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Abstract 

There has been a marked increase in data collection within sports in recent years, an area of 
which has been the collection of performance testing data of individual athletes by sports sci-
entist and coaches with the aim of identifying weaknesses and amplifying strengths. 
Performance testing data has also piqued the interest of talent identifiers as a way of identify-
ing future talent. The current process of talent identification lacks a systematic and scientific 
approach. Analysis of labelled historic performance testing data will provide some insight and 
help form a more methodical approach that can be utilised by talent identifiers and coaches. 

Through machine learning classifiers and statistics, the historic data was analysed to identify 
whether future success can be predicted in youth academy football players. Random Forest, 
Multilayer Perceptron and Naïve Bayes were implemented. The machine learning techniques 
were unable to provide any meaningful classification due to data imbalance and low data quali-
ty. A proof of concept was produced using a relabelled version of the historic dataset. The 
proof of concept confirmed that the techniques formed in this project can be utilised as tools 
for future prediction. A statistically significant positive relationship was identified between the 
length of time an athlete spent within the academy and their likelihood of future success. The 
study helped highlight the complexity of high-level sporting performance. 
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1 Introduction 

1.1 Background and Context 

The demand for an increasing level of performance in sport is never-ending. Improvement thus 
far in performance is a result of an advance in: effective training methods, sports science, ac-
cess to sports, and technology, to name a few. The use of data has been used to improve all of 
these aspects in some way; but in an industry where the collection and demand for data is ever 
increasing [31], [41], [46], how can one capitalise on this data to improve performance going 
forward? 

The analysis of physiological testing results, to monitor and improve athletes, is a vital aspect in 
improving sports performance. However, interest has piqued from a sports business perspec-
tive also, as the necessity for identification of future talent has grown over recent years [36]. 
Despite this, the means for gathering, interpreting and applying talent identification data is still 
unresolved [49]. 

The motivation for the project stemmed from an enquiry by a client who was faced with the 
task of analysing such data. The client, James Dugdale, is a PhD candidate at the University of 
Stirling specialising in fitness and performance testing, and strength and conditioning. James 
collaborates with the Forth Valley Football Academy (FVFA), an elite level football academy, 
providing sports science advice and services to the club.  

FVFA regularly require their players to take part in performance testing sessions, which assess 
player’s biometrics and physiological performance ability. The dataset given by the client con-
tains the historical results of these tests, along with a label as to whether that player went on 
to sign a professional contract during their career (referred to as a ‘success’ in this project). The 
clients desire, therefore, was to use this data to discover how effective these testing sessions 
are as a means of talent identification in elite youth football players.  

 

1.2 Scope and Objectives 

An attempt to predict the future success of youth football players with the use of classifying 
machine learning algorithms and statistical tests was carried out. As sports science and per-
formance analysis become more readily available, the amount of data on the performance 
tests of athletes is increasing rapidly. The significance of this data is increasing, and teams and 
athletes at all levels are beginning to invest in performance testing acquisition and its analysis. 
The client wanted to answer three main questions: 

1. Is it possible to predict success from performance in these tests? 

2. Which tests are most indicative of success? 

3. Does time spent within the academy affect the likelihood of success? 

It was the aim to build models that can answer these questions and to allow the findings of this 
research activity to be applied practically, to finetune and improve training methods for ath-
letes and increase efficiency of testing/identification methods for coaches, athletes and other 
interested parties. More specifically for football, it was also the aim to be able to use the mod-
els as a first step towards the ability to input new testing data of current players and output a 
prediction of their likelihood of success, alongside a tool that highlights areas of performance 
that should be improved by players to increase this success likelihood. 
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The sub-phases of the project were as follows: 

 Research the background and current literature on performance testing in football and 
talent identification 

 Consultation with the client on desired project outcomes and communication through-
out 

 Research and select suitable machine learning algorithms and statistics for the task, 
considering implementations and architecture 

 Explore and pre-process the dataset 

 Execute proposed machine learning algorithms and statistics 

 Optimise algorithms to increase predictive ability 

 Evaluate the models built 

 Build a proof of concept to highlight viability of models 

The data was provided by the Forth Valley Football Academy, who the client works closely with 
as part of his PhD thesis. 

 

1.3 Achievements 

Due to a lack of prior experience handling datasets, an increase in knowledge of data handling 
and data processing was necessary. Additionally, due to no prior experience with Python, it was 
necessary to move quickly from no knowledge of Python to a good working knowledge; in par-
ticular, gaining an understanding of the theory and applications of the Panda, NumPy and 
Scikit-learn libraries was necessary for handling the data stored in a CSV file, performing data 
analysis and data mining. Additionally, a basic understanding of SPSS was gained to perform 
statistical analysis. 

Not all outlined objectives were met. However, the project was successful in providing infor-
mation for the client on the relationship between length of time spent within the academy and 
success. The project evaluated a number of machine learning classifier algorithms on perfor-
mance testing data, providing functional insight for future analysis of this type. 

With verification through a successful proof of concept, the models documented in this project 
can be used as tools to effectively classify athletes in similar, but more productive, datasets. 
Additionally, the models can be used to provide insight to coaches and athletes in other sports, 
by inputting their own historical data, to gain an understanding of important areas for im-
provement within their discipline. 

1.4 Overview of Dissertation 

The project report is organised into chapters documenting the analysis of the dataset and 
model development. 

Chapter 2 – State of the Art outlines the background and current knowledge about machine 
learning classifiers, statistics and performance testing. It begins with an introduction and dis-
cussion of the supervised learning algorithms and statistics used in this paper. The chapter is 
concluded with a brief investigation of the importance of performance testing in sport and the 
use of machine learning in sport thus far. 



- 3 - 

Chapter 3 – Design and Approach discusses the dataset used in this project, followed by a de-
scription of the data preparation. The chapter also outlines the project methods and 
development methods of the project. 

Chapter 4 – Performance Test Modelling documents and evaluates the classifiers capacity to 
predict future success of athletes and the most indicative tests using the performance test da-
ta. 

Chapter 5 – Length of Time in Academy provides a statistical analysis of the relationship be-
tween the amount of time a player spends in the academy and success. 

Chapter 6 – Proof of Concept documents the production of proof that the classifying algorithms 
used in this project function as tools for predicting success. 

Chapter 7 – Conclusion provides a summary and an evaluation of the project. It also offers sug-
gestions of future work in relation to this project. 
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2 State-of-The-Art 

2.1 Machine Learning 

Machine learning is the ability of a machine to evaluate, learn patterns and rules of a dataset 
and apply that knowledge to generalise new and unseen data. The computer utilises complex 
statistical techniques to learn how to perform a specific task without being programmed ex-
plicitly. There are 3 main types of machine learning algorithms: supervised learning, 
unsupervised learning and reinforcement learning. Supervised learning requires the algorithm 
to be presented with training data that not only includes information about each data point 
but also a label to which class that data point belongs to, in order to learn the patterns and 
produce an inferred function [2]. Falling under the category of the supervised approach, this 
project uses classification algorithms. The purpose of a classification task is to assign an input 
to one of a number of classes. The classes an input can be assigned to may be binary or nu-
merous. The algorithm works to try and find rules and boundary conditions in the data and 
attribute those boundaries to a particular class; it can then assess new data against these 
boundaries and assign it to the class it most belongs to [2]. An example of a classification task 
would be for a bank to decide whether someone should be granted a loan based on a variety 
of factors about that person (e.g. income, employment status, credit history) with respect to 
the same data of people who previously either paid back the loan or did not. Decision Tree 
Classifiers, Multilayer Perceptron and Naïve Bayes algorithms fall into the category of super-
vised learning, and are the algorithms implemented in this project. Further possible 
classification algorithms include Gradient Boosting Machines, Learning vector Quantization, K-
nearest Neighbour, Support Vector Machines and Linear Classifiers [53].  

2.1.1 Decision Tree Classifier and Random Forests 

A decision tree classifier categorises an input by making a sequence of binary decisions until 
the bottom of the tree, the leaf node, where the input is classified as one of the possible cate-
gories. A decision tree has a structure comparable to a flow chart and implements recursive 
partitioning (also known as ‘divide and conquer’) to split the data into smaller subsets [25]. 
Each decision node, where the binary comparison take place, uses just one variable and a con-
dition of that variable to make the decision; each branch in the tree is the outcome of a 
comparison. Inputs flow through the tree according to the values of its variables. 
 
The decision tree classifier used in this project, implemented using the scitkit-learn library, us-
es the CART (Classification and Regression Trees) algorithm. This model uses recursive binary 
splitting to create binary decision nodes that minimize the impurity at each split. The training 
process involves iterating through all the variables and thresholds and assessing possible split-
ting criterion at each node. The split that reduces impurity the most is selected. This process is 
repeated until a stopping rule is satisfied.  
 
There are two measures of impurity used in the decision tree classifier in this report: Gini Im-
purity and Information Gain. Gini Impurity calculates the frequency that a randomly chosen 
element would be labelled incorrectly, if it were labelled randomly using the distribution in the 
subset. The algorithm seeks to reduce this measure, and the measure reaches 0 when all vari-
ables are categorised into a single category at a given node; conversely a value of 1 indicates 
maximum disorder. 
Information Gain is built on entropy. Entropy is a measure of the lack of order in a set of data 
[25]; the decision tree reduces this lack of order as much as possible at each split. Entropy can 
be defined as: 
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Where S represents a set of data, c represents the number of class levels, pi represents the 
proportion of values assigned to class level i. Information gain is a calculation of the entropy of 
a parent node (S1) minus the average entropy of the child nodes (S2) [25], defined as: 

 
��������	(�) = �������(��) − �������(��) 

 
After each split, the remaining data is divided into a number of partitions, the function that 
calculates entropy (S2) does so by weighing the entropy of each partition by the number of var-
iables falling into that partition.  This process can be used to order the splits in a tree, highest 
information gain first, until the stopping criterion is reached or there is no data left to be sort-
ed. 
 
Decision tree algorithms are often favoured as they produce easy to comprehend visual repre-
sentations and output, displaying clearly the decisions the algorithm implements and the 
consequences of each decision. 
 
The model built in this project uses a random forest algorithm; which is an ensemble of the 
decision trees described above. During training, the random forest builds a number of decision 
trees and outputs the mode of the classes. An individual decision tree is susceptible to noise in 
the training data, however, the random forest algorithm uses a modified version of bootstrap 
aggregating to combat this and has the ability to decrease the variance of the model without 
increasing bias [6]. In short, the random forest algorithm helps prevent overfitting to the train-
ing data, something that individual decision trees can be susceptible to. 
 
A further method of preventing overfitting is to introduce early stopping criterion to decrease 
complexity of the algorithm during training, with the aim of the algorithm performing better 
on unseen data. The algorithm has inherent stopping criterion apparent at the nodes during 
binary division; there are two cases [27] by which the tree can no longer split: 1) The output 
from a decision node is homogenous, therefore, splitting any further is unnecessary. 2) The 
inputs at the node are locally constant. A further set of stopping criterion can be introduced 
known as hyperparameters. The hyperparameters utilised in the random forest and decision 
tree models in this project are as follows [37]: 
 

a) max_depth: The node is considered a leaf node if its depth is greater or equal to the 
set threshold 

b) max_features: the maximum number of features evaluated at each split 
c) min_samples_split: the minimum number of samples necessary to split a node 
d) min_samples_leaf: the minimum of samples necessary in the final (leaf) node of a tree 
e) estimators: the number of trees to be built  

 
The hyperparameters’ of a random forest can be tweaked to increase the model’s perfor-
mance on unseen and test data.  

