hypothesised that: 

some models are more useful for explaining their decisions to a non-data scien-
tist than other. 
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In this study, three visual models will be built to test this hypothesis. These models will be pre-
sented to non-data science experts and their response / reaction (though subjective) will be 
used as a measure of a model’s level of interpretability. These measures will then be used to 
ascertain whether or not all the models have the same usefulness in explaining their decisions 
to non-data science experts. 

1.3 Method Employed 

The cross-industry standard process for data mining methodology was adopted to manage this 
project (chapter 3). 

1.4 Achievements 

This section provides the major achievements, in relation to the objectives, of this study. 

Objective 1: Among the extracted data were herd status in terms of BVD, other species and 
cattle counts (box 1.2, figure 2 and table 3.1). These were used to construct potential inputs 
(risk factors) to the Machine Learning process. 

Objective 2: Nine potential response variables were created from the herd status. Ten potential 
risk factors were created from cattle number, breed purposes etc. In all, three groups of da-
tasets were created (box 1.2, figure 2 and table 3.1). The main group is the machine learning 
set which comprises seven datasets These seven datasets differ only by their response varia-
bles (Box 1, figure 2 and table 3.1). The machine learning algorithms have been tested on the 
seven datasets and the best three were selected. 

Objective 3: Based on the performance of the 10 candidate Machine Learning algorithms on 
the seven datasets, the XGBoost model was chosen as the main technique to achieve the pro-
ject objectives. Based on their responses to the models, the Last Status dataset was found to 
be the best. 

Objective 4: Of the 11 final input farm characteristics, eight were selected and ranked optimal 
risk factors by the XGBoost model. This included one least expected risk factor (pigs) whose 
role in BVD will require further investigation to confirm. 

Three different visual models were built. Of these, the J48 model was tested to be more easily 
understood by non-data science experts. 

As by-products of this study were reproducible sets of algorithms (in particular the machine 
learning set, box 1.1) and the solution strategies / procedures that were used to solve the prob-
lems of this project. These algorithms and procedures can be used as templates that can be 
replicated or tailored on different datasets to solve similar or different problems in different 
fields including veterinary or epidemiological problems. 
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Box 1.1 Set of deliverable datasets and algorithms 

Part A: Three groups of Datasets  

1. Building /Extracted set 2. Processing / Constructed set 3. Machine learning set 

1.0 Herd Status.csv 
1.1 animal_count_2017.csv 
1.2 nw Farms loc.csv 
1.3 total impt 17.csv 
1.4 dateofbirths_17.csv 
1.5 In-degree off to on_17.csv 
1.5 off to on_17=in- 
1.6.0 breed.csv 
2.0 species.csv 
2.1_Pig Farms to add.csv 
2.3 SheepGoat 13 to Add.csv 
2.3_SheepGoatI.csv  
degree_2017.csv 

SheepGoatScot13.csv 
Pig.csv  

1.6 breed impt loos.csv 

in-degree_2017.csv 
Herd Status 11-18.csv 
farm_breed_purpose.csv 
confirmative decision.csv 
farm_breed_purpose.csv 
total impt 15 17.csv 
total impt 11 17.csv 
import_13-17.csv 
Breed_Size4_Class.csv 
Breed_Size7_Class.csv 
N_Breed_Farm_ClassMixed.csv 
Breed_Farm_ClassMixed.csv 
Breed_Farm_FlatMixed.csv 

3.0 all2.csv 
3.1 all_herdStatus.csv 
3.2 all_alNegt.csv  
3.2b all_alNegt_Cat.csv 
3.3 all_alNotNeg.csv 
3.3b all_alNotNeg_cat.csv 
3.4 all_change.csv 
3.5 all_badchange.csv 
3.6 all_goodChange.csv 
3.7 all_multiChange.csv 
all.csv 
all_herdStatus1.csv 
all_alNeg.csv 
all_alNot.csv 
all_mc_breed.csv 
all_hs.csv 
all1.csv 

Part B: Four different sets Algorithms / Code 

1. Extraction set 2. Pre-processing set 3. Herd Classification set 

1.0 Herd Status.sql (Reeves) 
1.1 animal_count_2017.sql (Stirling) 
1.2 nw Farms loc.sql 
1.3 total impt 17.sql 
1.4 dateofbirths_17.sql 
1.5 In-degree off to on_17.sql 
1.6.0 breed.sql 
1.6 breed impt loos.sql 
2.1_Pig Farms.sql 
2.3_SheepGoatI.sql 

Herd status change.py 
All_Status_Change.py 
bvd_status_count.R (Duncan) 
yearly_Status_Change.py 
All_Status_Change 11-17.py 
Status_Change13-17.py 
StatusChange.py 
EDA.py 
Inner Joint.py 
nw total animals.py (joining) 
in-degre_off to on_17.py 
Calves_+Import.py 

FarmSize_Class.py 
Breed Classification_7.py 
Breed.py 
2.3 Class_SheepGoat.py 
import_move.py 
2.1 pig.py 
Calves_+Import.py 
3.0 Cattle Brees Class.py 
native_foreign.py 
2.3 S G.py 
argsort.py  

4. Machine learning set 

4.0 PractStepsML_SettingEnv_DataPreprocessig.py 
4.1 Main Machine Learning algorithm: Main_ML_Template.py 
4.2.1 Data Pre-processing: Final_data.py 
4.2.2 Model Comparison: model _selection.py 
4.2.2.2 Generating and plotting the Area Under ROC Curve 
4.2.4 Recursive Feature Elimination with Cross-Validation: RFE_CV.py 
4.2.5 Probability Calibration and Reliability Curve: Probability calibration.py 
4.3 Decision Trees 
4.4 Ranking Features with Extra Trees 
4.5 eXtreme Gradient Boost: XGBoost fx.py 
4.6 Artificial Neural Network: ann.py, ann.py 
4.7 J48 Model (Weka) 
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1.5 Overview of Dissertation 

This dissertation is organised into six chapters / sections. Chapter one introduces the project 
and describes the background and context as well as the scope and objectives of this study. 
Also, the method employed and the achievements of the study are described. 

Chapter two covers the literature review in two different contexts. The first part is dedicated to 
domain knowledge of the Bovine Viral Diarrhoea disease with emphasis on potential herd-level 
risk factors. The second section seeks to provide answers to issues relating to the application of 
machine learning techniques employed in his study. Why were the preferred techniques cho-
sen? In what areas have they been applied? Which of their strengths were exploited? Which 
weaknesses were overcome? 

Chapter three gives details about how the study was executed. Data extraction, data explora-
tion, data processing and modelling are some of the processes covered under this section. 
Chapter four is dedicated to the evaluation of the principal classifier and the selected datasets. 
The main findings together with their corresponding discussions are presented in chapter five. 
Chapter six concludes the project with summary and recommendations. 
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2 Literature Review 

This section reviews what is currently known about Bovine Viral Diarrhoea (BVD), herd charac-
teristics that are potential risk factors for BVD infection (section 2.1) and machine learning 
techniques (section 2.2). 

2.1 Farm Characteristics 

Covered under this section are Bovine Viral Diarrhoea (BVD), cattle population parameters and 
breed types, other species as well as farm interconnectivity metrics. 

2.1.1 Bovine Viral Diarrhoea and Herd Status 

Bovine Viral Diarrhoea (BVD) is a cattle disease endemic in the United Kingdom and other parts 
of the world [5] - [7]. It has huge reproductive [4], health and economic impacts [6]. In 2010, 
the Government embarked on a scheme to eliminate BVD from Scotland [5] – [7]. As a result of 
this scheme, some farms are free from BVD. However, there are some farms that have never 
been free from the BVD virus. There is yet a third group of farms which become BVD free for 
some time only to lose their BVD-free status after some time. 

If any cattle on a farm test positive, the farm /herd is assigned BVD Not Negative status. If no 
cattle on a farm test positive, the farm/herd is assigned BVD Negative status. Farms with Not 
Negative status are obliged to take certain actions to achieve Negative status (BVD Order 2013) 
[8], [6], [7]. 

Among the regulations under the eradication policy are controls on cattle movement, particu-
larly from BVD Not Negative herds [6] – [8]. The aim is to check the spread of the virus and to 
protect BVD Negative status farms. Another important regulation requires the testing of all 
new-born calves. This is because  

“Calves that survive infection during the first trimester of pregnancy are born with a per-
sistent and lifelong infection. These persistently infected (PI) animals represent between 
1.0% and 2.0% of the cattle population and continuously shed infectious virus [4]”. 

For this reason, “persistently infected (PI) cattle are by far the most important method of 

transmission of the disease” [6] – [8]. Also, ‘a PI mother can only give birth to a PI calf and 
therefore any calf born to a PI cow will be assumed to be PI’ [5]. Even though some PI live to 
reproductive age, and some may not be identified, the majority of them do not live to their 
second year [5]. Hence the interest in this study in the number of calves under one year old. 

2.1.2 Cattle Breed Purpose and Population Parameters 

It has been observed in Scotland that dairy cattle are more exposed to BVDV than cattle kept 
for other purposes. Whereas the Not Negative herd rate stood at 12% for Beef herds, the rate 
for Dairy herds has reduced from 50% to 39% [5]. Also, since the PIs are the most important 
cattle group in the spread of BVDV [6] – [8], it is expected that herds with more calves are more 
at risk. In addition to this, since a farm loses its Negative status even if only one animal is tested 
BVD Not Negative [5], [8], larger farms (in terms of herd size) are more at risk of BVD exposure 
to BVD than with smaller herd size. 

2.1.3 Other Species 

An area that perhaps has not been sufficiently explored (to date) is the role of other species. It 
is known that the BVD virus (BVDV) can infect pigs, sheep goats and deer [5] and (Tao et al.) 
[9]. Natural infection of pigs with BVD was detected as far back as 1976 in the Netherlands 
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(Terpstra and Wensvoort) [10] and (Wensvoort and Terpstra) [11]. Almeida et al (2017) [12] 
observed that pigs are susceptible to the BVD virus “under natural conditions” even though the 
“infection is practically unknown in the realm of pig farming”. But, [9] had previously noticed 
that “the prevalence of BVDV infection in pig herds has substantially increased in the last sev-
eral years, causing increased economic losses to the global pig breeding industry” and went on 
to discuss the  

“historical overview, clinical signs, pathology, source of infection, genetic characteristics, 
impacts of porcine BVDV infection for diagnosis of classical swine fever virus (CSFV), dif-
ferentiation of infection with CSFV and BVDV, and future prospects of porcine BVDV 
infection.” 

Also, there is confirmation of an interaction between sheep and cattle in Scotland  

“the pestivirus of sheep, Border Disease Virus (BDV), can infect cattle and result in the 
generation of persistently infected cattle. In Scotland the close contact between sheep 
and cattle that occurs on many farms creates the opportunity for BVDV to infect sheep 
and BDV to infect cattle and while the frequency with which this occurs is unknown, it 
has been considered unlikely to be of significance in relation to national control” [5]. 

The presence of other species may therefore be a risk factor. 

2.1.4 Farm Interconnectivity 

The aim of introducing interconnectivity measures as features in this study was to ascertain 
whether or not a farm operates an open or closed policy in relation to contacts with other 
farms as higher levels of interconnectivity present a risk to its BVD status. Interconnectivity has 
both advantages and disadvantages. In epidemiological sense, the more connected a farm is 
the more vulnerable to infectious disease it can be (Stattner and Vidot) [13]. Interconnectivity 
“expresses the susceptibility of a node (farm) through its contacts with others.” (Barabasi) [14]. 
There are many metrics of network interconnectivity and thus vulnerability. Some of these are 
In-degree Connectivity, Path, Betweenness, Clustering Coefficient and Eigenvector Centrality. 
In-degree connectivity of a farm can be defined as the number of connections incident on that 
farm (Newman, 2003) [15] and (Newman, 2010) [16]. In this study, three aspects of in-degree 
connectivity are considered, namely (1) the total number of cattle moved to a farm, (2) the 
number of farms from which a farm has received cattle and (3) the number of non-UK coun-
tries from which a farm has imported cattle. 

2.2 Machine Learning and other Techniques 

What is machine learning and what types of learnings are available? Why were the techniques 
employed to solve the problem of this study chosen? How have they been used by others? 
Which of their strengths were exploited? Which weaknesses were overcome? Answers to these 
are provided by the following sections (sections 2.2.1 to 2.2.9) as much as applicable. Subjects 
covered include model selection with emphasis on eXtreme Gradient Boost Classifier and in-
terpretability versus accuracy. Furthermore, feature importance, selection and representation, 
calibration, model optimisation and performance evaluation are also covered. 

2.2.1 Machine Learning Background 

As data continues to grow, the prospect to gain insight from data for informed management 
decision-making increases. This is because there are ‘hidden’ patterns inherent in nearly every 
dataset. Machine Learning (ML) is one of the techniques that offers the opportunity to mine 
pattern from data. Machine Learning can be defined in simple terms as the process of using 
data to train or give a machine / computer the ability to learn to do a task (Witten et al.) [17] 
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and (Swingler) ]18]. The machine is given data and it learns the patterns in the data to perform 
the task we assign it. If the input data has a desired outcome (output variable), the learning is 
supervised because the machine learns the rules that map the input variables to the output 
variable [17], [18]. On the other hand, if there is no output variable in the dataset, the learning 
is unsupervised [17], [18]. There is also reinforcement learning where the machine is rewarded 
for doing what is desired and punished for doing what is not desired. Since the datasets have 
output variable, we will have the luxury of doing supervised learning. 