2.1.1.1 Feature Importance Using Random Forests 

Random forests are formed with the aim of reducing impurity as much as possible at each 
node. Calculations as to the amount a feature reduces impurity at decision nodes across all 
trees in the forest can be made [17]. The features can then be ranked based on the average 
impurity decrease. Feature selection in this manner introduces a certain level of bias towards 
variables with a higher number of categories [47]. Additionally, results can be misrepresented if 



- 6 - 

correlated variables are present in the data. The model will select a feature as a predictor in an 
arbitrary manner. Once the first of a correlated set of features is selected, the other features in 
that set loose importance as any impurity they can remove has already been removed by the 
initially selected feature [16]. This is an important issue to keep in mind when interpreting the 
output.      

 

2.1.2 Artificial Neural Networks 

Artificial Neural Network’s (ANNs) are black box machine learning algorithms, named as such 
because the internal workings of the algorithm and its calculations are so complex that they 
are virtually impossible to interpret. These networks can learn from training data and perform 
tasks without explicit programming and are based on the model of a biological brain reacting to 
sensory stimuli. In the same way a biological brain uses a vast network of interconnected neu-
rons to process and transmit information; ANNs use a network of interconnected nodes to 
compute problems.  

In the biological brain, dendrites extend from the call and receive signals from neighbouring 
neurons axon termini [26]. Utilising biochemical mechanisms, the dendrite can sense the rela-
tive importance of the signal and convert it into an appropriately weighted electric impulse. 
The electrical impulse travels along to the axon hillock, where an action potential will be pro-
duced if the electric disruption is great enough to reach threshold potential [26]. The action 
potential will travel along the axon and out through the axon terminal, after being converted 
back to a chemical signal, onto another neuron or cell. Figure 1 provides a visual representation 
of this process. 

 
Figure 1. Signal pathway through biological neuron [25] 

 

Similar to the neuron in the biological brain and as shown in figure 2, an artificial neuron re-
ceives in an input (i) and applies an appropriate weighted value (W) to that input, depending 
on importance. The inputs are converted to outputs (o) by the activation function (f).  ANN’s 
combine networks of single artificial neurons to create complex data models. ANN’s have three 
main characteristics: The activation function, the training algorithm and the network architec-
ture. 

 

 

 

 



- 7 - 

 

 
Figure 2. Single Artificial Neuron 

2.1.3 Multilayer Perceptron 

The multilayer perceptron (MLP) is the category of artificial neural network used in this project. 
The MLP is a flexible feed-forward neural network, allowing inputs to have distinct effects on 
any output. Most commonly, each node utilises a nonlinear activation function to determine 
the output given one or many inputs [42]. The ability of the MLP to use a nonlinear function 
enables complex problems to be solved with relatively few nodes. The two most common acti-
vation functions used by MLPs are the logistic sigmoid activation function and the hyperbolic 
tangent activation function.  Whilst both are sigmoid functions, they do have fundamental dif-
ferences. The logistic sigmoid activation function allows for output that range (0, 1), given an 
input of (-∞, ∞) [51]. The second, the hyperbolic tangent has outputs ranging between (-1, 1), 
given the same infinite inputs as above. This means that exclusively zero value inputs cause 
near zero outs and any strongly negative inputs will cause a negative output. As a result, the 
use of hyperbolic tangent activation functions can help networks overcome model parameters 
updating slowly [22]. With y representing the output of the neuron and wi representing the 
weighted sum of the input connections, the two functions can be defined as: 

Logistic activation function: �(��) = (1 + �
���)�� 

Hyperbolic tangent activation function: �(��) = tanh	(��) 

 

Whilst logistic and hyperbolic tangent activation functions are often the most popular used in 
MLPs, due to some recent research demonstrating its ability to better train deeper networks 
[14], this project with use the Rectified Linear Unit (ReLU) activation function. For any positive 
input the function returns that value back, but returns 0 for any negative input (Figure 3); with i 
representing an input, the function can be described as: 

�(�) = max	(0, �)	

	

Despite a relatively simple function made up of two linear parts, it has the capacity to model 
complex, non-linear, problems well. The function itself, however, is non- linear as the slope is 
not constant near 0 but is a limited type of non-linearity where the slope is either 1 for positive 
values or 0 for negative values. Through the combination of ReLU nodes, all with different val-
ues of bias, combined functions can be produced – it is these resulting combined functions that 
allow for complex problems to be modelled. The ReLU activation function was found it have a 6 
times improvement in convergence of stochastic gradient descent over the logistic and hyper-
bolic tangent activation function [24]. 
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Figure 3. Graphical representation of the ReLU function 
 

The MLP uses a cost function to determine error of the model. Gradient descent is applied to 
update the model parameters by stepping down the negative gradient of the function until the 
local minima is arrived with the aim of reducing total error. As networks become deeper, they 
come susceptible to the vanishing gradient problem; this is where the gradient becomes so 
small that the weights are unable to update, in some cases, this can cause training of the mod-
el to halt completely [15].  

MLPs employ gradient descent using a supervised learning algorithm called backpropagation. 
Initially, all weights in the network are assigned random values; as a result, this selects a ran-
dom point on the error gradient. The backpropagation algorithm repeatedly compares actual 
outputs to desired outputs and propagates the error back through the network to adjust the 
weights accordingly [13]. Initial training of the model is done using a set of training data, but 
the model has the ability to update online also; the initial training data contains both inputs 
and desired outputs for the model to learn from. 

The high level MLP architecture is fairly simple (Figure 4). The main architectural concerns are; 
the number of layers, the number of nodes in each layer and the connections between these 
nodes. Each node is connected to all of the nodes in the following layer, known as being fully 
connected [13]. There are three categories of layers in an MLP: input layer, hidden layer and 
output layer. The input layer solely passes the input to the network i.e. it does not alter the 
inputs at all. The other nodes in the network use weights connect them and the node outputs 
are a sum of the inputs passed through an activation function [13]. The sum of the weighted 
outputs from the previous nodes gives the activation to the next node. With input represented 
as X and weight represented by W, activation (ai) can be defined as: 

�� = 	�����

�

���

 

 
The training process can be altered using a number of hyperparameters; MLP hyperparame-
ters adjusted in this project are described briefly below: 
 

a) Learning Rate determines the size of increments down the slope during gradient de-
scent. Large steps down the slope may cause the global minima to be missed; 
however, if steps are too small then efficiency is sacrificed [34]. An adaptive learning 
rate keeps the learning rate constant to the initial rate, as long the training loss keeps 
decreasing. If two sequential training epochs do not increase the validation 
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Figure 4. Example architecture of an MLP 

 
score by at least one Tolerance, when Early Stopping is on, then the current learning 
rate is divided by 5 [37]. 

b) Learning_Rate_Init determines the initial learning rate (size of step). See a) above for 
more details 

c) Momentum uses measures of the gradient at the current position and the running av-
erage gradient to smooth out any brief changes in gradient direction [13]. It aids the 
model to not get caught in a local minimum that is not the global minimum of the cost 
function. 

d) Early Stopping is used to halt the training process before the training error flattens out 
when using an iterative learning algorithm. The model will use a prior assigned 10% of 
the training data to use as validation data, if the validation score does not increase 
enough after two consecutive epochs then training with be halted. 

e) Hidden Layers within the model can be altered. Non-linear activation functions allow 
for a relatively low number of layers. If the number of layers becomes too great, the 
model may become susceptible to overfitting to the training data set. 

f) Maximum Iterations for the stochastic solvers used in this project determines how 
many times each data point will be used, often referred to as number of epochs. 

g) Solver refers to the weight optimisation solver. This project uses stochastic gradient 
descent (sgd) as its solver. 

h) Tolerance for model optimisation. The amount the model must increase the validation 
score in two sequential training epochs. See Learning Rate above for further details 

 
All other hyperparameters remained as default, details of which can be found on the scikit-
learn documentation [37]. 
 
MLPs can be very powerful machine learning models, however in contrast to decision trees, 
they are hard to interpret and visualise. MLPs are not human interpretable and any visual rep-
resentation cannot give a description of the process the algorithm is using nor the algorithms 
complexity. Further, as initial weights are assigned randomly to the model each time it is ran, 
this has the possibility to cause slightly different results, making it more complex to find opti-
mal hyperparameters.  
 

     Input Layer               Hidden Layer               Output Layer 
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2.1.4 Naïve Bayes Classification 

Naïve Bayes Classification is a further classification technique, rooted in Bayes theorem. Bayes 
theorem attempts to explain the probability of an event occurring, based on prior evidence 
that may be connected to the event. The classifier is named as Naïve as the model maintains 
strong assumptions of independence between the observations [18]. That is to say that each 
feature contributes independently to the probability of the event. The Naïve Bayes classifier 
can be written as P(C|X), a probability of an input X being a member of one of many classes C. 
It is relatively straightforward to take a subset of each class in the data and compute the prob-
ability distribution; then sequentially applying Bayes rule, described as:  

�(�|�) = 	
�(�|�)�(�)

�(�)
 

P(C), the probability distribution over the classes is the proportion of data belonging to each 
class. P(X) is the probability distribution of whole data set and as a result functions as a normal-
ising constant as it does not vary. The classifier need not divide P(X|C) by P(X) as the purpose 
of the classifier algorithm is to only find the class where the probability of the data is highest 
[52]. Therefore, the classifier only has to determine P(X|C) for every one of the classes in C and 
then identifying which has the highest probability value – the class with the highest probability 
value is regarded as being the class to which data point belongs. The naivety of the model of 
the model causes an elevated model bias, however, when the observations are actually inde-
pendent, the model performs strongly. This project utilises the Gaussian Naïve Bayes (GNB) 
Algorithm. The data in this project is continuous; it was assumed it has a Gaussian (normal) 
distribution [7] and that the GNB classifier algorithm was therefore appropriate. 

 

2.2 Methods for Evaluating Machine Learning Classifiers 

In order to gauge the strength of a model it is important to identify appropriate means of as-
sessment. There are a number of means of evaluating a classifier algorithm, such as 
computational speed, scalability or simplicity. However, given size of the data set in this pro-
ject, these are not relevant. The most relevant evaluation measures are ones pertaining to how 
accurate the model was at correctly labelling the data. Part of this method requires a small por-
tion of the data to be separated from the training data before training commences, known as 
testing data. Towards the end of the training of the model, this testing subset is introduced to 
the newly built model for it to be classified; since this testing subset is also labelled, the model 
is able to produce an evaluation of its performance. The importance of defining and separating 
a subset for testing data is that a model could simply memorise the data it is training on and 
provide an overinflated performance evaluation. 

For the purpose of this section the following abbreviations will be used: 

TP: True Negative – number of negatives predicted as negative 

FN: False Negative – number of positives predicted as negative 

FP: False Positive – number of negatives predicted as positive 

TP: True Positive – number of positive predicted as positive 
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2.2.1 Accuracy Rate 

Accuracy describes the proportion of predictions the model made correctly. It can be written 
simply as: 

Accuracy = 	
Number	of	correct	predictions

Total	number	of	predictions
 

 

As the classification in this project is a binary task, the accuracy rate can also be determined 
with regards to positives and negatives as: 

Accuracy = 	
TP + TN

TP + TN + FP + FN
 

Accuracy rate is beneficial as it provides an easily understood output; however, it is not an ef-
fective method of evaluation when there is an imbalance between the amount of positive and 
negative labels. To illustrate this, consider a set of data that consists of two label classes A and 
B. In this data set there are 90 data points labelled A and 10 data points labelled B; if the model 
were to predict all data points as to belonging to A, then this would produce a 90% accuracy 
rate. Generally, a 90% accuracy rate would indicate that the model has performed well; howev-
er, in this circumstance a score of 90% could indicate that the model has not performed 
prediction at all. 

2.2.2 Confusion Matrix 

A confusion matrix provides a tabular representation of how many times a model correctly 
predicted a class. The rows of a confusion matrix represent the number of actual instances in 
each class and the columns represent the number of predicted instances in each class. 

 

 

 

                        Actual 

                                           Predicted 

 Negative Positive 

Negative TN FP 

Positive FN TP 

 

The output of a confusion matrix gives a more detailed look at the amount of correct classifica-
tion. The significance of false cases (false positive and false negative) differ from case to case 
and confusion matrices work best in cases where there are fewer output classes, preferably 
binary classes [48].   

 

2.3 Statistical Tests 

The statistical tests in this project are implemented to determine whether a correlation or a 
relationship occurs between input variables and the output. More specifically, the statistical 
tests will be used measure the closeness of the relationship between the inputs and the class 
labels. 

2.3.1 Correlation Coefficient 

The bivariate Pearson Correlation is a popular measure of correlation between two continuous 
variables. However, when dealing with one continuous variable and one binary variable, a 
mathematically identical correlation, the Point-Biserial Correlation, can be used [23].  



- 12 - 

The Point-biserial Correlation produces a measure of the strength and direction of the relation-
ship between a set of variables. This measure is given as a correlation coefficient, referred to as 
rpb. The Correlation gives an indication as to whether a statistically significant linear relation-
ship occurs between the two variables and how close the relationship is to a straight line. The 
hypothesis for the two-tailed significance test used in this project can be expressed as follows: 

H0:	rpb	=	0 – correlation coefficient is 0; there is no association 

H1:	rpb	≠	0 - correlation coefficient is not 0; a nonzero correlation could exist 

As previously mentioned, the Point-biserial Correlation is mathematically equivalent the Pear-
son’s product-moment correlation and written as: 

 

��� =
�1 −�2

��
��� 

Where, M1 is the mean of the subset with the positive binary variable (i.e. 1), M2 is the mean 
of the subset with the negative binary variable (i.e. 0), Sn is the standard deviation of the entire 
dataset, p is the proportion of the negative variable group and, finally, q is the proportion of 
the positive variable group. A correlation coefficient of 1 indicates a perfect positive relation-
ship, 0 indicates no relationship, and -1 indicates a perfect negative relationship [23]. 

Further assumptions necessary for a valid Point-biserial correlation result are: no outliers are 
present in the dataset; the continuous variable should be loosely normally distributed, and the 
continuous variable should be labelled with an equal proportion of the binary variable. 

 

2.3.2 Pearson’s Chi-Squared Test 

The Pearson’s Chi-Squared test analyses the relationship between two categorical classes, 
more accurately, it determines if any observed differences between the classes occurred by 
chance. Each category need have at least two variables and be expressed in a contingency table 
[29]. The hypothesis for the Chi-squared test is expressed as: 

H0: The variables are independent of each other 

H1: The variables are not independent of each other 

With O as observed frequencies, E as expected frequencies and i-j representing all the cells i.e. 
from the first cell i, to the last cell j; mathematically, the test statistic (X2) is written as: 

��(���) = 	�
(� − �)�

�
 

An equality of variances is not required for the Chi-squared test to be effective [29]. The test 
has the ability to indicate both the significance of any differences in the observed and provide 
information as to where the differences occur. Key to the effectiveness of the Chi-squared, it 
assumes that the groups are independent of each other and that all subjects only appear once 
in the data [29]. 

 

2.4 Significance of Performance Tests in Sport 

Sports are often very complex activities, often requiring a number of skills to be performed se-
rially and dependent on multiple facets of physical fitness. As a result, it may be advantageous 
to test these individual skills or facets of fitness individually. By breaking the demands of the 
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sport down, it is possible to identify athlete’s strengths and weaknesses, monitor progress and 
improvement, and even identify talent [36]. 

Talent identification has become particularly interested in performance testing recently; in-
creased pressure for optimal returns on investment in athletes is becoming apparent 
throughout the sporting world. One of the greatest issues in talent identification is that an ath-
lete’s future success is reliant on a variety of complex, and sometimes unmeasurable, factors 
including sport psychology [1], sociology [19] and genetics. With this being said, physiological 
performance tests are still treated as the most important indication of possible success [36]. It 
is tradition to determine indicators of success by looking at the performance testing data of 
professional adult athletes. This method has its drawbacks - there is no evidence that the im-
portant characteristics identified in the adult athletes are also important in the prediction of 
future success in pre-adolescents [49]. Currently it is proposed that there are no key indicators 
of success until late adolescence, perhaps this is because the level of maturation is more uni-
form at this age. Rate of maturation is in fact suggested to be a major determinant of 
performance in pre-adolescents, and likely skew results [49].  

Despite the importance of talent identification, there is still a lack of a scientific and methodical 
approach to the testing of athlete’s performances; and there is certainly a lack of consensus as 
to which performance tests are most important to consider when identifying talent [49].  

 

2.4.1 Discussion of Performance Tests in Project 

As with most sports, football is complex sport requiring a variety of skills and activities. Tests of 
players’ muscular power, repeated sprint ability and aerobic fitness are the most favoured by 
sports scientists [40]. Muscular power and acceleration are essential for effective sprinting, 
jumping and change of direction – all important activities in football. The ability to repetitively 
jump to head lofted balls is important in both attacking and defending phases of the game. 
Similarly, the ability to change direction is critical both for players with the ball at their feet and 
without - when reacting to external stimuli, most prominently when defending an opposing 
player. High level male football players can cover up to 13km in a single match [4], so it is clear 
as why aerobic fitness is important. However, most of the distance is travelled by low-intensity 
running and walking and it is suggested that periods of sprint are most important [4]. It was 
shown that international-level professional players spent 58% more time sprinting during a 
match, compared with lower level professional players [32]. This indicates the importance of a 
player’s ability to repeatedly run at a high-intensity during a match. To ensure a reflection of a 
match, testing of repeated sprint ability must involve repeated high-intensity running, followed 
by brief recovery periods [40]. 

The performance tests in the data used in this project are as follows: 

 5m Sprint, 10m Sprint, 20m Sprint: A maximum effort run from a static start. Given the 
short distance of the run, the tests measure an athlete’s ability to accelerate and not 
maximum speed. The shorter a sprint the more important initial acceleration from rest 
and leg power.  

  Counter Movement Jump (CMJ): A type of vertical jump test. Athletes begin from a 
static upright position, flex at the knees and hip to make a preliminary downward 
movement, and finally extend at the knees and hip to jump vertically. The static start-
ing position helps isolate the test of leg power from other factors that can affect 
vertical jump in a game situation e.g. motor skills and running speed. 
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 Yo-Yo: A test of repeated sprint ability and aerobic fitness. Athletes are required to run 
20m, followed by a brief rest. As the test progresses athletes must sprint faster and 
rest for shorter periods of time. 

 

2.4.2 Machine Learning in Sport 

To date, there has not been a great amount of machine learning in sport. Most current ma-
chine learning is from the point of view of marketing, wearable technology or match result 
prediction.   

A Naïve Bayes Classifiers was used to predict the winner of the Cy Young Award [44] – an award 
for the best pitcher in Major League Baseball. The method competed against two statistical 
models, using data gathered about pitchers in game statistics for the year. It was highlighted 
that the use of a machine learning algorithm was advantageous over a static statistical method 
because new data could be continuously introduced to the model and its accuracy should in-
crease each year. Model building used labelled historic data from over 40 years of baseball. It 
was the case that the Naive Bayes classifier correctly predicted the winner of the award when 
it was a starting pitcher (as opposed to a relief pitcher) 84% of the time; however, it was out-
done by the two traditional static statistical methods it was assessed against.  

A study [28] of the use of neural networks in talent identification in the Australian Football 
League (AFL) draft was conducted. The data in the study had 58 variables about each player, 
including data on physiological testing performance, biometrics and subjective analysis by 
coaches – all collected prior to a player’s draft date at a draft camp. The study utilised a neural 
network ensemble; using player ratings, given by AFL experts, following a 3-year tenure in the 
AFL as a label for training the model in a supervised manner. The results of the study were that 
teams recruiting managers outperformed the neural networks at predicting the future success 
of the players in all circumstances. The study attributed this to the limitation of the neural net-
works to data solely from the draft camp, whereas, recruiting managers had additional data 
e.g. game film.  

The lack of machine learning in the sphere of sport is surprising when there is a plethora of 
data collected daily by sporting associations, teams and players. It is likely that this will change 
in the near future as machine learning is made more accessible. 

 

2.5 Programming Language, Libraries and Software used 

There were a variety of possible programming languages that could have been used in this pro-
ject. Python was selected as the language of choice, for two main reasons: first, the additional 
support of data handling, statistics and machine learning specific libraries – specifically pandas, 
NumPy, matplotlib and Scikit-learn. Secondly, the diversity of Python - the desirability to learn a 
language that has future application in not only machine learning but also a wide variety of 
software development projects. 

Python is a high-level programming language that is human interpretable. It is a cross platform 
language that is widely supported and object oriented. The pandas library [30] allows for data 
structures to be designed, and used in a flexible manner. The library can handle data in a num-
ber of different forms, such as an SQL table or an Excel spreadsheet. The two main data 
structures in pandas are Series and DataFrame - both allows for the data to be labelled and 
indexed for later access. 

The Scikit-learn library [37] is an open source package that allows data mining and data analysis 
to be accessible and reusable. It is built on the NumPy, SciPy and matplotlib libraries. The 
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NumPy library [33] is a further package used for scientific computing. It contains a multitude of 
high-level mathematical functions that can be applied to multi-dimensional arrays and matri-
ces. The matplotlib library [20] allows for the creation of 2D plots in Python to be used with 
NumPy, creating easily interpretable data visualisations. Some visualisations of the data during 
data cleaning were produced in Weka [12]. 

Python 3.6 [39] was installed as part of Anaconda 5.2 (64-bit) [3]; Anaconda brings the ad-
vantage of installing the necessary Python libraries as part of its installation. Both Jupyter 
notebook 5.5.0 [38] and spyder 3.2.8 [45] were used as development environments. Both de-
velopment environments provide an intuitive interface, with effective debugging features; 
however, Jupyter notebook was preferred towards the end of the project as it was far more 
reliable when handling larger tasks.  

For statistical analysis, IBM SPSS was selected; a software that offers a plethora of powerful 
and industry standard statistical functions, via a user friendly and intuitive interface. Specifical-
ly, IBM SPS Version 25.0 was utilised in this project [21]. 
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3 Design and Approach 

This section aims to provide a concise summary of the machine learning process applied in this 
project, to be used as a reference or guide for future work. 