In this supervised learning case, the BVD herd status group of variables (figure 2 and table 3.1) 
are the output (also referred to as target / response/ dependent/ outcome) variables. All the 
other variables (farm characteristics) are potential BVD risk factors (figure 2 and table 3.1). 
these group of variables may be referred to as features / predictors / independent / input vari-
ables. If the machine finds any pattern or rule that maps or links any/some of the farm 
characteristics to herd status classes, it means we can use the farm characteristics to predict 
the herd status. And if the prediction accuracy is good enough, then there is high chance that 
those farm characteristics are BVD risk factors. This will be confirmed by evaluating the relative 
importance of the farm characteristics / risk factors to the prediction. The larger the relative 
importance of the farm characteristic to the prediction of the herd status, the greater the risk 
of the herd becoming infected. 

2.2.2 Model Selection 

There are many (supervised) ML techniques available. However, the choice of a suitable tech-
nique (i.e. providing a fruitful result) for a specific project depends on knowledge of how that 
particular model works, knowledge of dataset, goal of the project, resources available and to 
some extent trial and error (luck). The nature of the dataset will determine the range of poten-
tial ML techniques [17], [18] that can be applied to the dataset. Depending on whether the 
project goal prioritises accuracy or interpretation, the number of potential models can be fur-
ther reduced. Some algorithms (especially Artificial Neural Networks) are computing intensive 
and therefore require specialised processing units. Taking all these items into consideration, 
the best model for a given project is usually not obvious [17]. Hence, the recommendation that 
the final choice be made on an experimental basis [17], [18] where a number of potential 
models are tested on the dataset and their performance evaluated to ascertain which model is 
best suited to the dataset and project goal. 

The task of this project is classification. We want to predict which cattle herds are more vulner-
able to BVD infection and to identity and rank the associated risk factors. Therefore, 
interpretability will be intensified at the expense of accuracy, if need be. The following para-
graphs briefly explain the selection of candidate classification models. 

Dummy and Decision Tree Classifiers: These simple classifiers Whilst Dummy is purposely de-
signed to act as a ‘baseline to compare with other classifiers’ (Pedregosa et al.) [19], Decision 
Tree can produce a pictorial view of its decision that provide us with the opportunity to inter-
pret the results of its outputs. 

K-nearest-neighbours adapts itself well to both data with linearly separable boundaries and 
those with non-linearly separable boundaries (Hastie et al.) [20]. Since it is not yet known 
whether the unique patterns within the datasets exhibit linearly or non- linearly, this model 
could be the obvious choice. Also, if it becomes relevant to explore unsupervised learning such 
as clustering the farms into groups, in addition to the current supervised learning, K-nearest-
neighbours would remain an option since it can be used for both types of learning. 
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Logistic Regression or Naive Bayes is appropriate for ranking the outputs by their probabilities. 
Logistic Regression is suitable to problems with dichotomous outcome (‘yes’ or ‘no’, ‘infected’ 
or ‘not infected’) [19 and 18]. Logistic Regression predicts the probabilities of the response var-
iable and pushes all probabilities below certain threshold (usually 0.5) to have a ‘zero’ 
probability and those above the threshold to have a ‘one’ probability. Since the response varia-
bles in the datasets have binary classes, Logistic Regression is expected to produce predictions 
of higher accuracies. Also, Logistic Regression has been used successfully as a baseline for 
probability calibration in reliability tests for comparison of classifiers (see chapter 2.2.4) (Dal 
Pozzolo et al.) [21] and (Metzen et al.) [22]. This quality will be exploited in this study. For simi-
lar reasons, Gaussian Naive Bayes classifier was selected as in addition to its probability 
qualities, it has been proven to perform well when embedded in a feature selection model 
(chapter 2.2.3.1) (Granitto et al.) [23]. Furthermore, Naive Bayes is a simple but an accurate 
classifier that works faster [17]. 

Extra Trees Classifier (ETC) and Random Forest Classifier (RF): ETC and RF are both (ensemble) 
meta estimators that find the average of some decision trees to ‘improve the predictive accu-
racy and control over-fitting’. Whereas RF takes several decision tree classifiers, ETC picks 
randomized decision trees’ (a.k.a. extra-trees), both fit them on various sub-samples of the 
dataset. [19]. Furthermore, whilst Extra Trees Classifier has been more popular due to its ability 
to identify and rank important features, Random Forest has been used more in feature calibra-
tion that allows comparison of models (Niculescu-Mizil and Caruana) [24]. Although RF gives 
high accuracy (which was exploited), it is less interpretable. The feature importance identifica-
tion and ranking qualities of ETC was exploited in this study. Both ETC and RF were used in 
calibration procedure in this project (see chapter 2.2.4). 

Support vector machines (SVM): SVM is a versatile model. By customising the Kernel functions, 
it can adapt to a wide range of datasets being linearly or non-linearly separable. It has been 
used to ‘find the optimal separating hyperplane using an SVC for classes that are unbalanced’ 
[19] which is the situation for this project. However, it is susceptible to overfitting if a regulari-
sation term is not imposed on it. 

Artificial Neural Network (Deep Network) and eXtreme Gradient Boost Classifier (XGBoost): 
these two models are the most complex and often the most accurate. All other things being 
equal, simple models are usually preferred to complex ones because simple models are better 
able to generalise and avoid over-fitting than their complex counterparts [17], [18]. Also, sim-
ple models are fast since they are less computationally intensive. To select a complex model 
over a simple one, one must satisfactorily justify one’s decision. All things being equal, one 
would usually choose Artificial Neural Network (ANN) if the goal of the project requires no in-
terpretation but a higher accuracy performance (such as in self-driven vehicle) and there is 
evidence that other simpler models are not able to achieve the same [17]. The reason is that, 
despite their high performance, ANN models have earned the nickname ‘black boxes’ [17 and 
18] since they offer no explanation to their decisions. Therefore, the only motivations for in-
cluding ANN in this study are, firstly, to be able to measure how much accuracy will be lost to 
the interpretability goal and secondly, to serve as a performance yardstick for comparison with 
the eXtreme Gradient Boost (XGBoost) model. The XGBoost classifier is an embodiment of high 
(accuracy) performance, interpretability, fast execution and other qualities (XGBoost) [25] (dis-
cussed section 2.2.1.1, next page). The XGBoost model has a good potential to be a single 
classifier that can help to achieve all the objectives of this project - to discover, rank and visual-
ise the hidden characteristics of cattle farms that are not yet free from BVD. 
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2.2.2.1 Extreme Gradient Boost Classifier 

The eXtreme Gradient Boosting (XGBoost) is a relatively new algorithm that has attracted much 
attention due to its combination of many desirable qualities such as high performance, fast 
computational speed and interpretability (figure 1). It comprises trees which are individually 
weak learners but collectively form strong ensemble models [25]. It presents features as nodes 
(tree). Its final decision values are pushed into leaves, each with corresponding scores. These 
scores present “richer interpretations that go beyond classification” [25] in that the higher the 
value (in the leaf) of a farm characteristic, the greater the risk of BVD infection it presents to 
the herd. 

 
Figure 1.  Desirable features of eXtreme Gradient Boost model exploited in this project. 
 

Some of the powerful features of XGBoost are [25]: 

1. Regularization: XGBoost has a regularization term which checks overfitting in linear and 
tree-based models by controlling a model’s simplicity and predictability (i.e. bias-
variance trade-off); 

2. Tree Pruning: It also has a non-greedy tree pruning mechanism which continues prun-
ing even if there is no positive gain; 

3. Cross-Validation (CV): Due to its inbuilt CV, its iterations get to the global optimum. 
Therefore, its results are often reliable and do not necessarily need Grid-search nor 
hyper-parameter tuning to be optimal, and 

4. Parallel Computing: even on a single machine, it parallelises its computation by making 
efficient use of all available cores and thereby reducing runtime. 

2.2.2.2 Interpretability-Accuracy Trade-off 

Simple models such as Single Decision Trees can present their outputs in a visually interpreta-
ble graphic format [20]. On the other hand, complex models such as Artificial Neural Network, 
generally give high accuracy but their outputs are more difficult to interpret. Depending on the 
purpose of the machine learning project, one of these is usually optimised at the expense of 
the other (García et al.) [26] and (Hisao and Yusuke) [27]. For example, in management and 
other applications such as that of this project, it is often required or desired to be able to ex-
plain why or how certain decisions were made. This means that one should be able to explain / 
interpret the decision given by an automated decision making system / model [18]. One of the 
desirable advantages of XGBoost classifier is that it combines these two features of interpreta-
bility and accuracy [25]. 

XGBoost Model
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Feature Importance 
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Decision Tree 
(Graphic)

Performance

Regularization 
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2.2.3 Feature Importance, Selection and Representation 

Input features often contribute unequally to the output variable. Whereas some are irrelevant 
and redundant, others have great influence [20]. Hence the need to select only the important 
features to improve performance and runtime, measure and rank the importance of farm fea-
tures (section 2.2.2.1) and, if appropriate, visualise their relative importance (section 2.2.2.2). 
Whereas recursive feature elimination techniques seek to assess variables on their individual 
merits, relative importance algorithms judge them on their influence in comparison with oth-
ers [17]. Another advantage of XGBoost is that it offers an opportunity to extract a feature 
importance score [25]. 

2.2.3.1 Recursive Feature Elimination 

For every dataset, there exists an optimal subset of features that lead to better performance, 
generalization and faster convergence [18] and (Abe) [28]. Feature selection mechanisms purge 
the dataset of redundant and meaningless features. This approach can be used to identify im-
portant farm risk factors. Recursive Feature Elimination (RFE) is a reliable tool to identify 
important risk factors. In addition, the RFE meta-algorithm can be used to rank BVD risk factors 
[28]. Furthermore, an RFE ensures that ranking of the importance is not sensitive to inter-
correlation between the input variables especially when it is run on top of the main algorithm. 

The Recursive Feature Elimination is a repetitive means of feature ranking according to certain 
degrees of their relevance (Guyon et al.) [29]. Granitto et al (2006) [23] successfully used Sup-
port Vector Machines based RFE on Random Forest. It was however, observed that feature 
selection can be unstable. To overcome this, it was suggested that the algorithm be run several 
times and the features with the highest probability of occurrences selected. This weakness is 
surmounted in this study by using Recursive Feature Elimination with Cross Validation (RFECV) 
which runs ‘k’ times and selects the optimal features [19] on XGBoost - the principal model. 
Further, this boosted RFE is run over the three datasets to obtain the best features based on 
weighted scores. For comparison, RFECV is run again on Extra Trees Classifier. – also a feature 
selection model. 

2.2.3.2 Relative Importance Representation 

XGBoost can present its feature selection results in both bar chart (as does the Extra Trees 
model) and decision tree graphic (as does the Decision Tree model). The decision tree compris-
es a node (feature) that splits into other nodes each of which in turn splits until a decision node 
(leaf) is reached. The first node is the most important feature according to the criteria used for 
splitting, which seeks to reduce the cost function. This could be the amount of information 
gained (or entropy) [18]. It could also be the relative importance in terms of 

“maximal estimated improvement in squared error risk over that for a constant fit over 
the entire region. The squared relative importance of a variable is the sum of such 
squared improvements over all internal nodes for which it was chosen as the splitting 
variable” [20]. 

The comparative importance metrics can be “based on the number of times a variable is se-
lected for splitting, weighted by the squared improvement to the model as a result of each 
split, and averaged over all trees” (Friedman and Meulman) [30]. Thus, the more a feature is 
used to split, the higher its F Score and hence its importance [30] and (Elith et al.) [31]. A 
weighted importance is calculated for all the features, ranked and plotted on a bar graph 
whose lengths are proportionate to a feature’s importance, arranged in descending order of 
importance. This shows the relative importance of each feature (Chen and Guestrin) [32]. This 
value is scaled to sum to one, such that the larger values imply greater feature contribution to 
the response variable [30]. 
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2.2.4 Probability Calibration and Reliability Test 

Data with uneven class distribution often introduces bias that impact on the performance of a 
model [17], [18], [21]. There are many options to dealing with such datasets. For instance, the 
whole variable with imbalance classes can be discarded [18]. Usually, the imbalance can be 
corrected by either reducing the majority class or increasing the minority class by various tech-
niques [17], [18], [21]. However, one of the fundamental postulations of machine learning is 
that the entity producing data for training, testing and future business use of a model will re-
main unchanged. This implies that the dataset used to train, test and even put the model into 
practical use are presumed to have the same distribution [17], [18], [20], [21]. In view of this, 
any attempt to balance /correct data with imbalanced classes will often breach this important 
assumption. One way to deal with imbalanced classes in a dataset that does not violate this 
assumption is to calibrate that dataset [21]. 

Dal Pozzolo et al (2015) [21] studied the effect of bias introduced by uneven class in datasets 
using Brier score as a loss measure, G-mean as predictive of accuracy and area under the ROC 
curve for ranking and observed that this bias influences the “classification accuracy and proba-
bility calibration” appreciably even though it did not influence the “ranking order returned by 
the posterior probability” [21]. Metzen J.H. et al (2015) [22], also used probability calibration 
with isotonic or sigmoid regression on Support Vector Machines (SVP), Gussian Naïve Bayes 
(GNB) with Logistic regression as baseline [22]. Among other scores, they used Brier score loss 
to evaluate the performance [19], [22]. 