3.1 Data Set Acquisition and Description 

The data set was acquired by Forth Valley Football Academy (FVFA) between the dates of 2005 
and 2016. The working data set contains 497 athletes, reduced from 538 athletes in the master 
data set; the working data set contained 1778 data points, reduced from 2258 data points in 
the master data set (see Chapter 3.2 Data Preparation below). The athletes are between the 
ages of 8 and 17 years old. The data represents the results of performance tests of athletes 
whom were members of the academy for varying lengths of time, the longest being around 6 
years. There were typically 2 or 3 testing sessions held per year by the academy. At each testing 
session the athletes performed all of the tests in most instances, there are occasions where not 
all tests were completed for unknown reasons. The maximum number of testing sessions com-
pleted by an athlete was 13 (1 occurrence) followed by 11 (3 occurrences), with the mean 
numbers of tests performed being 3.58. 

All tests that required an athlete to be timed were done so with light gates for accuracy and 
consistency. The Counter Movement Jump (CMJ) was measured using a ‘Just Jump Mat’ that 
provide an accurate and consistent vertical jump height.   

 

 Features in Data Mean Data Type 

Player Information 

Player ID 

 

Numeric - Discrete 

Date of Birth Numeric – Discrete 

Date of Test Numeric - Discrete 

Biometrics 

Age (Years) 13 Numeric - Discrete 

Height (cm) 160.6 
Numeric – Continu-

ous 

Performance Tests 

Weight (kg) 48.49 
Numeric - Continu-

ous 

5m Sprint (s) 1.07 
Numeric - Continu-

ous 

10m Sprint (s) 1.99 
Numeric – Continu-

ous 

20m Sprint (s) 3.33 
Numeric – Continu-

ous 

CMJ (cm) 29.16 
Numeric – Continu-

ous 

Yo-Yo (level) 17.54 Numeric – Discrete 

Success  Nominal - Binary 

Table 1. Summary of features in the data 
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The data contains both numeric and nominal type. Numeric data can be in the form of discrete 
or continuous. Discrete data can only take a finite number of possible values, whereas continu-
ous data can take any infinite number of possible values. Age has been identified as discrete as 
age was rounded down to the nearest lower whole number. Nominal data can be described as 
data that can be separated into distinct categories, in the case of this project the nominal data 
is a binary value of success. The data was provided in a CSV file and accessed in Python using 
the NumPy package; the package makes handling of large datasets fairly simple. 

 

3.2 Data Preparation 

It is the case with most machine learning projects that the data does not come in a suitable 
format to allow for effective model building; as a result, data cleaning must be conducted. Data 
cleaning deals with solving problems in the data after they have occurred. It is the case that 
errors in the data can be noticed by chance, however, it is suggested to attack the problem 
strategically [50]. It is often not always clear how errors or missing values in the data should be 
treated, so clear rules should be stated as to how they should be treated to enable consistency. 
This creates the further issue of deciding what those rules should be and where cut-offs for 
outliers and possible corrections should be drawn [50]. The end goal of data cleaning is to pro-
duce a dataset that has fewer errors and abnormalities so more efficient and accurate models 
can be built.  

Initial steps taken in this project to clean the data are as follows: 

1. Corrected errors in date of birth where there was more than one date of birth for a 
player. Fortunately, it was always the case that errors were found for athletes that had 
enough identical data of births that the error could be corrected e.g. A total of 6 date 
of birth entries for an athlete, where 5 were identical and only 1 was different – the 1 
that was different was updated to match the other 5. It is worth noting that there was 
no error in birth year found in athletes, only day or month. 

2. There were a few female athletes in the table, due to their vast minority they were re-
moved from the data set. 

3. There was inconsistency between success entries for a very small number of athletes. If 
there was a convincing majority of a success/non-success label then the data point was 
updated to match. Where it was not clear, the player ID of that data point was sent 
back to the client for clarification from FVFA. 

4. Any data points that had missing data features were deleted from the data set. 

5. The 5-0-5 performance test presented in the master data set was removed from the 
data as only a minority of athletes had a result for the test. 

6. The original data set did not include an age column. The age was derived from the date 
of birth and rounded down to the nearest lower whole number (e.g. 12.74 was round-
ed down to 12). 

 

Subsequently the data was visualised in Weka (Figure 5) to highlight any outliers in the da-
ta. Initially, Weka reported that weight and 5m sprint were “neither numeric nor nominal”, 
this often highlights that there is a mistyped symbol in that column and, as  
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Figure 6. Weka visualisation of data during data cleaning 
 

expected, this was the case this time. Data points with clear outliers in the data set following 
Weka visualisation (Figure 5) were removed or corrected, it is fortunate that in this data set 
outliers were very clear – indicating entry errors as opposed to athletes performing out with 
normal parameters. These outliers were found in height, weight, 10m sprint, 20m sprint and 
CMJ – data points containing these outliers were either removed from the data set as correc-
tion was not possible. It could be argued that some of the extreme performances in the 5m 
sprint and Yo-Yo could have been removed; however, as the project relates to sport it was de-
cided that extreme performances are often most important and informative, so they remained 
in the dataset.  

During data cleaning the bioinformatics (height and weight) variables, along with Player ID, 
were left out; as the client requested the project to solely concentrate on performance test 
results at this point. For any Z- score normalisation in the project, which will be clearly indicat-
ed, the data was transformed using a Z-score with data grouped by age e.g. the top age 12 
performer in the 5m sprint is given the same score as the top age 15 performer in the 5m 
sprint. This will allow for any factors of age to be removed as maturation effects physical per-
formance in young athletes.  

For the purpose of assessing the effect length of time spent in the academy has on success, it 
was decided to create a new table of data based on ‘number of tests performed’ by each ath-
lete; given that the academy remained consistent with the number of testing sessions it held 
per year, this was an adequate means of inferring time spent in the academy. This new variable 
table had 497 data points i.e. 497 athletes, a corresponding ‘number of tests performed’ and 
the athlete’s relevant success/failure label. 

There were a number of data points that contained missing variables, these data points were 
removed (447 data points removed - 21%). It could have been possible to replace missing val-
ues with an average or the most frequent value, however, it was decided the data set was not 
large enough to do this effectively.   
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3.3 Methodology 

The project methodology followed the Cross-Industry Standard Process for Data Mining (CRISP-
DM) [8], a standardised process for data mining. The process is cyclical in nature, composed of 
the following steps: 

1) Business Understanding 

An understanding of the company or client’s goals, business activities, and are-
as for innovation and development are critical. It helps define a clear objective 
of a project, with an outcome that is suitable and applicable. This step greatly 
influences machine learning tasks selected in the project. Business understand-
ing can be found in section 1.1 Background and Context and 2.4.1 Discussion of 
Performance Tests in Project. 

2) Data Understanding 

The means of data acquisition must be investigated, along with an investiga-
tion of the data itself and its level of quality. This step must also consider the 
availability of data in the future, especially if the models developed are to be 
used in real-time. In combination with the business understanding step, suita-
ble machine learning tasks can be selected. Analysis of the data understanding 
can be found in section 3.1 Data Set Acquisition and Description and 3.2 Data 
Preparation. 

3) Data Preparation 

Data is rarely provided in a format that can be effectively used by a machine 
learning algorithm. The data often contains errors, corruptions and outliers; all 
of which can skew the results of an algorithm. As a result, data cleaning must 
be performed - details of which can be found in section 3.2 Data Preparation. 

4) Modelling 

It is during this phase that the models to be used are confirmed and imple-
mented. Following an initial training period, hyperparameters can be tweaked 
to produce efficient models that perform effectively to unseen data – known as 
validation data. This validation data should be set aside to be used as an early 
indicator of a model’s ability to do so. Details of modelling and its results can 
be found in chapter 4 Performance Test Modelling and chapter 6 Proof of Con-
cept. 

5) Evaluation 

In addition to evaluation of variations in hyperparameters and each other, the 
models should be evaluated within the context of the business and project 
goals. Following this stage, iteration of the previous steps may be applicable to 
meet desired aims. Project evaluation can be found in chapter 7 Conclusion. 

6) Deployment 

Following a successful evaluation step, the model can be deployed – if applica-
ble. Monitoring and maintenance must be considered if the model has to be 
used in real-time. The deployment phase is not applicable to this project. 
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Figure 7. CRISP-DM model [8] 

 

The data acquisition and data cleaning tasks in the project have been discussed above. Pre-
processing of the data in Python was necessary to assign variables as inputs and labelled out-
puts, transform the success column from numeric to type category (appeared as ‘0’ or ‘1’ in 
CSV file). The data was randomised, then subsequently split into train and testing subsets in a 
70% to 30% ratio, respectively. The selected models were then built in Python using the train-
ing subset and classifiers tested using the testing subset – producing an accuracy rate and 
confusion matrix for evaluation.    

 

 
Figure 8. Development process 

 

Random Forest, Multilayer Perceptron and Naïve Bayes models were produced to attempt pre-
diction of success from the performance test data. To identify which tests are most indicative 
of performance, feature importance was extracted from a random forest model built using the 
performance testing data. 
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For the analysis of the effect time spent in the academy had on success, relationships were in-
vestigated using Point-Biserial Correlation and Pearson’s Chi-squared.  

During the development of the random forest classifier, the random state was set (ran-
dom_state = 42) for reproducibility and remained the same throughout. Both random search 
and grid search hyperparameter optimisation was performed. A wide set of hyperparameters 
were decided upon and used for random search in all models to narrow down the most effec-
tive hyperparameters. The python exert in Appendix 1.1 was used to set the random search 
hyperparameters throughout. Exhaustive grid search was then performed around the hyperpa-
rameters indicated as optimum by the random search to further refine and improve the model. 

In both random and grid search hyperparameter optimisation, the number of fits, i.e. the total 
number of times the random forest learns the model, is determined by the number of cross-
validation folds (folds) and number of iterations (candidates). The cross validation process is as 
follows: split the dataset into a number (k) of specified groups, remove one of those groups to 
be used as a validation group, use the remaining (k-1) groups as the training data for the model 
to learn, and then evaluate the model on the test set. The process is repeated k times – each 
group is used as the test set once. The number of iterations is defined as the number of com-
binations of hyperparameters to be used. In exhaustive grid search all combinations of 
hyperparameters are implemented. In random grid search, however, the number of iterations 
is specified. 

The MLP is sensitive to feature magnitudes so data scaling should be performed. In preparation 
for the MLP model, data was scaled using a MinMaxScaler (with range (-1, 1)) as detailed in 
Appendix 1.2.  
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4 Performance Test Modelling 

This section explains the output and results following the creation of models to predict the fu-
ture success of the athletes and the most indicative performance tests, using the physiological 
performance testing data. The results shown are the outcome of model validation using a 30% 
subset (n = 534) of athletes, split from the original data before training commenced. The mod-
els were trained using the remaining 70% of the data. In the dataset, 82.8% of athletes are 
labelled as a failure (the remaining 17.2% labelled a success). Therefore, given that simply pre-
dicting all athletes as a failure would produce an accuracy rate of around 82.8%: the classifier 
must have an accuracy rate higher than 82.8% to be considered successful. The measures of 
the models are test accuracy and confusion matrices, which detail the amount of times the 
model correctly, predicted the athlete’s outcome in the test subset. 

 

4.1 Results 

4.1.1 Random Forest 

Unless stated otherwise, the parameters for the random search hyperparameter optimisation 
used for the random forests in this chapter are detailed in chapter Appendix 1.1. The results of 
each random forest are summarised in the relevant table; each table contains the best parame-
ters of the model, training accuracy and test accuracy. 

4.1.1.1 Without Normalisation 

 

Random Search 

Best Parameters No. of Fits Train Accuracy Test Accuracy 

'bootstrap': false 

'criterion': 'entropy' 
'max_depth': 60 

'max_features': 'sqrt' 
'min_samples_leaf': 30 

'min_samples_split': 40 

'n_estimators': 2000 

 

5 folds for each of 200 candi-
dates, totalling 1000 fits 

 

82.7% 82.9% 

Table 2. Output from random forest using random search hyperparameter optimisation 

 
The results of the initial random search are given in Table 2. The model produced a training 
accuracy rate of 82.7% and a test accuracy rate of 82.9%. Using the results of the best parame-
ters identified in the random search from, a grid search was performed to fine tune the model. 
The results of the following the grid search, as shown in Table 3, show a slight improvement in 
training and test accuracy; the model produced a training accuracy of 82.8% and a test accura-
cy of 83.1%. 
 
A further attempt to optimise the random forest hyperparameters was made using a further 
grid search based on the results from the previous. The results, of which are detailed in table 
4, show that there was no change in either the training or the testing accuracy. 
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Grid Search 

Parameters Available Best Parameters No. of Fits Train Accuracy Test Accuracy 

 
'bootstrap': [false] 
'criterion': ['entropy'] 
'max_depth': [50, 55, 60, 65, 
70] 
'max_features': [‘sqrt’] 
'min_samples_leaf': [20, 25, 
30, 35, 40] 
'min_samples_split': [30, 35, 
40, 45, 50] 
'n_estimators': [1900, 2000, 
2100, 2200] 

 

 
'bootstrap': false 
'criterion': 'entropy' 
'max_depth': 50 
'max_features': ‘sqrt’ 
'min_samples_leaf': 20 
'min_samples_split': 50 
'n_estimators': 2000 
 

4 folds for each of 
500 candidates, 

totalling 2000 fits 
 

82.8% 83.1% 

Table 3. Output from random forest using grid search hyperparameter optimisation  

 
Grid Search 

Parameters Available Best Parameters No. of Fits Train Accuracy Test Accuracy 

 
'bootstrap': [false] 
'criterion': ['entropy'] 
'max_depth': [40, 45, 50] 
'max_features': [‘sqrt’] 
'min_samples_leaf': [15, 20, 
25] 
'min_samples_split': [45, 50, 
55] 
'n_estimators': [1900, 2000, 
2100] 

 

 
'bootstrap': false 
'criterion': 'entropy' 
'max_depth': 40 
'max_features': ‘sqrt’ 
'min_samples_leaf': 20 
'min_samples_split': 55 
'n_estimators': 1900 
 

4 folds for each of 
500 candidates, 

totalling 2000 fits 
 

82.8% 83.1% 

Table 4. Output from random forest using refined grid search hyperparameter optimisation 

In order to gain an understanding as to why the output from the random forest did not change 
between performed grid searches, a further random forest using random search was modelled 
to produce a confusion matrix. Table 6 displays the output from the aforementioned confusion 
matrix, which identifies that the model is predicting all athletes as a failure i.e. the model is not 
classifying the test data at all. The total of 534 were predicted a failure - 443 of those were ac-
tual failures and 91 of those were actual successes.  
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Random Search 

Best Parameters No. of Fits Train Accuracy Test Accuracy 

 
'bootstrap': false 
'criterion': 'entropy' 
'max_depth': 60 
'max_features': ‘sqrt’ 
'min_samples_leaf': 30 
'min_samples_split': 40 
'n_estimators': 2000 
 

5 folds for each of 200 candidates, 
totalling 1000 fits 

 
82.7% 83.0% 

Table 5. Summary of random search from random forest used to produce a confusion matrix 

 

 

 

 

Actual 

                                           Predicted 

 Failure Success 

Failure 443 0 

Success 91 0 

Table 6. Confusion matrix from random forest model 

 

4.1.1.2 Z-score Normalisation 

 

In order to remove any age bias, the dataset was normalised using a Z-score, further details can 
be found in chapter 3.2 Data Preparation. 

 

Random Search 

Best Parameters No. of Fits Train Accuracy Test Accuracy 

 
'bootstrap': false 
'criterion': 'entropy' 
'max_depth': 20 
'max_features': ‘auto’ 
'min_samples_leaf': 4 
'min_samples_split': 20 
'n_estimators': 400 
 

5 folds for each of 200 candidates, 
totalling 1000 fits 

 
92.1% 82.7% 

Table 7. Output from random forest using random search hyperparameter optimisation, built 
using Z-score normalised data 
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The initial random search, as detailed in Table 7, shows 92.1% training accuracy and 82.7% 
testing accuracy. There is no improvement in test accuracy compared with the models built 
prior to Z-score normalisation. The best parameters of the random search, as shown in the first 
column of table 7, were used to attempt to optimise the model using a grid search. 
 
The initial grid search (detailed in Table 8) and the subsequent grid search (detailed in Table 9), 
both produce a test accuracy of 82.7%. This test accuracy is unchanged from the initial model 
built using the random search method.  
 

Grid Search 

Parameters Available Best Parameters No. of Fits Train Accuracy Test Accuracy 

 
'bootstrap': [false] 
'criterion': ['entropy'] 
'max_depth': [30, 35, 40, 45, 
50] 
'max_features': auto 
'min_samples_leaf': [2, 4, 6, 
10, 15] 
'min_samples_split': [10, 15, 
20, 25, 30] 
'n_estimators': [325, 400, 
470] 

 

 
'bootstrap': false 
'criterion': 'entropy' 
'max_depth': 40 
'max_features': auto 
'min_samples_leaf': 6 
'min_samples_split': 10 
'n_estimators': 470 
 

10 folds for each of 
375 candidates, 

totalling 3750 fits 
 

92.3% 82.7% 

Table 8.  Output from random forest using grid search hyperparameter optimisation, built 
using Z-score normalised data 

 
Refined Grid Search 

Parameters Available Best Parameters No. of Fits Train Accuracy Test Accuracy 

 
'bootstrap': [false] 
'criterion': ['entropy'] 
'max_depth': [40] 
'max_features': auto 
'min_samples_leaf': [4, 6, 8] 
'min_samples_split': [5, 10, 
15, 20] 
'n_estimators': [450, 470, 
490] 

 

 
'bootstrap': false 
'criterion': 'entropy' 
'max_depth': 40 
'max_features': auto 
'min_samples_leaf': 6 
'min_samples_split': 15 
'n_estimators': 450 
 

10 folds for each 
of 36 candidates, 
totalling 360 fits 

 

91.0% 82.7% 

Table 9. Output from random forest using refined grid search hyperparameter optimisation, 
built using Z-score normalised data 

 

As with the pre-normalised data, a confusion matrix was produced to further understand why 
there was no change in test accuracy between any of the random forests produced using the Z-
score normalised data. Again, the confusion matrix in Table 11 shows that the model finds it 
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optimal to fail athletes, it is unable to produce a classifier able to predict more accurately than 
this. A total of 529 athletes were predicted as a failure, 440 of those were actual failures and 89 
of those were actual successes. The model does predict 4 athletes as a success, but it is only 
correct 1 of those 4 times.  

 

Random Search 

Best Parameters No. of Fits Train Accuracy Test Accuracy 

 
'bootstrap': false 
'criterion': 'entropy' 
'max_depth': 60 
'max_features': ‘sqrt’ 
'min_samples_leaf': 30 
'min_samples_split': 40 
'n_estimators': 2000 
 

5 folds for each of 200 candidates, 
totalling 1000 fits 

 
93.1% 82.7% 

Table 10. Output from random forest using random search hyperparameter optimisation to 
produce a confusion matrix, built using-Z-score normalised data 

 
 

 

                        
Actual 

                                           Predicted 

 Failure Success 

Failure 440 3 

Success 89 1 

Table 11. Confusion matrix from random forest model of z-score normalised performance 
tests data 

 

4.1.2 Random Forest Feature Importance 

Using the random search method with the hyperparameters detailed in chapter 3.3 Methodol-
ogy, feature importance was abstracted from the data. When training a decision tree, the 
algorithm calculates the amount each feature decreases the weighted impurity. The average 
impurity decrease across the whole forest, measured as gini index, is then computed for each 
feature and features are ranked accordingly.  

4.1.2.1 Without Normalisation 

The feature importance of the performance tests is plotted in Figure 9 and the relevant gini 
index for each is found in Table 12. With a gini index of 0.328140, CMJ is computed to be the 
most important feature in this data. This is supported by previous findings by the client that the 
results from tests that measure leg power differ statistically significantly between academy 
players and amateur players. The second and third most important features are 20m and Yo-Yo, 
respectively. Due to the high correlation between the 20m and the two other sprint tests (10m 
and 5m) which were ranked as the least important, it is a possible that all three are roughly as 
important as each other. Once the algorithm selects the 20m, the 5m and 10m lose their ability 
to decrease impurity. 
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                  CMJ         20m     Yo-Yo        10m        5m 
                                       Performance Test 

 
 
 

 

 

 

 

 

 

 

 

Figure 9. Plot of random forest feature importance 
 

 

Table 12. Table of gini index for each feature, extracted from a random forest 

 

4.1.2.2 Z-Score Normalisation 

 
Further analysis of feature importance was performed on the data following Z-score normalisa-
tion; the plot of which can be found in Figure 10 with the gini index for each performance test 
in Table 13. The features all rank reasonably similarly following Z-score normalisation. The most 
important feature was the Yo-Yo, closely followed by the CMJ. The Yo-Yo test is a measure of 
repeated sprint ability, the importance of which in high-level football is supported by the litera-
ture [32]. The similarity in importance of the three sprint performance tests (5m, 10m, and 
20m) highlights the issue with correlated data in feature importance extraction suggested 
above in section 4.1.2.1.  

 
 

 
 

 

 

 

 

Performance Test Gini Index 

CMJ 0.328140 

20m 0.230294 

Yo-Yo 0.225988 

10m 0.132032 

5m 0.083547 
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Figure 10. Plot of random forest feature importance following Z-score normalisation 

 
 

Performance Test Gini Index 

Yo-Yo 0.244989 

CMJ 0.228348 

20m 0.186040 

5m 0.171541 

10m 0.169082 

Table 13. Table of gini index for each feature, extracted from a random forest 

 

4.1.3 Multilayer Perceptron 

4.1.3.1 Without Normalisation 

 

Using the parameters detailed in Table 14, the multilayer perceptron produced an 82.7% train-
ing accuracy and 82.9% test accuracy. The confusion matrix (Table 15) reports that the 
multilayer perceptron also predicted all athletes as a failure; 534 total athletes were predicted 
as a failure, 443 of those were actual failures and 91 were actual successes.  

A second multilayer perceptron classifier was produced, using hyperparameters extracted from 
Chapter 6 Proof of Concept and detailed in Table 16, showing the same result – the model was 
not able to perform any prediction. Details can be found in Table 16 and the confusion matrix 
in Table 17. The hyperparameters altered were hidden_layer_sizes, learning_rate_init and 
momentum – the result was a simpler model. 