In this project, probability calibration with Isotonic and Sigmoid Regressions on XGBoost, Ran-
dom Forest and Extra Trees Classifiers was tested on our imbalanced datasets with Logistic 
Regression as the baseline to ascertain whether the principal classifier needs isotonic or sig-
moid calibration in dealing with the imbalance classes in the datasets. Brier score loss was used 
as a performance measure. 

Since the Brier score loss is a probabilistic function, it produces a predictive accuracy measure 
between zero and one. This score is the “mean square difference between the actual outcome 
and the predicted probability of the possible outcome” [19]. Therefore, the lower the score the 
more accurate will be the calibrated prediction [19]. 

2.2.5 Hyperparameter Optimisation 

There are two types of parameters. Whereas one set is learnt by the model, the other set is not 
learnt by the model. The later, hyper-parameter must be fine-tuned by the programmer for 
optimal performance. Given the number of and the range of possible values each can take, the 
search space of all possible combinations of hyper-parameters can be huge and inexhaustible, 
especially for manual tuning [17], [18]. Many means of tuning hyper-parameters exist. One of 
the best and most successfully used means is Grid-Search with Cross-Validation - a heuristic 
algorithm that help locate the global optimal hyper-parameters [17], [18]. Hence the adoption, 
in this project, of the Scikit-learn module (model_selection) a package (GridSearchCV) which 
exhaustively and automatically searches for the best hyper-parameters values for a model from 
a range of inputs based on best Bias-Variance Trade-Off [19]. Usually, Grid-Search hyper-
parameter optimisation is performed, first, to search for the best model [17], [19] and, second, 
to improve the performance of the selected model [17] - [19]. Due to the limited recourse 
availability (in terms of computing power – CPU), an alternative means of model selection will 
be used. In relation to improving a model’s performance, Grid-Search hyper-parameter tuning 
will be performed to verify the claim that XGBoost (the potential main model) does not neces-
sary require an external optimisation aid since it is believed to exploit its in-built regularisation 
term and cross-validation to achieve optimal results [25]. 
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2.2.6 Performance and Evaluation 

This section briefly explains and justifies some performance metrics used to assess the models 
and datasets in this study. As much as possible, the terminologies of this project are used to 
explain these metrics – confusion matrix, accuracy and ROC area, specificity versus sensitivity, 
precision, recall and f1-score. 

2.2.6.1 Confusion Matrix 

This is the fundamental classification metric. It shows the number of true and false predicted 
instances (farms) [18] in a matrix of actual and predicted classes (Negative or Not Negative]. All 
the other metrics discussed here are derived from the confusion matrix. 

2.2.6.2 Accuracy and Receiver Operation Characteristic (ROC) Area 

Accuracy expresses the ratio of number of correctly predicted farms to the total number of 
farms. This gives the basic ‘quantitative’ measure of an individual model’s performance. Often 
models are judged by their classification accuracies. However, in order to compare the perfor-
mance of two or more models, standardised and ‘qualitative’ measures are required. One of 
these is the area under the ROC curve (AUC) [17], [18]. It appraises a model independent of the 
error costs [18]. It plots, for example, the True Positive Rates on the vertical axis and the False 
Positive rates on the horizontal axis. Whilst a diagonal line denotes a random decision, any 
curve below towards the bottom-right signifies an inadmissibly ruthless decision and an oppo-
site curve advancing up towards the top-left signifies a better decision [18]. The more the ROC 
curve rises fast up to the top-left and eventually smooths off the better. This implies that, the 
larger the area under the ROC curve, the better will be the overall performance of the classifi-
cation model [17]. The ROC area is, therefore, a probability measure of a model that ‘ranks an 
arbitrarily chosen positive test instance above an arbitrarily chosen negative one’ [17]. In medi-
cal and disease diagnostic fields, the ROC curve is a “commonly used summary for assessing 
the trade-off between sensitivity and specificity” [20]. In this case, “it is a plot of the sensitivity 
versus specificity as we vary the parameters of a classification rule” [20]. 

2.2.6.3 Specificity versus Sensitivity 

In this study (and in medical applications), it is important to know the strength of a model in 
terms of its ability to correctly identify BVD free farms (specificity) or BVD infected farms (sen-
sitivity). This is because a model’s ability to ‘truly’ classify BVD infected farm as presumably 
infected (Not Negative) in this use-case, is deemed more significant than its capacity to ‘truly’ 
predict a BVD free (Negative) herd. The reason for this is that the risk of a mis-classification of 
an infected farm is higher (disease spread unchecked) than that of misclassifying an uninfected 
herd (spread of disease is checked even though there is no disease). Whereas specificity 
measures the proportion of the ‘truly’ BVD free (Negative) farms that were correctly classified 
as such by the model, sensitivity measures the proportion of the presumably BVD infected (Not 
Negative) farms that were rightly predicted as such by the model [17], [18], [20]. In most in-
stances, recall is used as sensitivity. Again, it is interesting to know which dataset lends itself to 
either specificity or sensitivity. 

In relation to these concepts there is an important assumption – a ‘closed-world assumption’ 
[17] which stipulates that “if a particular farm is not in class ‘Yes’, then it must be in class ‘No’ 
[17]. For two datasets (Always Not Negative and Always Negative), this assumption cannot be 
supported. For instance, for the Always Not Negative dataset, if a farm is not classified ‘Yes’ (in-
fected), it does not necessarily mean it belongs to ‘Negative’ class (free from BVD). A ‘No’ class, 
in this case, only tells that the farm has ever had its BVD status changed. Therefore, I ascribe 
Assumed-Specificity to a ‘No’ class. Similarly, for the Always Negative dataset, if a farm is not 
classified ‘Yes’ (free), it does not necessary means it belongs to ‘Negative’ class (infected). A 
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‘No’ class, in this case, only shows that a farm has ever had its BVD status changed. Therefore, 
an Assumed-Sensitivity is assigned to a ‘No’ class. However, the Last Status dataset follows a 
‘closed-world assumption’ [17], i.e. if a farm is not in the ‘Not Negative’ class, then it is in the 
‘Negative’ class. 

2.2.6.4 Precision-Recall Trade-off: F1-score 

Although criticised in some applications [33], f1-score is a better performance measure for da-
tasets with imbalanced classes [34]. F1 score finds a harmony between precision and recall and 
it is frequently used in dichotomous classifications [34]. While recall is sometimes used as sen-
sitivity, precision is used as a positive predictive value (PPV). Precision is the proportion of 
positive classifications which are actually positive [17], [18], [20]. 
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3 Methodology 

This section covers the phases of a machine learning project. The Cross Industry Standard Pro-
cess for Data Mining (CRISP-DM) was used to run this project. It consists of six repeating stages 
that revolve around data. These are business understanding (chapter 1), data literacy (chapter 
3.1) and data preparation (chapter 3.2). The rest are modelling (chapter 3.3), evaluation and 
deployment (chapter 3.4 and 4). First, all platforms (Scikit-learn, TensorFlow, Weka, Python 3, 
R, pgAdmin II) together with required libraries and packages were installed and the analysis 
environment was set up. 

3.1 Data Literacy 

All data for this project were available in the Centre of Expertise on Animal Disease Outbreaks 
(EPIC) Data Repository. Required data were extracted using PostgreSQL and saved / exported in 
a comma separated values (csv) format for (but not limited to) the following reasons [17]: 

1. Almost all applications and programming languages can read, process and write a csv 
file; 

2. Can differential between numeric and categorical data, making the intended data type 
safe; 

3. Compact and fast to write since header is written only once; and 
4. Most common way of importing and exporting data to databases. 

To allow easy manipulation and thus processing, these csv data files were loaded into the anal-
ysis environment in a Pandas DataFrame form, a ‘2-dimensional labeled data structure’ in 
which the columns may have different data types Pandas [35], as the case of this study’s data. 

Most machine learning algorithms accept only (or at least work well with) matrix data [20] of 
numeric type. For this reason, the Dataframe object must be converted to matrix data. This is 
archived by converting all nominal data to numeric data. This is so important that may algo-
rithms have their own in-built conversion mechanism (should the programme forgets). The 
data were presented to the Machine Learning algorithms in a matrix form. This means all the 
data must the same data type (Buttrey) [36]. For future applications, any 2-dimensional data 
structure can be used, but care must be taken when presenting the data to the Machine Learn-
ing algorithm. All data must be of numeric type since a matrix accepts only one data type [36]. 
Also, care must be taking to avoid a dummy variable trap (box 3.1). 

Box 1.1 and table 3.1 show the type of data extracted from the database or constructed after 
extraction. The base dataset comprises cattle farms / herds in Scotland in the year 2017. It 
should be noted that the other species data are not as current as that of cattle. Therefore, the 
number of sheep, goats and pigs on a farm in 2017 are likely to be different from those availa-
ble for this study. However, there is no reason to assume that the general distribution of these 
species on the cattle farms has changed appreciably. Therefore, the impact that this disparity in 
date (the sheep and goat dataset was dated 2013) will have on the analysis and results of this 
project, if any, is believed / assumed to be very insignificant. Initially, there were 10,712 unique 
cattle farms. However, after data processing, each of the final datasets consisted of 8,519 
unique farms. 
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3.2 Data preparation 

This section consists of two phases - Exploration Data Analysis (chapter 3.2.1) and Data Pre-
processing (chapter 3.2.2). This is the most important and time-consuming stage of machine 
learning. After cleaning each individual extracted or constructed datasets (box 1.1 and figure 
2), they were merged (inner or outer joint) to form consolidated dataset ('all2.csv'). 

3.2.1 Exploratory Data Analysis 

This initial analysis was conducted to understand the consolidated dataset ('all2.csv'. table 3.1) 
using Python 3 Libraries such as Pandas, Numpy, Matplotlib and Seaborn. 

 
Figure 2.  Groups of output variables (Herd Status) and input variables (Network metrics, Breed Pur-

pose, Species and Cattle Population) created or extracted for the project. 
 

Data were visualised to detect data types, invalid data, duplicate records, anomalies (outliers or 
inliers, missing data, coding inconsistencies, typing errors), correlations, distribution patterns 
(majority or minority group), distribution types (flat and wide, normal), trends and others. Also, 
descriptive statistics was performed to reveal means, standard deviation, maximum and mini-
mum values, etc. The variables are grouped into five categories, namely Head Status, Network 
Metrics, Breed Purpose, Species and Cattle Population (figure 2). 

After the data processing, seven datasets (Last Status, Always Not Negative, Always Negative, 
Number of Changes, Good Change, Bad Change and Multi Change) were formed from the con-
solidated dataset ('all2.csv'). These seven datasets were used for the modelling phase. 
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Table 3.1 Description of variables constructed or extracted for the machine learning project showing the 
name of the variable, data type, unique value or range as well as explanation of the variable. 

Variable Name Data Type Distinct Values 
/ Values Range 

Explanation 

cph numeric 8519 Unique farm identifier 

Herd status: dependant variable, target, label, desired outcome 

first_status Nominal 2 BDV herd status at the beginning of the period 

last_status Nominal 2 BVD herd status at the end of the period 

decisions Numeric 2 - 215 Number of confirmative decisions (Negative or 
Not Negative) taken on of farm 

Negative 
 

Numeric 0 - 95 Number of times a farm has had Negative deci-
sions within the time period. 

NotNegative Numeric 0- 215 Number of times a farm has had Not Negative 
decisions within the time period 

always_Negative Numeric / 
boolean 

2 Whether a farm’s BVD status has remained 
Negative (BVD free) throughout the period 

always_NotNegative Numeric / 
boolean 

2 Whether a farm’s BVD status has remained Not 
Negative (infected) throughout the period 

change Numeric / 
boolean 

2 Whether a farm’s BVD status has changed with-
in period 

bad_change Numeric 0 - 8 Number of times a farm’s BVD status has 
changed from Negative to Not Negative 

good_change Numeric 0 - 8 Number of times a farm’s BVD status has 
changed from Not Negative to Negative 

multi_change Numeric / 
boolean 

2 Whether a farm has experienced both ‘good 
change’ and ‘bad change’ at least once 

Cattle: independent variable, feature, predictor 

cat_num Numeric 1 - 7048 Number of cattle on a farm 

cat_one Numeric 0 - 2615 Number of cattle under one year old on a farm 

cat_oneplus Numeric 0 - 6570 Number of cattle over one year old on a farm 

Network measures: independent variable, feature, predictor 

in_degree Numeric 0 - 6382 Number of cattle moved to a farm  

nw_farms Numeric 0 - 2694 Number of farms from which a farm has re-
ceived cattle 

nw_importcountry Numeric 0 - 10 Number of countries from which a farm has 
imported cattle 

Farm Breed Type: independent variable, feature, predictor 

Beef Numeric / 
boolean 

2 Whether a farm has cattle bred for beef 

Dairy Numeric / 
boolean 

2 Whether a farm has cattle bred for dairy 

Dual Breed Numeric / 
boolean 

2 Whether a farm has cattle bred for dual pur-
poses 

farm_type nominal 7 Farm classification based on cattle breed pur-
poses present 

Other species: independent variable, feature, predictor 

s_sheep Numeric 0 - 7393 Number of sheep on a farm 

s_gost Numeric 0 - 172 Number of goats on a farm 

s_pig Numeric 0 - 5500 Number of pigs on a farm 
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3.2.1.1 General Distribution of the Herd Status 

This section takes a general look at the effect of the eradication policy from 2012 to 2017 as 
well as herd status in 2017. 