 

 

 

 

 

 

                   Yo-Yo       CMJ         20m         5m         10m 
Performance Test 
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Parameters Train Accuracy Test Accuracy 

 
‘activation’: 'relu' 
‘early_stopping’: True 
‘hidden_layer_sizes’: (10,10,10), 
‘learning_rate’: 'adaptive' 
‘learning_rate_init’: 0.01 

‘max_iter’: 100 
‘momentum’: 0.9 

‘solver’='sgd' 
‘tol’ = 0.0001 

 

82.7% 82.9% 

Table 14. Summary of MLP performance 

 

 

                       
Actual 

                                                                           Predicted 

 Failure Success 

Failure 443 0 

Success 91 0 

Table 15. MLP confusion matrix 

 
Parameters Train Accuracy Test Accuracy 

 
‘activation’: 'relu' 
‘early_stopping’: True 
‘hidden_layer_sizes’: (10), 
‘learning_rate’: 'adaptive' 
‘learning_rate_init’: 0.3 

‘max_iter’: 100 
‘momentum’: 0.2 

‘solver’='sgd' 
‘tol’ = 0.0001 

 

81.9% 84.6% 

Table 16. Summary of MLP performance using altered hyperparameters 

 

 

 

 

                        
Actual 

                        

                                             Predicted 

 Failure Success 

Failure 452 0 

Success 82 0 

Table 17. MLP confusion matrix using altered hyperparameters 
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4.1.3.2 Z-score Normalisation 

 

Using data that was normalised using a Z-score within age groups, a further MLP model was 
produced. The parameters and results, detailed in Table 18, show no change in training or test-
ing accuracy (82.7% and 82.9%, respectively). A confusion matrix was generated from the 
model (Table 19) show that the model predicts all athletes as a failure at the same rate as the 
pre-Z-score normalised data. 
 
 

Parameters Train Accuracy Test Accuracy 

 
‘activation’: 'relu' 
‘early_stopping’: True 
‘hidden_layer_sizes’: (10,10,10), 
‘learning_rate’: 'adaptive' 
‘learning_rate_init’: 0.01 

‘max_iter’: 100 
‘momentum’: 0.9 

‘solver’='sgd' 
‘tol’ = 0.0001 

 

82.7% 82.9% 

Table 18. Summary of MLP performance built using Z-score normalised data 

 

 

 

               
Actual 

        

                                            Predicted 

 Failure Success 

Failure 443 0 

Success 91 0 

Table 19. MLP confusion matrix built using Z-score normalised data 

 

4.1.4 Naïve Bayes Classifier 

The performance of the Naïve Bayes Classifier model was a test accuracy of 77.3%. With refer-
ence to the confusion matrix in Table 20, the model was able to correctly predict 413 out of 
534 athletes. It predicted a total of 431 athletes as a failure, of which 381 were actual failures 
(88.4% accuracy); and 103 athletes as a success, 32 of which were actual successes (31.1% ac-
curacy). 

 

 

 

                        
Actual 

                        

                                       Predicted 

 Failure Success 

Failure 381 71 

Success 50 32 

Table 20. Naïve Bayes Confusion Matrix 
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4.2 Analysis  

Both the random forest and the MLP were unable to effectively predict any athletes as success-
ful. The most likely cause of this is the disparity between the number of success athletes and 
failure athletes in the dataset. Both the random forest and the MLP are formulated to reduce 
the overall error rate, therefore both focused on the prediction accuracy of the majority class, 
common in unbalanced datasets. In the data set there only were 306 (17.3%) success athletes, 
yet 1462 (82.8%) failure athletes. With 82.8% of athletes in the dataset labelled as failures, it is 
difficult for the model to build a classifier that can outperform simply predicting all athletes as 
a failure. The minor variation from 82.8% by the models can be attributed to the sampling er-
ror when randomly selecting training and testing subsets. 

Two techniques to combat imbalanced data are oversampling or undersampling. Oversampling 
involves increasing the number of minority cases to reduce disparity, this can be done by simp-
ly duplicating a random sample of the minority class or using more complex methods such as 
Synthetic Minority Over-sampling Technique (SMOTE) [5]. However, as the dataset used in this 
project had so few data points, oversampling would likely cause overfitting. Conversely, under-
sampling is the process of removing instances of the majority class. Similarly, there are several 
techniques that can be applied to perform undersampling [10]. The removal of instances from 
a dataset results in valuable information being lost and the lack of information in the dataset of 
this project was an initial concern. Further suggestions for dealing with imbalanced datasets for 
random forests are given by Chen et al. 2004 [9] and given for MLPs by Zhao et al. 2014 [54]. 

Traditionally, both the random forest and MLP struggle with smaller datasets. Although not 
seen in this project, the typical problem the two models have with small datasets is the ten-
dency to overfit. However, both artificial neural networks and random forests have been 
proven able to perform effectively with small training datasets [35], [43]. Therefore, it is as-
sumed that both models would produce effective classifiers on more balanced dataset of this 
size. 

Due to the inability of the random forest to perform classification, the random forest feature 
importance results are invalid. However, it is interesting to note that the results of the feature 
importance fall in line with what was expected from the client. Previous study by the client in-
dicated that the 5-0-5 (a test of agility) and the CMJ were among some of the most important 
performance tests to discriminate between identified and unidentified youth talent. Perfor-
mance in these two tests relies on leg power. 

Given the confusion matrices output by the random forest models following random and grid 
search hyperparameter optimisation, it was decided that hyperparameter optimisation would 
not be performed for the MLP given its initial confusion matrices results. It was expected that 
hyperparameter optimisation would cause no affect. The initial hyperparameters that deter-
mined the architecture of the MLP were selected arbitrarily. A small number of 
hyperparameter alterations were trialled manually at random, producing no effect on model 
performance. The second set of hyperparameters implemented by the MLPs was decided in 
retrospect after producing a successful model in the proof of concept – and only used on the 
working dataset for completeness.  

The Naïve Bayes classifier was the first model to perform prediction i.e. not predict all athletes 
as a failure. However, with an accuracy score of 77.3%, it performed worse than those models 
who did simply predict all athletes as a failure (random forest = 83.1%, MLP = 82.9%) i.e. the 
simple probability of an athlete being a failure in the dataset. The classifier was able to predict 
88.4% of failures correctly, outperforming the random forest and MLPs method of predicting 
all athletes as a failure. However, it was only able to correctly classify 31.1% of the success cas-
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es. It is likely the classifier was in fact able to identify some predictors in the failure athletes, 
but not many. It would be interesting to ascertain which characteristics the data is picking up 
on in as future work. 
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5 Length of Time in Academy 

This section details the statistical analysis of the affect length of time in the academy had on 
success. The length of time within the academy was based on the number of tests performed 
by each athlete as the academy held a consistent number of testing sessions per year. There 
was a total of 497 athletes. The minimum number of tests performed was 1 and the maximum 
was 13, with a mean number of tests performed of 3.58. Due to the nature of the Pearson’s 
chi-squared test, the data point containing 13 tests performed was removed as there was only 
one member of that group. 

5.1 Results 

There was a statistically significant positive moderate correlation (rpb = 0.303, p = 0.01) be-

tween number of tests performed (3.58  2.5, n = 497) and success (0.11  0.309, n = 497). 
Similarly, the Pearson’s chi-square test found a significant relationship between number of 
tests performed and success, Χ2 (11) = 62.2, p < 0.001. Cramér’s V coefficient (ϕc) = 0.354, a 
measure of strength of relationship, supporting a moderate association.  

5.2 Analysis 

The Point-biserial correlation suggests a moderate correlation between the number of tests, 
however, the test requires the years variable to be a continuous variable and loosely normally 
distributed for each category – it is neither of those. There are noticeably more athletes, for 
both category, who completed a fewer number of tests; the number of athletes that completed 
10 or more test was only 15. 

An assumption of the Chi-square is that the variables within the data are categories. This is not 
the case in the dataset in this project. However, there are only 13 distinct values the years vari-
able can take (i.e. 1-13 years), so this is treated as a large number of categories but which the 
statistic may find hard to interpret [29]. In an attempt to provide a more robust statistic, the 
length of time in the academy data was transformed into 4 distinct bins (shown in Table 21). 
The process of binning is typically implemented to reduce the noise in the data. The Chi-square 
statistic of the discretised data (Χ2 (3) = 43.0, p < 0.001) is lower than that of the non-
discretised. In other words, there is more of a statistically significant relationship following dis-
cretisation. 

Length of Time in Academy (tests completed) Bin 

1 

One-Three 2 

3 

4 

Four-Six 5 

6 

7 

Seven-Nine 8 

9 

10 

Ten-Thirteen 
11 

12 

13 

Table 21. Binning of number of tests completed to categories 
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The strength of the Chi-square statistic with reference to the dataset in this project is that it 
does not require the data to be normally distributed and allows for skewed data.  
A suggested next step following a Chi-squared is to compute the strength of the association. A 
suggested test for this is Cramér’s V coefficient [29]. Cramér’s V coefficient supports the mod-
erate relationship found in the Point-biserial correlation, however, the Cramer’s V is a more 
valid test in this scenario given the distribution of the data. 
 
From the statistical analysis it can be inferred that the longer an athlete spends in the academy 
the increased chance the athlete has of becoming a success. It could be suggested that this is 
due to one, or both, of the following reasons: 1) The athlete receives more valuable coaching 
time and more high-level training time the longer they are part of the academy, increasing the 
skill level and playing performance of the athlete. 2) Possible bias. The athlete will only remain 
in the academy if they are continually performing at a high-level relative to their peers i.e. the 
players who spent a number of years in the academy were playing at a relative high-level ini-
tially and perhaps found it easier to continue to do so – and continuing so as they matured 
towards professional age.  
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6 Proof of Concept 

A proof of concept was produced to prove that the classifiers and models built as part of this 
project are valid and can be used as future tools in, or the basis of, future projects based 
around performance testing. The proof of concept required the data to be altered: the results 
of all performance testing remained the same, however, the success label of each athlete was 
altered based on specific criteria in each proof of concept case – details of which can be found 
below under each case header. The decision on which variable to select for the focus of the 
proof of concept were based on guidance from the client with respect to findings in previous 
research of the most important performance tests. The criteria cut-off point for each case were 
decided upon to attempt to keep the percentage of success athletes and failure athletes as 
close as possible to the original data set (success = 305, 20.6%; failure = 1475, 79.4%).  

All three models used in Chapter 4. Performance Testing were implemented, applying the same 
methods. The same hyperparameters for random search optimisation of the random forest as 
found in Appendix 1.1. The hyperparameters used in the MLP proof of concept model are de-
tailed in Table 16. The hyperparameters make for a simpler model, found to be effective for 
simpler relationships within the data in the proof of concepts. One further MLP classifier was 
produced for each proof of concept case using the ‘adam’ solver instead; all other hyperpa-
rameters remained the same. 

 

 

6.1 Case 1 – CMJ 

The criteria for case 1: all athletes with a CMJ more than or equal to 35.75cm were labelled as 
a success, the rest were labelled as a failure; the data summary for which can be found in Table 
22. 