 

 
Figure 3. Trend of three herd status from 2012 to 2017 showing the impact the eradication policy has 

had on farms’ BVD status. 
 

From figure 3, it can be seen that the proportion of cattle farms that have remained Always 
Negative was decreasing but this began to improve / increased after 2015. Also, the proportion 
of farms that have remained Always Not Negative consistently decreased / improved with a 
marked improvement from 2016 to 2017. The proportion of farms that have experienced Mul-
tiple Changes increased until 2014 after which the situation began to improve / decrease. All 
these trends show a general improvement in BVD farm status. These observations can be at-
tributed to the impact of the eradication policy on herds’ status. 

 
Figure 4. Distribution of BVD status at the begin (First Status) and end (Last Status) of 2017 showing 

the proportion of uninfected (Negative) and infected (Not Negative) farms. 

Figure 4 shows that the percentage of infected farms at the beginning of the 2017 was 20.1% 
(1710 farms). By the end of the year, this figure had slightly reduced to 19.5 % (1666 farms). 
This means that 44 farms had their status changed from Not Negative to Negative. 

3.2.1.2 Distribution of Classes within Response Variables 

The distribution of classes within each variable is of paramount importance to data engineering 
and modelling decisions as well as performance of a model. The following section looks at the 
distribution classes within the herd status variable and briefly justifies the pre-processing deci-
sions made. 
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Figure 5 shows that the Always Not Negative response variable of the Always Not Negative da-
taset is highly imbalanced as only 3 percent (257 of 8519) of the farm had remained always 
BVD-infected (Always Not Negative) in 2017. This may require calibration to deal with the bias 
due to uneven class in order to improve accuracy performance [17], [18], [21]. Also, this 
skewed distribution may affect a model’s ability to predict BVD free farms. The rest of the da-
tasets have a fairly balanced class in their respective response variables. 

 
Figure 5.  Distribution of BVD status classes within the response variables of four machine learning 

datasets (Always Not Negative, Always Negative, Change and Multi Change) with nominal val-
ues. 

 

Table 3.2 provides the descriptive statistics report of datasets with numeric herd status classes. 
It can be observed that the number of confirmed (BVD herd status) decisions on a farm range 
from 2 to 215. Since it was intended to determine the quality (good or bad) of BVD herd status 
change, all farms whose confirmed decisions were below two were excluded from the dataset. 
Of the total of 65,187 herd status decisions, 24,068 (36.9%) were confirmed Not Negative (BVD 
infected) and 41,119 (60.1%) were confirmed BVD Negative (not infected). 

The quality of the change farms had experienced in the year 2017 is expressed as either a good 
change or a bad change (table 3.1). A farm is said to have experienced good change if its BVD 
status changes from a Not Negative to a Negative. Conversely, if its BVD status changes from a 
Negative to a Not Negative, a farm is said to have experienced bad change. Any farm that expe-
riences both good change and bad change at least once is said to have experienced a multi 
change. Generally, more farms had experienced a good change (3805) than a bad change 
(2881) in 2017 (tables 3.2 & 3.3 and figure 5). This could be attributed to the implementation 
of BVD Eradication Policy in Scotland. However, a majority of the farms (almost 63%, figure 5) 
remained in their previous state. Only a little over 37 % (3,185 of 8,519, figure 5) of farms had 
their status changed in 2017. 

Table 3.2 Descriptive statistics report of datasets with numeric herd status classes. 

Variable Minimum Maximum Mean Standard deviation Total 

confirmed decisions 2 215 7.6 8.6 65,187 

Not Negative 0 215 2.8 7.9 24,068 

Negative 0 95 4.8 3.6 41,119 

bad_change 0 8 0.3 0.7 2,881 

good_change 0 8 0.4 0.8 3,805 
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Figure 6 and table 3.3 shows the number of times cattle herds in Scotland experienced either a 
good change or a bad change in 2017. For the Good Change dataset, almost 67% of the farms 
did not experience a good change (table 3.3). Similarly, for the Bad Change dataset, over 74% 
of the farms did not experience a bad change (table 3.3). 

 
Figure 6.  Frequencies of number of times farms have experienced good or bad Bovine Viral Diar-

rhoea status change in 2017. 

 

Table 3.3 Counts of number of times (and corresponding percentage) farms have experience good or bad 
change in 2017 

Number of changes Good change Bad change 

0 5706 66.98 % 6308 74.05 % 

1 2126 24.96 % 1744 20.47 % 

2 507 5.95 % 350 4.11 % 

3 110 1.29 % 73 0.86 % 

4 42 0.49 % 23 0.27 % 

5 15 0.18 % 8 0.09 % 

6 4 0.05 % 7 0.08 % 

7 4 0.05 % 4 0.05 % 

8 5 0.06 % 2 0.02 % 

 
In order to have a balanced class within these response variables in their respective datasets, 
the good change and bad change variables were recoded to have binary / Boolean values. This 
implies that, for the Good Change dataset (for example), a ‘0’ represents the farm did not ex-
perienced a good change and a ’1’ represent the farms experienced a good change. The final 
Good Change dataset subsequently consisted of 66.98% ‘0s’ and 33.02% ‘1s’. Similarly, final 
Good Change dataset subsequently consisted of 74.05% ‘0s’ and 25.95% ‘1s’. 

3.2.1.3 Distribution of Classes within Predictor Variables 

The following section considers the distribution of classes within the farm characteristics varia-
ble and briefly justifies the pre-processing decisions made. 

Breed purpose: From figure 7, it can be seen that the most common cattle breed purpose is 
Beef as 8371 of the 8519 farms have breeds of cattle used for beef production. The Beef varia-
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ble is shown to exhibit majority-group (98.3%, figure 7) and should normally be excluded from 
the dataset. However, it was intentionally kept in the dataset as a control. Any algorithm that 
identifies the Beef variable as an important risk factor would thus be considered ineffective or 
incompetent. 

 
Figure 7.  Distribution of breed purpose cattle on farms in Scotland. 

 

Farm Type: It was also interesting to classify farms according to the number of breed types 
present on each farm (figures 8 & 9). According to this classification, ‘Beef’ farms are the most 
common in Scotland (67%). ‘Dairy’ and ‘Dairy-DualBreed’ are the less common farms (0.4% and 
0.1% respectively). 

 
Figure 8.  Distribution of cattle farm types in Scotland in 2017 
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Figure 9.  Share of cattle farm type in Scotland in 2017 

 

Other species: From table 3.4 (page 21), it can be seen that there were more sheep (2,434,204) 
in 2013 than cattle (822,930) in 2017. The presence (59.4%) or otherwise (40.6%) of sheep on 
farms is almost balanced (figure 10). It can therefore be a good predictor. The average cattle 
farm in Scotland has about 286 heads of sheep with a range of from zero to 7, 393 animals. 

 

 

Figure 10. Distribution of sheep, goats and pigs on farms in Scotland. 

 
The number of goats and pigs on a farm range from zero to 172 and zero to 5500 respectively 
(table 3.4 page 21). It can also be seen that goats are very scarce on cattle farms in Scotland. 
The total number of goats and pigs was 711 and 55,633 respectively. Also, only 0.9 % and 5.8 % 
of the farms had goats and pigs respectively (figure 10). These distributions exhibit minority 
groupings and should not normally be included [17], [18] in the final dataset. However, they 
were kept in the final datasets for a particular reason. If identified and ranked as an important 
risk factor, two conclusions can then be drawn: 
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2. its/their risk(s) is/are really important, especially if the algorithm is proven to be relia-
ble and competent. It can then, confidently, be concluded that it /they has/have very a 
strong correlation with farm BVD status. 

 

Table 3.4 Distribution of some Farm Characteristics / Features 

 Min Max Mean Standard 
deviation 

Total Percentage 

cat_num 1 7,048 96.6 214.8 822,930  

cat_one 0 2,615 71.2 105.1 607,207 73.8 

cat_oneplus 0 6,570 25.3 25.3 215,723 26.2 

in_degree 0 6,382 30.3 168.7 258,301 31.4 

nw_farms 0 2,694 7.1 48.2 60,495  

nw_importcountry 0 10 0.2 0.6 1,967  

s_sheep 0 7,393 285.7 515.3 2,434,204  

s_goat 0 172 0.1 2.6 711  

s_pig 0 5,500 6.5 137.6 55633  

 
Cattle population: There were a total of 822,930 cattle within the area and time period ex-
plored (table 3.4). Of these, over 73 percent (607,207) were born in 2017. This presents a high 
risk as discussed in chapter 5.3.2.1 (page 43). The distribution of these and all other variables 
are wide and varied over individual farms. For example, the range of total number of cattle on 
a farm was from one to 7048 with 214.8 as the standard deviation. Datasets with such a distri-
bution need to be scaled to ensure that none of the values have an undue influence on the 
overall learning process, thereby improving the model’s performance accuracy and speeding 
up computation [17], [18]. However, since in this project, the ability to interpret the results 
overrides other considerations, scaling will be curtailed. 

In general, it can be said that the larger the number of cattle on a farm, the greater its risk of 
being declared Not Negative herd status (figure 11). According to this classification, most farms 
in the UK are either Mini or Small. Generally, persistently infected (PI) calves are recognised as 
the most important group in term of BVD transmission [4] – [8]. Even though some PIs live to 
reproductive age, and some may not be identified, the majority do not life to their second year 
[5]. Therefore, it was also relevant to separate the calves under one year from the rest of the 
herd and to check their risk importance in this study. 

 
Figure 11. Distribution of UK farms by size 
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Network metrics: The aim of introducing interconnectivity measures as features in this study 
was to ascertain whether or not closeness of openness of a farm presents a risk to its BVD sta-
tus. Three aspects in total in-degree connectivity were considered (table 3.4). Of the 822,930 
total cattle in 2017, 258,301 (31.4%), were involved in unidirectional movement to the farms 
considered (table 3.4). The number of other farms connected to a farm via cattle movement 
ranged from zero to 2694 in 2017 (table 3.4). This means that farms in Scotland are generally 
highly interconnected as a farm may be connected to as many as 2694 (31.6%) other farms in 
Scotland alone. The total number of such unidirectional farm-to-farm connections stood at 
60,495. Similarly, a farm in Scotland may be connected to as many as ten countries outside the 
United Kingdom. The total number of such connections was 1967 (table 3.4) in 2017. In gen-
eral, the higher the number of connections a farm has the more vulnerable it is to be infected 
(and re-infected) with the BVDV [13] - [16]. These in-degree network centralities can therefore 
be very good predictors of farms’ BVD status. 

3.2.2 Data Pre-processing 

The influence of a Data Scientist on the success of machine learning projects invariably de-
pends on the data pre-processing decisions he/she makes. Exploration Data Analysis favourably 
positions the scientist to apply the correct pre-processing techniques - cleaning and transfor-
mation (box 3.1). 

3.2.2.1 Data Cleaning 

Data cleaning was done to improve the data quality. This included removal of duplicate and 
irrelevant records, filling of empty cells with appropriate values and recoding nominal values to 
numeric values as well as rectifying inconsistent values. The following figures (12, 13 & 14) give 
one example of how the data was cleaned. Note that confirmed BVD herd statuses are Nega-
tive and Not Negative. Unconfirmed herd statuses are ‘Part Test’, ‘Not Applicable’ and 
‘Pending’. 

 
Figure 12. Distribution of confirmed and unconfirmed BVD herd status decision in UK before data 

cleaning. 
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Figure 13. Distribution of combined confirmed and unconfirmed BVD herd status decisions in UK 

 

 
Figure 14. Distribution of combined confirmed BVD herd status decisions in UK after data cleaning 

3.2.2.2 Data Transformation  

Data transformation renders the data in the form the model can accept and lead to improved 
performance and converging speeds. Box 3.1 provides a general process for machine learning 
data pre-processing. New features (farm characteristics or risk factors) were created (figure 2 
and table 3.1). All categorical features were converted to numeric values. Any numeric feature 
whose values were not ordinal were converted to dummy variables and steps were taken to 
avoid the dummy variable traps. 

Box 3.1 Generic machine learning data pre-processing steps. 

 
For the Deep Network model, all the farm characteristics (risk factors) were scaled to improve 
performance and converging speed. However, since interpretability was required scaling was 
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curtailed for the rest of the models. Seven datasets were created to find out which of them 
were best suited to solve the business problem. Finally, each dataset was divided into training 
and testing sets. Whereas the training set was used to train the machine learning models, the 
test set was used to assess the performance of the models. 

3.3 Model Building and Analysis 

This phase includes selection of some techniques; building and validating model(s) (box 3.2). 

First, the data was split into training and testing sets (usually 70% and 30 % respectively). When 

cross-validation is not applied, it is recommended to extract some of the training data set as a 

validation set. A small number of training models are then built by using different hyper-

parameter settings. Alternatively, grid-search may be performed to achieve hyper-parameter 

tuning. A good bias-variance trade-off must be achieved to avoid model overfitting (or under-

fitting). Based on overall performance, the best training model is then selected and saved. 

Box 3.2 Generic machine learning modelling process. This follows the pre-processing phase (box 3.1) 

1. Import required libraries 
2. Create model object and fit it to training dataset 
3. Use trained model to predict the test dataset 
4. Invoke the performance report: confusion matrix, accuracy, classification report, ROC area, etc. 
5. For reliable and robust models, perform k-fold cross-validation and produce mean accuracy 
6. Hyper-parameter tuning. For optimal performance, use Grid Search (with k-fold cross-validation) 

to optimise the unlearnt parameters. Invoke best accuracy and best parameters 
7. For reliable and robust model perform k-fold cross-validation 

8. Visualise results 
 

3.3.1 Testing the Hypothesis 

The hypothesis some models are more useful for explaining their decisions to a non-data scien-
tist than other was effectively tested by presenting three different visual models to non-data 
scientist experts (see chapter 5.4) and observing their responses to the models. These re-
sponses were in the form of preference for particular model during interactions with other 
experts or reference to a particular model in relation to issues raised during the presentation of 
the findings of this study. These responses (thought subjective) were used as a measure of a 
model’s easy of interpretability. These measures were then used to ascertain whether or not all 
the models have the same usefulness in explaining their decisions to non-data science experts. 

3.4 Evaluation and Deployment 

The last two phases are evaluation and deployment. The selected model is re-evaluated on un-
seen test dataset to assess its robustness. If it performs satisfactorily, the model is deployed for 
business use. It is also important to assess the performance of the selected model [17] in order 
to know its strengths and weaknesses. When deploying the model, it is essential to accompany 
it with a report of all the processes applied together with its evaluated performance metrics. 

3.5 Weka: J48 Decision Tree 

In management applications, it is often desirable to be able to interpret the result of a machine 
learning project to enable customised management interventions to be formulated and ap-
plied. The simple Decision Tree model gave detailed interpretable graphics but was 
inappropriate to the problem to be solved. This is because the Decision Tree model could not 
deal with the imbalanced classes in the dataset. Its pruned tree produced only ‘Negative’ clas-
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ses at the decision/leaf nodes rendering it unsuitable for the management challenge. The 
XGBoost gave equally information-rich visuals but it requires an external key to interpret the 
symbols used for the risk factors. A better option is Weka’s J48 decision tree which gives a bet-
ter visualisation and more readily interpretable graphics that can be used to solve the problem 
for this project. This section briefly describes the procedure to build Weka’s J48 decision tree 
coupled with a brief evaluation. Only the results and evaluations of the principal dataset (Last 
Status) are provided in the main body of this work. The rest are found in appendix 1. The pro-
cedure presented here follows Mensah, (2018) [37]. 

3.5.1 Building the J48 Model 

This section provides the process of building a J48 model. A 10-fold Cross-Validation was used 
throughout this section to ensure reliable results. 

3.5.1.1 Learning Curve and Dataset Division  

Weka’s Filter Classifier was used to conduct an experiment to determine which share of the 
Last Status dataset was best for training the J48 model. This procedure follows [37]. 

Setup Experimenter: Weka.Experimenter.Setup> Experimenter configuration 
mode>Advanced>New>Destination>chose file type>InstanceResultListener>[click in the property editor]>[click on 
Browser to select output folder]>[give file name]>Ok>Ok>Result genera-
tor>Choose>CrossValidationResulProducer>[click in the property editor]>[accept defaults 
under]>splitEvaluator>Choose>ClassifierSplitEvaluator)>[click in the property editor, un-
der]>classifier>meta>FilterClassifier>[click in the property editor under] classifier>tree>J48 >[under 
filter]>Choose>unsupervised>instance (filter)>RemovePercentage [remove percentage from the da-
taset]>OK>OK>OK>Run>1 to 10>Generator properties>Enabled>Advanced 
properties>spliEvaluator>classifier>filter>percentage >select[Type the hold percentages (10 to 90 steps 
5)]>Dataset>Add new>[navigate to dataset]  
 
Run Experimenter: Weka.Experimenter>Run>Start 

 
Analyse Experimenter: Weka.Experimenter.Analyse>Source>Experiment>>Configure test>Comparison field> Per-
centage_incorrect> Actions>perform test 

 
The learning curve plotted (figure 15) shows that the incorrect classification keeps decreasing 
sharply from 10% to 30% of the retained dataset; that it generally slows down from 30% to 
55% after which it almost levels off. This implies that 55 % of the dataset is optimum to proper-
ly train the J48 model. Therefore 45% of the dataset will be set aside as a test set with which to 
evaluate the model’s performance. 
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Figure 15. Learning curve showing percentage of dataset retained against percentage incorrect 

 

3.5.1.2 Splitting the Dataset 

Based on the learning curve (figure 15), a split in the ratio of 55%:45% was set to provide the 
train and test sets respectively. This procedure follows [37]. 

Randomise: Weka.preprocess>Open file>[load data]>Filter>Choose>unsupervised>instance>Randomizes>Apply 

Resample/splitting: Weka.preprocess>Filter>Choose>unsupervised>instance>Resample>[click to edit properties]> 
noReplacement>True>sampleSizePercent>55>OK>Apply>Save[all_hs_train] >[folder]>Undo 
Test Set (45% of original) 
>[click to edit properties]>invertSelection>True>noReplacement>True> sampleSizePercent> 
55>OK>Apply>Save[all_hs_test>[folder] 
 

Dataset instances / records 100%=8519, 55% train = 4685, 45% test = 3834 

3.5.1.3 Hyper-parameter Tuning 

The following hyper-parameters were tuned: Pruning, Minimum Number of Objects and Confi-
dence Factor. A 10-fold Cross-Validation was used throughout this section to ensure reliable 
results. 

3.5.1.3.1 Pruning the Decision Trees 

Classify>Choose>Weka>classifier>trees>J48>[click property editor]>unpruned>False or True>OK>Start 
 
Table 3.5 Effect of pruning on J48 using 10-fold cross-validation. 

Unpruned Accuracy (%) FP Rate Trees Leaves 

False 80.7 0.695 35 18 

True 80.4 0.689 87 44 

 
Since pruning gives a simpler tree with 35 nodes (18 leaves) (table 3.5), the model will be 
pruned in order to generalise with the training dataset. 

3.5.1.3.2 Minimum Number of Instances per Leaf 

Another way of pruning is to limit the number of training examples that reach a leaf (min-
NumObj). This parameter was tuned with seven different numbers and the results are shown in 
table 3.6. The False Positive Rates decreased from 1 to 3 minNumObj after which it began to 
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increase sharply. At the same time, the size of tree decreased sharply from minNumObj of 1 to 
3 after which it decreased slightly only to level off after 10. Both table 3.6 and figure 16 show 
that minimum number of objects of 3 is the optimum and that the model generalised well at 
minNumObj of three. 

Table 3.6 Effect of minimum number of objects (minNumObj) on performance metrics of J48 

 
 
 

 
Figure 16. Plot of minimum number of objects against tree size and false positive rates  

3.5.1.3.3 Confidence Factor 

This hyper parameter takes values between 0 and 1 with smaller values incurring more prun-
ing. 

Table 3.7 Effect of confidence factor on number of leaves and accuracy 

Confidence factor 0.05 0.10 0.20 0.25 0.50 0.70 

Accuracy (%) 80.7 80.8 80.9 80.9 80.6 80.6 

Leaves 3 12 14 14 32 40 

Tree size 5 23 27 27 63 79 

TP Rate 0.708 0.686 0.674 0.670 0.664 0.665 

 
It can be observed from table 3.7 and figure 17 that a confidence factor of 0.20 or 0.25 is the 
best. The J48 model was therefore built with pruned branches, a minNumObj of 3 and 0.25 
confidence factor. 
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Figure 17. A plot of confidence factor against number of leaves and accuracy 

3.5.2 Results 

The result of the J48 model (81% accuracy) is summarised in its decision tree (figure 18). This 
graphics is discussed in chapter 5.4 (page 45). 

 
Figure 18. Decision tree of J48 built with pruned branches, a minimum number of objects of 3 and 0.25 

confidence factor on the Last Status dataset 

3.5.3 Evaluation J48 Model 

This section provides brief assessment of the J48 model. The confusion matrix of the J48 model 
(as presented in table 3.8) shows that the model made more true predictions than false predic-
tions. 

Table 3.8 Confusion matrix of the J48 model on the Last Status dataset 

  

Classified / Predicted 

 
Class Negative Not Negative 

Actual 
Negative 2953 131 

Not Negative 606 144 
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Table 3.9 and figure 19 show that the strengths and weaknesses of both the J48 and XGBoost 
models are generally similar. 

Table 3.9 Comparison of J48 and XGBoost model using performance metrics expressed as percentage 

Metrics Class Negative Not Negative Weighted Avg. 

Precision 
J48 83% 52% 77% 

XGBoost 81% 54% 76% 

Recall 
J48 96% 19% 81% 

XGBoost 97% 14% 80% 

F-Measure 
J48 89% 28% 77% 

XGBoost 88% 23% 75% 

ROC Area 
J48     67% 

XGBoost     72% 

Accuracy 
J48     81% 

XGBoost     82% 

TP Rate J48 96% 19% 81% 

FP Rate J48 81% 4% 66% 

 
Figure 19. Comparison of J48 and XGBoost models on Last Status dataset using performance metrics 

expressed as percentage 

 

Figure 20 shows the plot of area under the ROC curve of the J48 model. 

ROC Curve 

 
Figure 20. Plot of area under the ROC curve of the J48 model on the Last Status dataset 
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4 Models and Datasets Evaluation 

In machine learning applications, it is important to assess the performance of the selected 
models [17] in order know their strengths and weaknesses. This section presents a critical 
analysis of the strengths and weaknesses on the selected datasets, of the selected classification 
model in relation to others. Performance measures included accuracy and ROC area, specificity 
versus sensitivity as well as f1-score. As discussed in chapter 2.2.5 (above), these evaluators 
were chosen for specific reasons. Accuracy was the basic ‘quantitative’ measure of individual 
model’s performance (chapter 6.1). However, in order to compare two or more models, stand-
ardised and ‘qualitative’ measures devoid of individual error costs are required. In this regard, 
the area under the ROC curve (AUC) is relevant [17], [18]. This factor is discussed in chapter 
6.1. Specificity and sensitivity permit an evaluation of which model or dataset makes the most 
important prediction or most expensive mistake (chapter 6.2). Since the datasets have uneven 
classes, the F1-score is a better performance measure than precision alone (chapter 6.3). 

4.1 Accuracy and ROC Area 

In terms of both accuracy and ROC area, the eXtreme Gradient Boost (XGBoost) classifier is 
generally slightly better than Artificial Neural Network (ANN) on the selected datasets (figure 
21). For example, for the Last Status dataset, XGBoost achieved 79.6% accuracy while ANN 
achieved a 79.1% result. Similarly, Always Not Negative and Always Negative were indicated to 
be the best and worst dataset respectively. 

 
Figure 21. Comparison of accuracies and area under Receiver Operation Characteristic (ROC) curve of 

XGBoost and Artificial Neural Network (ANN) over Always Not Negative, Last Status and Al-
ways Negative datasets. 

4.2 Specificity versus Sensitivity 

In this use-case, it is more interesting to assess how a model makes important decisions. A 
model’s ability to accurately classify a BVD infected farm as infected (Not Negative) in this use-
case, is more important than its capacity to ‘truly’ predict a BVD free (Negative) herd. This is 
because the negative impact (cost) of a mis-prediction of infected farms is far higher (disease 
spread unchecked) than misclassifying uninfected herd (spread of disease is checked even 

96.2 96.3

73.0 76.379.1 79.6
72.6 72.069.0 67.8 70.4 70.4

0

20

40

60

80

100

Average Accuracy Average Accuracy Average ROC Area Average ROC Area

ANN XGBoost ANN XGBoost

Sc
o

re
 (

%
)

Comparison of Model's Accuracy and Area Under ROC Curve over 
three Datasets

Always Not Negative Last Status Always Negative



- 33 - 

though there is no disease). While specificity measures a model’s ability to accurately classify 
BVD free farms, sensitivity is a measure of how a model is able to correctly predict BVD infect-
ed herds [17], [20]. 

Table 4.1 Consolidated confusion matrix of Decision Tree, Extra Tree, XGBoost, Artificial Neural Network 
(ANN) classifiers over Last Status, Always Not Negative, Always Negative datasets. 

 

Predicted 

Decision Tree Extra Tree XGBoost ANN 

0 1 0 1 0 1 0 1 

O
b

se
rv

ed
 

Last  
Status 

Negative = 0 1963 61 1893 131 1959 65 1295 46 

Not Negative = 1 462 70 448 84 456 76 301 62 

Always Not 
Negative 

No = 0 2462 0 2454 8 2461 1 1640 0 

Yes = 1 93 1 92 2 94 0 64 0 

Always Neg-
ative 

No = 0 349 723 513 559 395 677 309 406 

Yes = 1 115 1369 356 1128 145 1339 126 863 

 

For the Last Status dataset, specificity is the number of correctly predicted ‘Negatives’ divided 
by the total of actual ‘Negatives’ (table 4.1 & 4.2). Sensitivity is the number of correctly pre-
dicted ‘Not Negatives’ divided by the total of actual ‘Not Negatives’ (table 4.1 & 4.2). This 
dataset follows a ‘closed-world assumption’ [17], i.e. if a class is not ‘Not Negative’, then it is 
‘Negative’. However, the Always Not Negative and Always Negative datasets cannot lend 
themselves to a ‘closed-world assumption’ [17]. For the Always Not Negative dataset, the class 
‘Yes’ means a BVD infected farm, but class ‘No’ does not necessary imply a BVD free farm. It 
just means that a farm has ever had its BVD status changed. For simplicity, an assumed-
specificity is assigned to the ‘No’ class. Consequently, one can confidently compute for sensitiv-
ity, (the number of correctly predicted ‘Yes’ divided by the total actual ‘Yes’), but not specificity 
(table 4.1 & 4.2). Similarly, for the Always Negative dataset, the class ‘No’ does not necessarily 
imply a BVD infected farm but a ‘Yes’ class does mean a BVD free farm. Consequently, we can 
only confidently compute for specificity, (the number of correctly predicted ‘Yes’ divided by 
total actual ‘Yes’), but not sensitivity (table 4.1 & 4.2). Hence, assumed-sensitivity is given to a 
‘No’ class. 