 

Performance Test Criteria for success Number of success Percentage of success 

CMJ >= 35.75cm 316 21.5% 

Table 22. Data summary of case 1 

6.1.1 Random Forest 

As summarised in Table 21, the random forest classifier was able to correctly classify 100% of 
the testing data (Table 23). The confusion matrix, Table 24, shows that it correctly classified all 
92 successful athletes and all 442 failure athletes. 
 
Figure 11 displays the output of a single tree from the random forest constructed as part of 
training. The subset of data the algorithm used to construct this tree contained 1022 failure 
athletes and 224 success athletes. The algorithm only required one decision, using the CMJ 
performance test, to produce absolute homogeneity.  
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Random Search 

Best Parameters No. of Fits Train Accuracy Test Accuracy 

 
'bootstrap': false 

'criterion': gini 
'max_depth': 40 

'max_features': ‘sqrt’ 
'min_samples_leaf': 40 
'min_samples_split': 60 

'n_estimators': 1600 
 

5 folds for each of 200 candidates, 
totalling 1000 fits 

 
100% 100% 

Table 23. Summary of random forest using random search in proof of concept case 1 

 

 

 

                        
Actual 

                        

              Predicted 

 Failure Success 

Failure 442 0 

Success 0 92 

Table 24. Confusion matrix of random forest using random search in proof of concept case 1 

 

 

 
 

Figure 11. Single tree in the random forest of proof of concept case 1 
 

6.1.2 Multilayer Perceptron 

 

The multilayer perceptron was able to correctly classify 97.0% of the test dataset, as summa-
rised in Table 25. The confusion matrix in Table 26, details that the classifier was able to 
correctly classify 442 failure athletes and 76 success athletes. The classifier misclassified 1 ac-
tual failure athlete and 15 success athletes. 

Using the ‘adam’ solver, accuracy improved. The classifier was able to correctly classify 100% of 
the test data set (Table 27) – 104 success athletes and 430 failure athletes (Table 28). 
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Parameters Train Accuracy Test Accuracy 

 
‘activation’: 'relu' 
‘early_stopping’: True 
‘hidden_layer_sizes’: (10), 
‘learning_rate’: 'adaptive' 
‘learning_rate_init’: 0.3 

‘max_iter’: 100 
‘momentum’: 0.2 

‘solver’='sgd' 
‘tol’ = 0.0001 

 

96.1% 97.0% 

Table 25. Summary of MLP performance in proof of concept case 1 

 

 

                 
Actual 

                                                                         Predicted 

 Failure Success 

Failure 442 1 

Success 15 76 

Table 26. MLP confusion matrix in proof of concept case 1 

 

 

Parameters Train Accuracy Test Accuracy 

 
‘activation’: 'relu' 
‘early_stopping’: True 
‘hidden_layer_sizes’: (10), 
‘learning_rate’: 'adaptive' 
‘learning_rate_init’: 0.3 

‘max_iter’: 100 
‘momentum’: 0.2 

‘solver’='adam' 
‘tol’ = 0.0001 

 

99.8% 100% 

Table 27. Summary of MLP performance using ‘adam’ solver in proof of concept case 1 

 

 

 

                        
Actual 

                        

                                             Predicted 

 Failure Success 

Failure 430 0 

Success 0 104 

Table 28. MLP confusion matrix using ‘adam’ solver in proof of concept case 1 
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6.1.3 Naïve Bayes 

The Naïve Bayes classifier was able to correctly classify 92.5% of the data. The confusion matrix 
in Table 29 details that it correctly classified 398 failure athletes and 96 success athletes.  It 
misclassified 1 actual success athlete and 39 actual failures. 

 

 

                    
Actual 

                                                                            Predicted 

 Failure Success 

Failure 398 39 

Success 1 96 

Table 29. Naïve Bayes Confusion Matrix in proof of concept case 1 

 

6.2 Case 2 – 20m 

The criteria for case 2: athletes with a 20m less than or equal to 3.07s were labelled a success, 
the rest were labelled as a failure. The data summary of which the can be found in Table 30. 

 

Performance Test Criteria for success Number of success Percentage of success 

20m <= 3.07s 308 20.9% 

Table 30. Data summary of case 2 

6.2.1 Random Forest 

Table 31 shows the summary of the random forest constructed in case 2. The testing data sub-
set was classified 100% correctly. A total of 445 failure and 79 success athletes were predicted 
correctly, as seen in the confusion matrix Table 32. 

 

Random Search 

Best Parameters No. of Fits 
Train Accura-

cy 
Test Accuracy 

 
'bootstrap': false 

'criterion': ‘entropy’ 
'max_depth': 70 

'max_features': ‘sqrt’ 
'min_samples_leaf': 6 

'min_samples_split': 35 
'n_estimators': 1800 

 

5 folds for each of 200 candidates, 
totalling 1000 fits 

 
100% 100% 

Table 31. Summary of random forest using random search in proof of concept case 2 
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Actual 

              Predicted 

 Failure Success 

Failure 445 0 

Success 0 79 

Table 32. Confusion matrix of random forest using random search in proof of concept case 2 

Figure 12 shows a single tree from the random forest constructed in this case. The training data 
was made up of 1060 failure athletes and 186 success athletes. The root node implemented a 
test on the 20m variable, again only requiring the single decision to produce complete homo-
geneity. 

 

 
 

Figure 12.  Single tree in the random forest of proof of concept case 2 
 

6.2.2 Multilayer Perceptron 

As summarised in Table 33, the MLP classifier was able to correctly classify 95.1% of the test 
subset in case 2. The confusion matrix (Table 34) details that it correctly classified 52 success 
athletes and 456 failure athletes. It misclassified 13 actual success athletes and 13 actual fail-
ures. 

Using the ‘adam’ solver, testing accuracy improved to 99.3% (Table 35). The confusion matrix in 
Table 36 indicates that the classifier was able to correctly classify 75 success and 455 failure 
athletes. It only misclassified 1 actual success athlete and 3 actual failure athletes. 
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Parameters Train Accuracy Test Accuracy 

 
‘activation’: 'relu' 
‘early_stopping’: True 
‘hidden_layer_sizes’: (10), 
‘learning_rate’: 'adaptive' 
‘learning_rate_init’: 0.3 

‘max_iter’: 100 
‘momentum’: 0.2 

‘solver’='sgd' 
‘tol’ = 0.0001 

 

94.2% 95.1% 

Table 33. Summary of MLP performance in proof of concept case 2 

 

    

                    
Actual 

                                                                           Predicted 

 Failure Success 

Failure 456 13 

Success 13 52 

Table 34. MLP confusion matrix in proof of concept case 2 

 

Parameters Train Accuracy Test Accuracy 

 
‘activation’: 'relu' 
‘early_stopping’: True 
‘hidden_layer_sizes’: (10), 
‘learning_rate’: 'adaptive' 
‘learning_rate_init’: 0.3 

‘max_iter’: 100 
‘momentum’: 0.2 

‘solver’='adam' 
‘tol’ = 0.0001 

 

99.2% 99.3% 

Table 35. Summary of MLP performance using ‘adam’ solver in proof of concept case 2 

 

 

                     
Actual 

                                                                            Predicted 

 Failure Success 

Failure 455 3 

Success 1 75 

Table 36. MLP confusion matrix using ‘adam’ solver in proof of concept case 2 
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6.2.3 Naïve Bayes 

The Naïve Bayes classifier had an accuracy of 94.4%.The confusion matrix in Table 37 indicates 
that the model correctly classified 78 success athletes and 426 failure athletes. However, it did 
misclassify 6 actual success athletes and 24 actual failure athletes. 

 

 

 

                    
Actual 

                                      Predicted 

 Failure Success 

Failure 426 24 

Success 6 78 

Table 37. Naïve Bayes Confusion Matrix in proof of concept case 2 

 

6.3 Case 3 – CMJ and 20m 

Criteria for success in case 3 involved a composite of two performance tests: athletes with a 
CMJ greater than or equal to 33.2cm and a 20m less than 3.14s were labelled a success, all ath-
letes who did not meet these criteria were labelled as a failure. The data summary of case 3 
can be found in Table 38. 

 

Performance Test Criteria for success Number of success Percentage of success 

CMJ >= 33.2cm 
319 21.8% 

20m < 3.14s 

Table 38. Data summary of case 3 

6.3.1 Random Forest 

The random forest classifier constructed in case 3 was able to classify 100% of the testing sub-
set correctly, details of which can be found in Table 39. The confusion matrix output from this 
ensemble, Table 40, shows that the model correctly classified 440 failure athletes and 94 suc-
cess athletes. 

Random Search 

Best Parameters No. of Fits Train Accuracy Test Accuracy 

 
'bootstrap': false 
'criterion': ‘gini 

'max_depth': 10 
'max_features': ‘auto’ 
'min_samples_leaf': 8 
'min_samples_split': 5 

'n_estimators': 600 
 

5 folds for each of 200 candidates, 
totalling 1000 fits 

 
100% 100% 

Table 39. Summary of random forest using random search in proof of concept case 3 
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Actual 

                                      Predicted 

 Failure Success 

Failure 440 0 

Success 0 94 

Table 40. Confusion matrix of random forest using random search in proof of concept case 3 

Figure 13 show the output of a single tree from the random forest constructed as part of train-
ing. The tree begins with 1018 failure athletes and 228 success athletes and required only two 
series of decisions to classify the data. The root node used the CMJ variable as the basis of the 
first test. In the second layer of decision nodes, the tree utilised the 20m performance test, as 
well as the CMJ, to further split the data. This particular tree in the random forest was unable 
to produce complete homogeneity within the final nodes; one of the final nodes contains 8 
failure and 3 success athletes. The other final nodes, however, are completely homogenous. 
 
 

 

Figure 13. Single tree in the random forest in proof of concept case 3 

 
 
 

6.3.2 Multilayer Perceptron 

Table 41 shows that in case 3, the multilayer perceptron classifier was produced 94.0% test ac-
curacy. As detailed in the confusion matrix in Table 42, this was broken down into: 71 success 
and 431 failure athletes’ correctly classified; and 17 success and 15 failure athletes misclassi-
fied.   
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Parameters Train Accuracy Test Accuracy 

 
‘activation’: 'relu' 
‘early_stopping’: True 
‘hidden_layer_sizes’: (10), 
‘learning_rate’: 'adaptive' 
‘learning_rate_init’: 0.3 

‘max_iter’: 100 
‘momentum’: 0.2 

‘solver’='sgd' 
‘tol’ = 0.0001 

 

94.5% 94.0% 

Table 41. Summary of MLP performance in proof of concept case 3 

 

 

                   
Actual 

                                                                           Predicted 

 Failure Success 

Failure 431 15 

Success 17 71 

Table 42. MLP confusion matrix in proof of concept case 3 

The solver hyperparameter was set to ‘adam’. Classification accuracy increased to 97.6% in the 
testing data, as shown in Table 43. The confusion matrix (Table 44) displays that, in the testing 
subset, the classifier was able to correctly classify 89 success athletes and 435 failure athletes. 
However, it misclassified 1 success athlete and 28 failure athletes. 