Table 4.2 Sensitivity and Specificity Decision Tree, Extra Tree, XGBoost, Artificial Neural Network (ANN) 
classifiers on the selected datasets 

    Decision Tree Extra Tree XGBoost ANN 

Last 
 Status 

Sensitivity 13.2% 15.8% 14.3% 17.1% 

Specificity 97.0% 93.5% 96.8% 96.6% 

Always  
Not Negative 

Sensitivity 1.1% 98.9% 0.0% 0.0% 

Assumed-Specificity 100.0% 0.0% 100.0% 100.0% 

Always 
Negative 

Assumed-Sensitivity 92.3% 76.0% 90.2% 87.3% 

Specificity 32.6% 47.9% 36.8% 43.2% 

 

Generally, all the models performed equally on a specific dataset (table 4.2 and figure 22). 
However, they generally achieved higher specificity than sensitivity This means that they are 
stronger in predicting BVD free farms than BVD infected farms. This can be attributed to the 
imbalanced classes of the response variable in favour of BDV free class (Negative 79%, No 96% 
for Last Status and Always Not Negative datasets respective, table 4.2). 

The datasets, however, responded differently to the models. For example, the Decision Tree 
classifier achieved 100% assumed-specificity on the Always Not Negative dataset. The reason 
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for this is that only all instances were ‘truly’ predicted as BVD free by the Decision Tree classifi-
er and none was ‘falsely’ classified as BVD free (table 4.1). In contrast, no instance was 
correctly predicted as BVD infected by the XGBoost classifier. Consequently, it achieved zero 
percent sensitivity (table 4.1) Also, since only one wrongly classified BVD free case was record-
ed by the XGBoost classifier on the Always Not Negative dataset, it recorded an almost 100% 
specificity. For the Neural Network, no farm was either ‘truly’ classified as infected or ‘falsely’ 
predicted as free (table 4.1). Therefore, it recorded a zero percent sensitivity and 100% as-
sumed-specificity (table 4.2 and figure 22). These observations show that although the Always 
Not Negative dataset achieved very high accuracy than the rest, its decision is very skewed and 
can therefore not be trusted. 

Also, the Always Negative dataset achieved the fairest score for both sensitivity (assumed) and 
specificity (table 4.2 and figure 22). This could be attributed to the almost even-class of the 
response variable (59.6% ‘Yes’ versus 40.4% ‘No’, figure 5). The Always Negative dataset rec-
orded a markedly higher sensitivity (assumed) than all the other datasets. For instance, whilst 
the XGBoost managed to achieve only 14.3% and 0.0% sensitivity on the Last Status and Al-
ways Not Negative datasets respectively, it achieved tremendously 90.2% sensitivity (assumed) 
on the Always Negative dataset (table 4.2 and figure 22). This implies that, the Always Nega-
tive could be the best dataset for revealing BVD infected farm if a ‘closed world’ is assumed. 

In terms of specificity, the Last Status and Always Not Negative datasets the recorded highest 
scores (which are almost the same). This implies that either of them is very competent in clas-
sifying BVD free herds. These observations could be attributed to the imbalanced classes of the 
response variable in favour of BDV free class (Last Status variable: 79% ‘Negative’ and Always 
Not Negative variable: 96% ‘No’, table 4.2). However, given that the Last Status dataset is able 
to predict both sensitivity and specificity (and the decision of the Always Not Negative dataset 
is found to be skewed), it is the recommended dataset as it does not require a ‘closed world’ 
assumption, although it is stronger in predicting in BVD free farms than BVD infected farms. 

 
Figure 22. Comparison of the three models’ ability to identify BVD infected farms (sensitivity) and 

BVD free farms (specificity). 
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4.3 Precision-Recall Harmonisation: f1-score 

Table 4.3: Precision, recall and f1-score information of sensitivity and specificity 

M
o

d
el

 
Dataset Last Status Always Not Negative Always Negative 

Class Negative 
Not  
Negative  

Avg./ 
Total No Yes 

Avg./ 
Total No Yes 

Avg./ 
Total 

D
ec

is
io

n
 

Tr
e

e
 Precision 81% 53% 75% 96% 50% 95% 75% 65% 70% 

Recall 97% 13% 80% 100% 1% 96% 33% 92% 67% 

f1-score 88% 21% 74% 98% 2% 95% 45% 77% 64% 

Ex
tr

a 

Tr
e

e
 Precision 81% 39% 72% 96% 20% 94% 59% 67% 64% 

Recall 94% 16% 77% 100% 2% 96% 48% 76% 64% 

f1-score 87% 22% 73% 98% 4% 95% 53% 71% 63% 

X
G

B
o

o
s

t 

Precision 81% 54% 75% 96% 0% 93% 73% 66% 69% 

Recall 97% 14% 80% 100% 0% 96% 37% 90% 68% 

f1-score 88% 23% 75% 98% 0% 94% 49% 77% 65% 

A
N

N
 Precision 81% 53% 75% 96% 0% 93% 70% 69% 69% 

Recall 96% 15% 79% 100% 0% 96% 46% 86% 69% 

f1-score 88% 24% 74% 98% 0% 94% 56% 76% 68% 

 
Support 79% 21% 100% 96% 4% 100% 42% 58% 100% 

 

Although it may be criticised in some applications [33], f1-score is an effective performance 
measure for datasets with imbalanced classes (table 4.3 and figure 4.3) [34]. Although Always 
Not Negative dataset recorded the highest f1-scores for the ‘No’ class, (98% in all models), it 
achieved the lowest f1 scores for the ‘Yes’ class (2%, 4%, 0% and 0% for Decision Tree, Extra 
Tree, XGBoost and ANN models respectively, table 4.3). This disparity can be ascribed to une-
ven distribution of the classes in the response variable (96% against 4% support in favour of 
the ‘No’ class, table 4.3). The Always Negative dataset which has fairly distributed classes of 
the response variable achieved the most balanced f1-scores for all the classes of the response 
variable. 

4.4 Performance Optimisation 

Tables 4.4 and 4.5 show the effect of variable selection and hyper-parameter tuning on 
XGBoost classifier. Both recursive feature elimination and XGBoost feature ranking showed 
Beef, Goats and Dual Breed variables as redundant. 

Table 4.4 Effect of optimisation techniques on XGBoost accuracy with standard deviation in brackets 

Dataset Last Status Always Not Negative Always Negative 

Initial 79.61% 96.28% 67.84% 

Initial +  
10-fold Cross-Validation 

81.78% 
(±0.76%) 

97.21% 
(±0.15%) 

69.00% 
(±0.01%) 

Best Variables 79.54% 96.28% 67.53% 

Best Variables +  
10-fold Cross-Validation 

81.69% 
(±0.75%) 

97.22% 
(±0.15%) 

68.89% 
(±1.10%) 

Optimised 81.97% 97.28% 69.13% 

Optimised + Re-run 79.70% 96.28% 67.29% 

Optimised +  
10-fold Cross-Validation 

81.97% 
(±0.59%) 

97.28% 
(±0.10%) 

69.13% 
(±1.60%) 
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It was expected that their exclusion from the dataset would improve the model’s performance 
metrics. However, XGBoost did not achieve an improvement. For example, the accuracies on 
Last Status dataset with (initial) and without redundant (best) variables was 79.6% and 79.5% 
respectively (tables 4.4). Furthermore, with or without optimisation, the Negative class of Last 
Status dataset, the precision, recall and f1-scores remained unchanged, 81%, 97% and 88% re-
spectively (table 4.5). 

Table 4.5 Effect of optimisation techniques on XGBoost on precision, recall and f1-score 

  
Last Status Always Not Negative Always Negative 

 

Class Negative 
Not 
Negative 

Avg./ 
Total 

No Yes 
Avg./ 
Total 

No Yes 
Avg./ 
Total 

P
re

ci
si

o
n

 Initial 81.0% 54.0% 75.0% 96.0% 0.0% 93.0% 73.0% 66.0% 69.0% 

Best 
Variables 

81.0% 53.0% 75.0% 96.0% 33.0% 94.0% 72.0% 66.0% 69.0% 

Optimised 81.0% 54.0% 76.0% 96.0% 0.0% 93.0% 72.0% 66.0% 68.0% 

R
ec

al
l 

Initial 97.0% 14.0% 80.0% 100.0% 0.0% 96.0% 37.0% 90.0% 68.0% 

Best 
Variables 

97.0% 14.0% 80.0% 100.0% 1.0% 96.0% 36.0% 90.0% 68.0% 

Optimised 97.0% 14.0% 80.0% 100.0% 0.0% 96.0% 36.0% 90.0% 67.0% 

F1
-s

co
re

 Initial 88.0% 23.0% 75.0% 98.0% 0.0% 94.0% 49.0% 77.0% 65.0% 

Best 
Variables 

88.0% 22.0% 74.0% 98.0% 2.0% 95.0% 48.0% 76.0% 65.0% 

Optimised 88.0% 23.0% 75.0% 98.0% 0.0% 95.0% 48.0% 76.0% 64.0% 

 

These observations can be explained by the fact that XGBoost has a regularisation term which 
checks over-fitting, in-built cross-validation and non-greedy tree pruning mechanisms. There-
fore, assertions that the XGBoost is robust and its results are reliable are supported [25]. As a 
result, it does not need hyper-parameter optimisation or cross-validation to give best outputs. 
In addition, on these datasets, it can be said that XGBoost is robust to both irrelevant and re-
dundant variables. 

4.5 Evaluating the Visual Models 

Since part of the objectives of this study was visualise and interpret the results of the model(s), 
three different graphics models were built and tested on non-data scientist experts to ascertain 
the models’ usefulness for explaining their decisions (see chapter 5.4). Based on the datasets 
and the responses from other professionals, the J48 model was found to offer the easiest ex-
plaining of its decision (see chapter 5.4.3). 
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5 Results and Discussions 

This chapter presents the salient findings of the study together with accompanying discussions. 
Each subsection begins with a bulletin/summary of the findings before moving to the main dis-
cussion. 

5.1 Model Selection 

The eXtreme Gradient Boost (XGBoost) model proved to be the best for the datasets, followed 
by the Logistic Regression. The Last Status dataset proved to be the best general-purpose da-
taset. 

Table 5.1 presents the results of model selection trials. As expected, the baseline algorithm, 
Dummy Classifier, generally achieved the least accuracy over all the datasets (except on two 
occasions where it achieved better results than the Decision Tree model). Surprisingly, the Lo-
gistic Regression, a simple classifier, achieved relatively high accuracies, outperforming the 
Artificial Neural Network (ANN) on three of the seven occasions. This observation can be at-
tributed to the binary nature of the response variable [18], [19]. The outstanding performance 
of the XGBoost and the ANN was anticipated because they are complex algorithms. The seem-
ing superiority of XGBoost over the ANN was not, however, anticipated. A weighted score was 
calculated to find the overall performance of the models and the datasets and results are 
shown below (Table 5.1). 

Table 5.1 Performance (accuracy) of ten classification models over the seven datasets 

Classifier Change  
Always 
Negative  

Always Not 
Negative  

Last 
Status 

Multi 
Change  

Good 
Change 

Bad 
change 

Dummy 52.6% 52.2% 94.2% 70.0% 70.0% 60.0% 60.0% 

Decision Tree  58.8% 58.9% 93.9% 72.5% 68.8% 61.8% 64.1% 

K-Nearest-Neighbours 62.1% 62.3% 96.9% 78.3% 75.0% 64.2% 70.7% 

Gaussian Naive Bayes 64.5% 65.1% 94.6% 80.4% 74.2% 67.5% 70.5% 

Support. Vector Machines 62.2% 58.9% 97.0% 80.4% 78.0% 66.7% 73.6% 

Extra Trees  62.2% 61.5% 96.6% 77.6% 74.6% 64.4% 70.1% 

Random Forest 62.6% 62.4% 96.8% 78.6% 75.4% 65.6% 71.1% 

Logistic Regression 67.2% 68.3% 97.0% 80.8% 78.2% 70.0% 73.9% 

XGBoost 67.3% 67.8% 97.0% 81.0% 78.2% 70.0% 73.8% 

Neural Network (11,6,6,1) 70.0% 69.1% 96.2% 79.0% 78.6% 69.9% 69.9% 

 

Figure 23 portrays the weighted score of the 10 models’ performance over the seven datasets. 
As anticipated, the baseline classifier, Dummy, obtained the lowest weighted score (18.6%). 
Surprisingly, the Artificial Neural Network model (74.3% score) performed less well than either 
XGBoost (93%) or Logistic Regression (93%) classifiers. The Outstanding performance of Logis-
tics Regression can be ascribed to the binary nature of the dependent variables. The success of 
XGBoost could be explained by its ability to handle imbalanced classes in the dataset (table 
5.3). Also, as a strong ensemble learner, it is able to form a good decision. Its inbuilt mecha-
nisms such as regulation term [25] contributed to its success. XGBoost and some others were 
selected to extend and improve evaluation by use of the areas below the Receiver Operation 
Character (ROC) curves (table 5.2 and figure 24). 
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Figure 23. Comparison of the models using their weighted accuracy scores over the seven datasets 

 

The XGBoost and Logistic Regression still out-performed the Neural Network in terms of the 
weighted areas under ROC curves (91.4%, 87.1% and 85.7% in that order, figure 24, next page). 
Given the superior performance coupled with the ability to produce ranked feature importance 
and a pictorial decision tree, the XGBoost was selected as the main classification model. How-
ever, performance of XGBoost will be periodically reviewed and compared with any classifier 
which is known to have certain comparative advantages and required characteristics. 

Table 5.2 Area under ROC curve (expressed as percentage) of selection classification models over vari-
ous datasets. 

ROC  
Always Not 
Negative  

Herd 
Status 

Always 
Negative  Change  

Multi 
Change  

Good 
Change 

Bad 
change 

Extra Tree 68.3% 65.0% 66.4% 62.8% 60.9% 61.8% 60.3% 

Logistic Regression 59.3% 72.2% 70.9% 66.5% 65.2% 65.5% 65.2% 

XGBoot 76.3% 72.0% 70.4% 66.4% 65.4% 65.7% 64.9% 

Neural Network 74.4% 69.9% 70.7% 66.9% 63.5% 65.6% 64.4% 
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Figure 24. Weighted score of classifiers' areas under ROC curve over various datasets 

 

The suitability of the datasets for this project was assessed in a manner similar to the models. 
Table 5.1 and figure 25 show their performance in terms of accuracy. The weighted score (fig-
ure 25) suggests that the Always Not Negative dataset was the best (100%) and the Always 
Negative dataset the worst (46%). However, in terms of the area under the ROC curve (table 
5.2, previous page and figure 26, next page), the Always Not Negative, the Always Negative 
and the Last Status datasets showed similar results, achieving the highest weighted score of 
87.5%. The classic ROC area achievement of the Always Negative dataset supports the fact that 
accuracy should not always be the priority evaluator of models. The XGBoost classifier will be 
used to compare the strength of these datasets (the Always Not Negative, the Always Negative 
and the Last Status) in relation to their ability to identify farm risk characteristics. 

 

 
Figure 25. Comparison of the datasets using the weighted accuracy scores of the ten models 
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Figure 26. Weighted score of the seven datasets using various classifiers' areas under ROC curves 

 

5.2 Probability Calibration 

The XGBoost Model does not need a calibration mechanism to perform well. 

It was noted that the target variables and other features have imbalanced classes and that 
probability calibration was performed to improve the performance of the model by mitigation 
of the bias that an uneven class dataset may have on the performance of a model [21]. Since 
the calibration is probabilistic, the Logistic Regression model is used as a standard for compari-
son. Any score appreciably greater than that of Logistic Regression score would imply that an 
Isotonic or Sigmoid calibration may be useful. In addition, a Brier score loss can be used to 
evaluate this effect; smaller Brier scores are better than bigger scores [19] (chapter 2.2.4). 

Table 5.3 gives the results of the effect of calibration on the XGBoost, Random Forest and Extra 
Trees classifiers and on the three selected datasets. The results show that while the Random 
Forest and Extra Trees classifiers improve with both Isotonic and Sigmoid calibration, the 
XGBoost model (generally) does not improve with either Isotonic or Sigmoid calibration. This 
means that XGBoost, the principal classifier, is able to handle the effect of the bias that may be 
introduced by the uneven classes in the dataset and that it does not require an Isotonic or Sig-
moid calibration. 

Table 5.3 Probability Calibration with Brier Score Loss 

Classifier Last Status Always Negative Always Not Negative 

Logistic 0.147 0.212 0.032 

XGBoost 0.148 0.211 0.032 

XGBoost with Isotonic 0.148 0.211 0.032 

XGBoost with Sigmoid 0.148 0.210 0.032 

Random Forest 0.160 0.231 0.033 

Random Forest with Isotonic 0.155 0.225 0.033 

Random Forest with Sigmoid 0.152 0.217 0.032 

Extra Tree: 0.171 0.244 0.035 

Extra Tree with Isotonic: 0.157 0.221 0.033 

Extra Tree with Sigmoid: 0.154 0.220 0.033 
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Before       After 

 
Before       After 

The reliability curves, notwithstanding, indicates that the datasets respond differently to cali-
bration (figures 27, 28 & 29). These results further show the poorest dataset is the Always Not 
Negative dataset (figure 28). The reason for this could be the fact that the Always Not Negative 
dataset has the most imbalanced classes in the response variable (3% to 97%, figure 5, chapter 
3.2.1.2). 

Figure 27. Reliability curve of XGBoost on Last Status dataset before and after calibration 

 

 

Figure 28. Reliability curve of XGBoost on Always Not Negative dataset before and after calibration 

 

 

 

 

 

 

 

 

 

Figure 29. Reliability curve of XGBoost on Always Negative dataset before and after calibration 
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5.3 Farm Characteristics: Risk Importance and Rank 

This section shows the results of BVD risk identification and ranking. Whereas section 5.3.1 dis-
cusses the (risk) importance of farm characteristics on their individual merits, section 5.3.2 
shows their relative (risk) importance. Among the optimal ranked risks is ‘number of pigs’. 

5.3.1 Herd Characteristics: Individual Risk Importance 

To ensure that the identification of farm risk characteristics and subsequent ranking of the 
main model (XGBoost) does not suffer from and is not sensitive to any inter-correlation be-
tween the input farm characteristics, a meta-algorithm (Recursive Feature Elimination (RFE)) 
was run on top of the XGBoost. Again, to ensure that the identification of risk characteristics 
and ranking were stable and reliable [28], an advanced RFE, (Recursive Feature Elimination 
with Cross-Validation (RFECV)) was employed. 

Table 5.4 shows that XGBoost identified a minimum of 8 farm characteristics as first ranked 
BVD risk factors. These are Cattle under one-year old, Number of Sheep, Cattle over one-year 
old, In_degree (Cattle), In_degree (Farms), In_degree (Countries), Dairy and Number of Pigs. 

Table 5.4 Selection and ranking of BVD risk factors by XGBoost and Extra Trees Classifier embedded in 
Recursive Feature Elimination with Cross-Validation 

 XGBoost Extra Trees 

 
Last  

Status 

Always 
 Not Nega-

tive 
Always  

Negative 
Last  

Status 
Always  

Not Negative 
Always 

Negative 

Cattle under one-year old 1 1 1 1 1 2 

Number of Sheep 1 1 1 3 4 1 

Cattle over one-year old 1 1 1 4 3 4 

In_degree (Cattle) 1 1 1 2 2 3 

In_degree (Farms) 1 1 1 5 5 5 

In_degree (Countries) 1 1 1 7 6 8 

Dairy 1 1 1 6 8 6 

Number of Pigs 1 1 1 8 7 7 

Dual Breed 2 1 2 9 9 9 

Beef 3 1 3 11 11 11 

Number of Goats 4 2 1 10 10 10 

 

Table 5.5 Average risk factor ranking 

 
XGBoost Average Extra Tree Average Combined Average 

Cattle under one-year old 1.0 1.3 1.2 

Number of Sheep 1.0 2.7 1.8 

In_degree (Cattle) 1.0 2.3 1.7 

Cattle Over One 1.0 3.7 2.3 

In_degree (Farms) 1.0 5.0 3.0 

In_degree (Countries) 1.0 7.0 4.0 

Dairy 1.0 6.7 3.8 

Number of Pigs 1.0 7.3 4.2 

Dual Breed 1.7 9.0 5.3 

Number of Goats 2.3 10.0 6.2 

Beef 2.3 11.0 6.7 

 

Figure 30 plots the number of risk factor against share of correctly classified farms. This shows 
that the Always Not Negative dataset achieved the highest correctly classified farms. 
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          Last Status: 8 optimal      Always NotNegative 10 optimal Always Negative: 9 optimal 

 

Figure 30. A plot of the number of farm characteristics against proportion of correctly classified by 
XGBoost on the three datasets 

 

5.3.1.1 Other Species 

The rankings of risk factors were averaged on all the datasets for each model (table 5.5). These 
averages suggest that Dual Breed may be equally important, but that Beef and Number of 
Goats are less important to the BVD status of a farm (tables 5.6 &5.7 and figure 31). Tables 5.6, 
5.7 and figure 31 show the rankings of Extra Trees and XGBoost algorithms without the influ-
ence of the meta-algorithm (RFECV) over the three datasets. These lend support to the fact 
that Beef and Number of Goats are not important BVD risk factors as these farm characteristics 
always ranked as last and next to last. 

The elimination / poor ranking of Beef and Number of Goats (table 5.4 to 5.7, figure 31) were 
anticipated. Statistically, their results required their exclusion from the dataset. Beef was the 
majority group (98.3%) and Number of Goats was the minority group (0.9%). These behaviours 
would normally contribute nothing to the learning [18]. However, they were included as a con-
trol and it can therefore be concluded that the XGBoost algorithm is reliable. 

However, whilst Number of Pigs had minority distribution (5.8%), XGBoost ranked it among the 
optimal classes on all the datasets. Beef, Number of Goats and Number of Pigs variables were 
kept in the datasets for the reason that if an algorithm identified and ranked any of them as 
being an important risk factor, we can conclude either: 

1. that the model could be suspicious, or 
2. that the risk posed by that feature is very important, especially if the algorithm is prov-

en to be reliable. It may have a strong correlation with a farm’s BVD status. 

Since the Number of Goats variable was eliminated and the Number of Pigs variable was also 
picked as an important  BVD risk factor, this when coupled with the fact that the prevalence of 
BVD Virus natural infection in pigs is on the increase [5], [9] – [12], the question of the possible 
importance of pigs is raised, even though there is no report that suggests that pigs can infect 
cattle with the BVD Virus. Again, figures 34 and 40 further show that the presence of a pig on a 
cattle farm matters. 

5.3.1.2 Interconnectivity 

Cattle farms in Scotland are highly open (page 22 and table 3.4). An average farm was influ-
enced (via cattle movement alone) by at least seven other farms a year. A farm may be 
connected (in-degree) to as many as 2,694 (31.6% of all farms) other farms per year in Scotland 
alone. The total of such unidirectional farm-to-farm connections was 60,495 in 2017. Again, an 
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average farm brings in over 30 cattle per year, but a farm may bring in as many as 6,382 head 
of cattle from other farms. Furthermore, of the 822,930 total cattle in 2017, 258,301 (31.4%), 
were involved in unidirectional movement to the farms under consideration. Similarly, a farm in 
Scotland may be connected to as many as ten countries outside the United Kingdom in a year. 
The total number of such connections was 1967 in 2017. Such a high level of ‘openness’ and 
interconnectivity increase the opportunity for the spread of BVDV. This is because the higher 
the number of connections a farm has the more susceptible it is to infectious diseases [13] - 
16]. This assertion is supported by the findings of this study. All the network metrics included in 
this project were considered optimal risk factors on their individual merits (tables 5.4 & 5.5) as 
well as their presence among the top-ranking risks in terms of relative importance (tables 5.6 & 
5.7 and figure31) 

5.3.2 Herd Characteristics: Relative Risk Importance 

This section shows the relative risk importance of farm characteristics. 

 

Table 5.6 Risk factors rankings by XGBoost without the Recursive Feature Elimination algorithm 

 
Last Status Always Not Negative Always Negative 

Risk Rank F1 Importance Rank F1 Importance Rank F1 Importance 

Cattle Under 1 1 187 0.287 1 188 0.307 1 171 0.279 

Num. of Sheep 2 156 0.239 2 132 0.119 2 119 0.194 

Indeg (Cattle) 3 75 0.115 3 76 0.124 4 59 0.096 

Cattle Over 1 4 72 0.110 4 73 0.090 3 95 0.155 

Indeg. (Farms) 5 54 0.081 5 55 0.051 5 59 0.096 

Indeg (Countr.) 6 33 0.051 6 31 0.021 6 41 0.067 

Number of Pigs 7 30 0.046 8 17 0.003 8 26 0.042 

Dairy 8 23 0.035 7 24 0.039 7 28 0.046 

Dual Breed 9 15 0.023 10 2 0.002 11 0 0.000 

Beef 10 5 0.008 9 13 0.216 10 2 0.003 

Num. of Goats 11 2 0.003 11 1 0.028 9 14 0.023 

 

Table 5.7 Risk factors rankings by Extra Trees without the Recursive Feature Elimination algorithm 

 
Last Status Always Not Negative Always Negative 

Risk Rank Importance Rank Importance Rank Importance 

Cattle Under One 1 0.276 1 0.263 1 0.279 

Number of Sheep 2 0.210 2 0.163 2 0.226 

In-degree (Cattle) 3 0.136 3 0.162 3 0.125 

Cattle Over One 4 0.129 4 0.154 4 0.119 

In-degree (Farms) 5 0.108 5 0.135 5 0.094 

Dairy 6 0.063 8 0.020 6 0.082 

In-degree (Countries) 7 0.033 6 0.055 8 0.026 

Number of Pigs 8 0.028 7 0.027 7 0.031 

Dual Breed 9 0.010 9 0.013 9 0.009 

Number of Goats 10 0.004 10 0.006 10 0.007 

Beef 11 0.003 11 0.001 11 0.003 

 

 



- 45 - 

 

Figure 31. Risk factors rankings by XGBoost without the Recursive Feature Elimination algorithm on 
the Last Status dataset 

 

5.3.2.1 Calves under One Year Old 

This population group is among those optimally ranked (tables 5.4 & 5.5) by XGBoost embed-
ded in the meta-algorithm (RFECV) which ensured no inter-correlation between the potential 
risk factors. Both XGBoost and Extra Trees models assessing the relative importance of the po-
tential risk factors, consistently ranked this farm characteristic as having the most relative 
importance (tables 5.6 & 5.7 and figure 31). The number of calves under one year old is most 
likely to correlate with the number of persistently infected (PI) cattle on a farm than any other 
factor considered in this study. Since most PIs do not live to year two [5], it can be assumed 
that the majority of them are under one year old. Given that PIs are recognised as the most 
important group in term of BVD transmission [4] – [7], [9], it was expected that they would 
rank as the highest risk farm factor. It should be noted that of the number of cattle considered 
in this study, over 73 percent calves were under one-year old (table 3.4) and that the average 
herd in Scotland has over 71 percent in this group. 