 

Parameters Train Accuracy Test Accuracy 

 
‘activation’: 'relu' 
‘early_stopping’: True 
‘hidden_layer_sizes’: (10), 
‘learning_rate’: 'adaptive' 
‘learning_rate_init’: 0.3 

‘max_iter’: 100 
‘momentum’: 0.2 

‘solver’='adam' 
‘tol’ = 0.0001 

 

97.4% 97.6% 

Table 43. Summary of MLP performance using ‘adam’ solver in proof of concept case 3 

 

 

 

                   
Actual 

 

                                             Predicted 

 Failure Success 

Failure 435 5 

Success 8 86 

Table 44. MLP confusion matrix using ‘adam’ solver in proof of concept case 3 
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6.3.3 Naïve Bayes 

The Naïve Bayes classifier was able to correctly classify 94.6% of athletes in case 3. As seen in 
the confusion matrix in Table 45, it was able to correctly predict 89 success athletes and 416 
failure athletes. The classifier misclassified 1 actual success athlete and 28 actual failure ath-
letes. 

 

 

 

                      
Actual 

                                                                           Predicted 

 Failure Success 

Failure 416 28 

Success 1 89 

Table 45. Naïve Bayes Confusion Matrix in proof of concept case 3 

 

6.4 Analysis 

The proof of concept proves that machine learning is an effective and valid method of analysis 
that can be used as a valid tool of prediction and talent spotting of young athletes based on 
performance testing results. Specifically, the models used in this project, and their relevant pa-
rameters, can be used as effective tools in other projects of this nature. The proof of concept 
also helps to confirm the suspicion that the data provided for this project lacked the necessary 
quality and quantity needed to perform machine learning analysis. 

In each random forest, the root node selected by the model was the variable on which the cri-
teria for the case was based on; this was to be expected as the most information can be gained 
from this variable. This further proves that the random forests in this project models are viable. 
The inability of the single tree output from case 3 (Figure 13) to provide homogeneity in the 
final node, yet the model itself still able to produce a 100% classification accuracy on the test 
set, exhibits the ability of the random forest model to average the multiple decision trees in 
the ensemble to reduce variance – producing a classifier that will generalise effectively to un-
seen data. 

The multilayer perceptron produced some mixed results. Initially, the hyperparameters used 
were those in table 14. This produced the same result as in Chapter 4 Performance Test Model-
ling – the classifier predicted all athletes as a failure. However, with hyperparameter 
optimisation (hyperparameters in Table 16) the classifier managed to perform highly accurate-
ly. The hyperparameters made for a simpler model; MLPs possess the propensity to 
overcomplicate problems if given unsuitable hyperparameters for the task at hand. Most nota-
ble, the number of hidden layers were reduced from 10, 10, 10, to 10; reducing the total 
number of functions applied to the inputs, therefore reducing complexity. The simpler model 
was discovered to be effective during the proof of concept stage. It was added into the perfor-
mance modelling stage in retrospect, to determine whether this improved model may be able 
to classify the data given by the client. A number of hyperparameter were altered in an at-
tempt to optimise the MLP proof of concept, however, the most significant improvement was 
observed when using ‘adam’ as the solver hyperparameter. The Adam optimisation algorithm is 
an augmentation of stochastic gradient descent. Stochastic gradient descent uses a constant 
learning rate for all weight updates throughout training, whereas, Adam maintains an individu-
al learning rate for each network weight and updates each separately as learning develops.  

The Naïve Bayes is known to perform well on simple problems; therefore, one would expect 
the proof of concept to be an optimal dataset for the classifier. It is perhaps its independence 
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assumption that caused minor difficulty. It could be argued that all of the performance tests 
are linked somewhat, but the relationship between the 5m, 10m and 20m is incontrovertible. 
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7 Conclusion 

7.1 Summary 

With machine learning classifiers and statistics, the project attempted to determine whether 
success can be predicted from performance test results of FVFA players and provide insight into 
the most indicative performance tests. At the outset, the project required a study of the Py-
thon programming language and its Pandas, NumPy and Scikit-learn libraries to be able to 
efficiently implement the necessary machine learning algorithms. 

The project was unable to build a sufficient classifier with the historic dataset as too much class 
imbalance occurred. It was initially thought that the machine learning classifiers were produc-
ing relatively high classification accuracy; however, following analysis of the confusion matrices 
of each, it transpired that the classifiers were predicting all athletes as failures. Due to the ex-
tent of the imbalance in the data this gave a false sense of classifier effectiveness. An 
investigation of the most indicative performance tests was also attempted using feature im-
portance extraction from the random forest. Initially it was thought that the CMJ was 
candidate for the most indicative performance test in this data set; however, following the dis-
covery of the random forests propensity to fail all athletes in this dataset, this finding was 
established as invalid. The Naïve Bayes classifier did produce a model that performed classifica-
tion, with an accuracy rate of 77.3%. Again, due to the imbalance in the data, the classifier was 
unable to outperform a random guess. 

Despite the performance of the classifiers, statistical analysis was able to prove a significant 
positive correlation between time spent in the academy by an athlete and success. It was sug-
gested that this could be due to an increased exposure to high-level coaching and training, 
players who last longer in the academy have always played at a high-level relative to peers, or a 
combination of both. 

A proof of concept was formulated to assess the viability of the machine learning algorithms 
used in this project. The proof of concept proved that the algorithms researched and em-
ployed, with their associated hyperparameters, are efficient tools capable of classifying data of 
this nature given a more satisfactory dataset. These tools can be utilised going forward on 
more superior datasets to provide the desired insight into test performance and, eventually, 
produce a model capable of effectively classifying vast amounts of unseen data that can be 
used by talent identifiers to help identify talent. 

 

7.2 Evaluation 

The project was successful in providing tools for future use in machine learning with sports per-
formance testing data. It was also successful in correlating success with the length of time in 
the academy. The statistics used to prove this were simple and easy to implement given suffi-
cient software. Initially accuracy score was implemented as the sole measure of model 
evaluation, however, this project highlights importance of using confusion matrices. The accu-
racy scores for all the models were all around 82-83%, and it happened to be the case that 
there were 82.8% of athletes were labelled as a failure in the data. It was not until confusion 
matrices were produced was it discovered the classifiers were predicting all athletes as failures. 
As a result, the project was unable to fulfil the goals of the client wholly. The inability to pro-
duce an effective classifier can be attributed to the several issues in the dataset provided:  

1) The dataset had high class imbalance, although that is the general nature of success vs. 
failure in sport, this caused the random forest and multilayer perceptron classifiers to 
find it more efficient to predict all athletes as a failure than to perform classification. 
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2) Given the data imbalance, the relationship between the performance testing results 
and success was not strong enough. However, this reflects the complexity of the inter-
action of components that make up high-level performance i.e. it is unlikely that there 
will be one or two clear factors that make for high-level performance. 

3) The dataset was not large enough. Predominantly this meant that methods to balance 
the data could not be applied. 

4) The dataset had too few features. Again, given the complexity of the building blocks 
underlying sporting success, having only a few features likely does not provide enough 
information.  

 

To highlight issues 2 and 4 above, the performance test results (Z-scored) were extracted and 
labelled a success or failure at random with a roughly 50:50 ratio. The random forest algorithm 
was still unsuccessful at effective classification. In other words, nothing can be learned from 
this dataset by the algorithm. See appendix 2 for details.  

It was overlooked that some of the tests were completed so recently that the athlete is not old 
enough to sign a professional contract, therefore, some of the athletes labelled as a failure now 
would have been labelled a success if this project was conducted later. This causes the obvious 
issue of performance test results that belong to (future) successful athletes are learned as un-
successful results by the algorithms in this project. The data issues identified in this dataset 
would need to be absent in future dataset if effective classifiers are to be built. 

In hindsight, the machine learning classifiers selected still seem a sound choice. Commonly, the 
Naïve Bayes assumes features are independent of each other, which could be a criticism of se-
lecting this classifier. Yet, it has been seen to still achieve strong classification when this 
assumption is violated as discussed mathematically by Domingos and Pazzani [11]. Similarly, 
random forest and (especially) MLP classifiers are traditionally thought of as unsuitable for 
smaller datasets. However, as previously mentioned, it has been shown that they can still per-
form surprisingly well [35,43]. 

The project draws attention to the complexity of success in sport. It is the combination of the 
interaction between many factors, and not just performance testing. In an ideal situation, a 
dataset would contain extensive information about athletes addressing as many as these fac-
tors as possible. This would be the ‘gold standard’ of dataset to produce classifier that could be 
used by talent identifiers. Given its complexity, machine learning is an ideal method for analysis 
of sports performance going forward.  

 

7.3 Future Work 

Whilst this project is a good initial step into using machine learning on sports performance 
testing results, there is still a way to go before a workable model can be produced to be used in 
talent identification. 

A possible next step using this dataset would be to implement oversampling techniques, such 
as SMOTE, then reinvestigate the classifier results. An enquiry into why the Naïve Bayes classi-
fier in this project produced the results it did would also be a reasonable avenue of next study. 

Perhaps a more superior next step would be to implement the techniques used in this project 
with a more viable dataset. An ideal candidate dataset would include vastly more features and 
more data points, on more factors contributing to success than just performance testing data. 
Given the proof that the models selected in this project have the ability to produce classifica-
tion on this type of data, it is hoped that work on a more desirable dataset would provide 
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practical insight. It would then be possible to suitably assess the models and perform construc-
tive hyperparameter optimisation. This practical insight would provide knowledge to coaches 
and athletes on aspects to address to improve performance and increase chance of future suc-
cess. It would also highlight which performance tests and results are most important when 
assessing players for talent identification. Perhaps an end goal of this line of study would be to 
develop a programme running on a classifier that would allow talent identifiers and coaches to 
input an athlete’s results, and output that athlete’s likelihood of future success and areas for 
improvement. 
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Appendix 1 

Appendix 1.1 

criterion = ['gini', 'entropy'] 

n_estimators = [int(x) for x in np.linspace(start = 200, stop = 2000, num = 
10)] 

max_features = ['auto', 'sqrt'] 

max_depth = [int(x) for x in np.linspace(10, 110, num = 11)] 

max_depth.append(None) 

min_samples_split = [2, 5, 10, 15, 20, 25, 30, 35, 40, 50, 60] 

min_samples_leaf = [1, 2, 4, 6, 8, 9, 12, 15, 20, 25, 30, 35, 40,] 

bootstrap = [True, False] 

 

Appendix 1.2 

from sklearn.preprocessing import MinMaxScaler 

 min_max_scaler = preprocessing.MinMaxScaler(feature_range=(-1, 1)) 

X_scaled = min_max_scaler.fit_transform(X) 

X_normalized = pd.DataFrame(X_scaled) 
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Appendix 2 

 

Appendix 2 provides further detail on the analysis of identifying whether a model can learn 
from the dataset in the project. 

 

 Success Failure 

Number of instances 916 859 

Percentage 51.6% 48.4% 

Table 46. Ratio of success and failure for evaluation of strength in relationships in the data 

 

Random Search 

Best Parameters No. of Fits Train Accuracy Test Accuracy 

 
'bootstrap': false 

'criterion': gini 
'max_depth': 40 

'max_features': ‘sqrt’ 
'min_samples_leaf': 40 
'min_samples_split': 60 

'n_estimators': 1600 
 

5 folds for each of 200 candidates, 
totalling 1000 fits 

 
68.5% 52.2% 

Table 47. Random Forest summary of the evaluation of strength in relationships in the data 

 

 

 

                        
Actual 

                     

              Predicted 

 Failure Success 

Failure 142 103 

Success 152 136 

Table 48. Confusion matrix output to evaluate strength in relationships in the data 

 