5.4 Visualising the Models 

This section provides graphic representations of the models (part of the fourth objective of this 
project) in the form of decision trees. It also evaluates their strengths and weaknesses (based 
on datasets of this study) of the graphic models given by the Decision Tree, XGBoost and J48 
Classifiers with emphasis on their usefulness for explaining their decisions to non-data science 
experts. A mention is also made on how these experts responded to these models. Since the 
Last Status dataset is the “general purpose” dataset of the three, only its graphics will be pre-
sented here. Others are shown appendix 1 
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5.4.1 The Decision Tree Model 

This model is the most informative (figure 32) as it provides the most important predictor vari-
able (risk factor) in term of information gain (entropy), the Gini coefficient, number of samples 
at each node, the values considered and the final decision (class of the response variable). The 
Statistician related well to this model due to its detailed information. For instance, following 
the left-most logic, one can interpret the model as: 

If a herd has Dairy breed cattle and has more than 163 heads of calves under one-
year old and further has more than 1006 heads of sheep, then it is predicted to 
have a BVD negative status with 72.5% certainty (accuracy). 

However, the pruned tree contains only the Negative class at both the tree and the leaf nodes. 
It is not able to predict any Not Negative class. This makes it unhelpful to this project. Given 
such a level of details, the Decision Tree model could have been recommended but for its ina-
bility to predict both classes of the response variable. 

 

Figure 32. Graphical model of the Decision Tree Classifier on the Last Statue dataset 

 

5.4.2 The XGBoost Model 

This model (figure 33) is less informative than that of the Decision Tree. It gives logical deci-
sions in Boolean forms. Each leaf node shows the relative importance measure of that decision. 
The decision following the upper-most ‘blue’ line can be interpreted as: 

If f6 (Dairy, box 5.1) is present, and f2 (the total number of cattle brought to the 
farm) is more than 16 heads of cattle, and there are more than 28 f0s (heads of 
calves less than one year old) then the BVD risk is the highest (relative risk im-
portance of 0.112). 

It can be realised that the XGBoost model graphic uses positional indices (not the names) of 
the predictor variable. The chronological list (box 5.1) of the input variables must be available 
in order to interpret the model. Again, the model does not give a prediction of the BVD status 
(Negative or Not Negative). It does, however, predict the relative risk importance of the logical 
decision. This was discussed in previous sections. 
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0='cat_one', 1='cat_oneplus', 2='in_degree', 3='nw_farms', 4='nw_importcountry', 5='Beef', 6='Dairy', 
7='Dual Breed', 8='s_sheep', 9='s_goat', 10='s_pig' 

 

Figure 33. Graphical model of the XGBoost Classifier on the Last Status dataset. 
 

Box 5.1 Positional indexes of the farm characteristics 

 

5.4.3 The J48 Model 

This model (figure 34), in common with the others is intuitive and easily legible. 

 

Figure 34. Graphical model of the J48 Classifier on the Last Status dataset 
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Although some of the technical information is hidden from the reader (unlike the Decision 
Tree) and it does not show the relative importance measure of the risk (as does XGBoost), it is 
able to capture all the classes of the response variable (BVD Negative or Not Negative) at its 
decision node (the leaf). It is the one that can be most easily interpreted by a non-technical 
reader. This could be due to its simple manner of presenting the most important information to 
the reader. With this model, it is possible to conclude that, if certain logical conditions are met, 
a farm is likely to be classified as having, for example, a Negative BVD status. One striking fea-
ture that makes this model easy to follow is the information at each edge (relationship) which 
tells the value at which the instances of a variable decision were separated. For instance, fol-
lowing the left-most logic, one can interpret the model as: 

if a herd has Dairy breed cattle and has more than 165 heads of calves under one-
year old, then it is predicted to be exposed to the BVD virus. On the other hand, if 
a farm has less than 165 heads of calves under one-year old and it has ever im-
ported cattle from outside the United Kingdom, and further keeps Dual Breed 
cattle and has more than two heads of pigs, then it is likely to be classified as BVD 
infected with 81% certainty (accuracy). 

Of the three graphic models and based on the datasets, the J48 is best suited to the goals of this project 
as it was tested to be the one whose decisions were easy to read and understand by a non-data scientist 
professional. During my interactions with the experts (non-data scientist) at the Epidemiology Research 
Unit of the Scotland’s Rural College (SRUC), preference was showed to this model. This was further con-
firmed during the present of this study to a wider audience of the SRUC staff (comprising a range of 
different experts) at Inverness as all the issues that were raised made reference to the J48 model. 

5.4.4 Dairy Cattle 

In spite of their relative strengths and weaknesses, it can be seen that Dairy breed sits on top 
of all the three models. This shows the importance of the presence or absence of Dairy cattle 
on a farm. It also confirms the fact that Dairy cattle are more exposed to BVDV than other 
breed purposes in Scotland. Whereas Not Negative Beef herds rate stood at 12%, the rate for 
Dairy has reduced from 50% to 39% [5]. 

Despite the length of time that the implementation of the eradication policy has been in effect, 
the herd exposure to BVD rate in Scotland is still high (19.5 %, figure 4 at the end of 2017) alt-
hough there has been a general decline in the herd status levels from 2012 to 2017 (figure 3). 
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6 Conclusion 

The salient findings of this study together with some recommendations are presented in this 
chapter. 

6.1 Summary 

Given the length of time of the implementation of the eradication policy, the herd exposure to 
BVD rate in Scotland is still high (19.5 %, figure 4 at the end of 2017) although there has been a 
general improvement in the herd status levels from 2012 to 2017 (figure 3). 

Furthermore, this study has shown that Cattle farms in Scotland are highly open. Such a high 
level of openness and interconnectivity increases opportunities for the spread of the BVDV. 
Open farms are likely to to be BVD infected. Specifically, the more a farm received cattle from 
outside, the higher the risk to BVD [13] – [16]. 

Also, Dairy cattle are confirmed to be more exposed to the BVDV than other breed purposes in 
Scotland. This means that farms with dairy cattle are more at risk than those without them. 

It was further discovered that herds with more calves under one-year of age are likely to be 
have a BVD Not Negative status than farms with fewer cattle under one-year old. This  is 
because calves under one-year old are ranked  the highest risk of farm factors. It should be 
noted, however, that of the number of cattle considered in this study, over 73 percent were 
calves under one-year old. 

The unexpected revelation of this study is that farms with more than two pigs are classified as 
being BVD infected. Although no report has been seen that alludes that pigs can infect cattle 
with the BVD Virus, given the increased incidences of natural BVDV infection in pigs [6], [9] – 
[12], it becomes difficult to ignore the possible importance of pigs to a cattle herd’s BVD status. 

In terms of the machine learning techniques, the eXtreme Gradient Boost (XGBoost) emerged 
as the best model on all the datasets and it passed all tests performed on it. Based on this 
study, it is confirmed and concluded that the XGBoost model is robust, accurate [25] and 
reliable. However, the Weka’s J48 Decision Tree graphic was found to be more understandable 
to a non-data scientist than the XGBoost graphics, even though it could not give a graphic for 
the Always Not Negative dataset. All the other profeesionals who asked questions or raised 
issues during the presenting of this study made reference to only the J48 visual model. This 
shows that they understoond the J48 model more than the other models. Therefore, the 
hypothseis that some models are more useful for explaining their decisions to a non-data sci-
entist than other is valid and acceptable based on the conditions of this study. Unexpectedly, 
Logistic Regression classifier outperformed the Artificial Neural Network on these datasets. As 
it is a simple classifier, I would recommend the Logistic Regression model in future work on 
these and similar datasets provided that interpetation is not a prime goal. 

Whereas the Last Status dataset captures both farms with BVD Negative and BVD Not Negative 
herd statuses, the Always Not Negative dataset and Always Negative dataset specialise in cap-
turing BVD infected herds (sensitivity) and BVD free farms (specificity) respectively. Given its 
general ‘purpose’ quality together with its accuracy (80%) and high specificity (96.8%), the Last 
Status dataset is recommended for future studies. However, if future projects aim to maximise 
sensitivity (BVD infected farms), the best dataset in such circumstances would be the Always 
Negative provided a ‘closed world’[17] is assumed. 
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Finally, given the experimental approach, together with the rigorous model testing, adopted by 
this study, I foresee no difficulty in either replicating this project on different dataset or tailor-
ing it to a different machine learning (classification) project in any field of study. The data 
processing algorithms are wide-ranging enough to deal with any common data anomalies and 
make them acceptable to the common models. To match well with the algorithms, it is recom-
mended (though optional) that future study have the datasets structured in a 2-dimensional 
form (such as a csv or a Pandas DataFrame form). However, the data must be presented to the 
Machine Learning algorithm in a matrix form by converting all nominal data to numeric data. 
Also, care must be taking to avoid a dummy variable trap. It should be noted that the templates 
are not to be followed blindly. There are certain (tailored) decisions that needs to be made. 
Details of these are presented in the codes as comments. For example, whereas conversion of 
all categorical data into numeric data are a prerequisite, scaling of data depends on the goal of 
the project. 

During the presentation of the results, the XGBoost accuracy, selection and ranking of the risk 
factors were well accepted. However, the J48 visual model was found to be more understanda-
ble to a non-data scientist than that of the XGBoost. The role of the network metrics was 
enlightening but the importance of dairy cattle was found to be no new -information. However, 
the role of pigs provoked controversy that can only be resolved, in my view, by a further inves-
tigation. 

6.2 Recommendations 

Based on the above conclusions, it is recommended that: 

1. cattle movement policies (should) be strengthened and rigorously enforced to 

protect farms from outside influence; 

2. more attention (can) be given to farms with dairy breeds and more calves un-

der one-year old; and 

3. further study be undertaken to explore why pigs were identified as an im-

portant risk factor. 

6.3 Future Work 

Betweenness is an important network metric that can be a potential BVD risk factor. Due to 
time constraints, this was not considered in this study, but the scope of this study could benefi-
cially be extended to include this metric. 

Future study could also usefully investigate the role of pigs and farm BVD status. 
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Appendix 1. Graphical Model of the Decision Tree, eXtreme 
Gradient Boost and J48 Classifiers on the Always Negative 
and Always Not Negative Datasets 

 

 

Figure 35. Graphical model of the Decision Tree Classifier on the Always Negative dataset 

 

 

Figure 36. Graphical model of the Decision Tree Classifier on the Always Not Negative dataset 
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Figure 37. Graphical model of the XGBoost Classifier on the Always Negative dataset 

 

 

 

Figure 38. Graphical model of the XGBoost Classifier on the Always Not Negative dataset 

============================================================================= 

 
Performance Metrics J48 Classifier on the Always Negative Dataset (minNumObj 10) 
=== Re-evaluation on test set === 
=== Summary === 
Correctly Classified Instances        2629               68.5707 % 
=== Detailed Accuracy By Class === 
TP Rate   FP Rate   Precision   Recall    F-Measure   MCC      ROC Area   PRC Area    Class 
    0.854    0.566       0.694         0.854       0.765         0.320      0.696           0.727          Yes 
    0.434    0.146       0.664         0.434       0.525         0.320       0.696          0.604          No 
    0.686    0.398       0.682         0.686       0.669         0.320       0.696          0.678          Weighted Avg 
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=== Confusion Matrix === 
     A       b   <-- classified as 
 1964  337 |    a = Yes 
   868  665 |    b = No 
 

  

Figure 39. Plot of area under the ROC curve of the J48 model on the Always Not Negative dataset 

 

 

Figure 40. Graphical model of the J48 Classifier on the Always Negative dataset (minNumObj 10) 

 

Performance Metrics J48 Classifier on the Always Not Negative Dataset 

Note: J48 is not able to produce any meaningful model for the Always Not Negative dataset 

 

=== Summary === 
Correctly Classified Instances        4546               97.0331 % 
Relative absolute error                 99.637  % 
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=== Detailed Accuracy By Class === 
TP Rate  FP Rate  Precision  Recall   F-Measure  MCC    ROC Area  PRC Area  Class 
1.000       1.000    0.970      1.000      0.985             ?           0.496         0.970        No 
0.000       0.000        ?          0.000           ?                ?            0.496        0.029        Yes 
0.970       0.970        ?          0.970           ?                ?            0.496         0.942      Weighted Avg. 
=== Confusion Matrix === 
    a        b   <-- classified as 
 4546    0 |    a = No 
   139    0 |    b = Yes 

 


