

Division of Computing Science and Mathematics

Faculty of Natural Sciences

University of Stirling

Time Series Prediction:

Investigation of Long Short-Term Memory (LSTM)

Neural Network

Raymond Rono Cheruiyot

Dissertation submitted in partial fulfilment for the degree of

Master of Science in Big Data

September 2018

- i -

Abstract

Techniques like Autoregressive Integrated Moving Average (ARIMA) have been useful

for time series research. Advances in computing and machine learning have been

gaining significant attention for time series prediction due to recently developed tech-

niques. The capability of neural networks to model nonlinear and linear forecasting

has been established in the literature both theoretically and empirically. Several re-

search studies have yielded mixed results and findings. Therefore, we aim to provide

further evidence on the effectiveness of Long Short-Term Memory (LSTM) and Gated

Recurrent Unit (GRU). We will give an overview of the recently proposed Minimal GRU

(MGRU) time series which is also a variant of Recurrent Neural Networks (RNN).

We investigate recurrent neural networks machine learning techniques focusing on

the LSTM and GRU. Configuring neural networks is difficult because there is no good

theory on how to do it. Attention is drawn to a systematic exploration of different

configurations both from a dynamical and an objective result point of a view. The aim

is to try to and understand what is going on for a given predictive modelling problem.

The primary measure of performance is how well each model forecast out-of-sample

data. Analysis of the variants is done on three representative datasets by optimizing

the hyperparameters for each task using a combination of sequential, grid and or

random search. The achieved optimal configurations established that there wasn’t a

generally superior network out of the two. This is because vanilla LSTM performed

comparably well compared to GRU on stock price prediction. However, two datasets

on Consumer Price Index and Energy consumption had GRU performing better than

LSTM. We give a recommendation that different tasks should consider different con-

figuration of the hyperparameters using the approach that we adopted.

- ii -

Attestation

I understand the nature of plagiarism, and I am aware of the University’s policy on

this.

I certify that this dissertation reports original work by me during my University project

except for the following:

• The technology review in Section 2.8-2.12 was largely taken from [26], [32].

• The LSTM and GRU libraries discussed in chapter 3 and 4 was created by Keras

(https://keras.io/layers/recurrent/) and was used in accordance with the li-

cence supplied.

• The experiment codes discussed in Chapter 3 and 4 were developed by me dur-

ing the project period.

Signature: Date: September 3rd, 2018

- iii -

Acknowledgements

First and foremost, I would like to thank God Almighty for giving me the strength,

knowledge, ability and opportunity to undertake this research study. Without Him

this achievement would not have been possible.

In my journey towards this degree, Prof. Leslie Smith, former Head of Department for

Computing Science and Mathematics, has given me invaluable and heartfelt guid-

ance, inspiration and immense knowledge. He consistently allowed this paper to be

my own work, but steered me in the right direction whenever he felt I needed it. In

him I have found an advisor, an inspiration, a role model, a friend, and a pillar of sup-

port. I could not have imagined having a better supervisor and mentor for my project

and I shall eternally be grateful to him for his immense assistance.

I would also like to thank Dr. Swingler K., Prof. Hussain A., Dr. Cairns D., Dr. Maharaj S.

and Dr. Jones S. for their encouragement, insightful classes, and hard questions. I can’t

mention all the academic, technical and support staff in the department of computing

and mathematics who were very helpful to me throughout this journey.

This work would not have been possible had I not been awarded a scholarship by the

Commonwealth Scholarship Commission (CSC) funded by the UK government. My

gratitude also goes to my colleagues and the management at Kenya Revenue Author-

ity for accommodating my studies and enduring my absence. I am grateful to my

group of friends (Stirling Dataists) and fellow research scholars at the University of

Stirling for their moral support and valuable exchange of ideas.

This acknowledgement would be incomplete without thanking my family. The strong

foundation for my lifetime journey placed by my late parents, Mr. & Mrs. Langat; the

blessings of my parents-in-law, Mr. & Mrs. Rotich; supportive guidance of my loving

wife, Ann, who stood by me through all my travails, my absences, my fits of pique and

impatience; the unending inspiration of our wonderful children, Moses and Ethan;

the unwavering love of my siblings, cousins, in-laws and their families. This family

support and prayers has been the biggest source of my strength

This work is dedicated to my late mother Mrs. Rose Langat (1946-2000) whose hard

work, perseverance and dreams for me have resulted in this achievement.

- iv -

Table of Contents

Abstract .. i

Attestation.. ii

Acknowledgements .. iii

Table of Contents .. iv

List of Figures... vi

List of tables ... viii

List of abbreviations: .. ix

1 Introduction .. 1

1.1 Background and Context .. 1

1.2 Scope and Objectives .. 3

1.3 Achievements ... 4

1.4 Overview of Dissertation .. 5

2 State-of-The-Art ... 6

2.1 Introduction .. 6

2.2 Time series .. 6

2.3 Time series forecasting ... 7

2.4 Seasonality in time series (Trend, Cyclical, Seasonal) ... 7

2.5 Significance of time series forecasting ... 8

2.6 Actual nature of the problem .. 8

2.7 Neural Networks ... 8

2.8 Recurrent Neural Network .. 10

2.9 Recurrent Neural Network - Long Short-Term Memory (RNN - LSTM) 12

2.10 Recurrent Neural Network – Gated Recurrent Unit (RNN - GRU)...................... 16

2.11 Recurrent Neural Network – Minimal Gated Unit (RNN - MGU) 16

2.12 Evaluation methodology ... 17

2.12.1 Evaluation of the algorithms ... 17

2.12.2 Evaluation of the techniques ... 17

2.12.3 Student’s Test (T Test) ... 18

2.13 LSTM Applications: ... 19

3 Experimental Design .. 20

3.1 Introduction .. 20

3.2 Data Sets ... 20

3.2.1 Total Primary Energy Consumption (US): .. 20

3.2.2 Consumer price index for all urban consumers: all items (US CPIAUCSL) .. 22

3.2.3 US IBM Stock Prices ... 24

- v -

3.3 Implementation methodology ... 25

3.3.1 Software libraries and tools ... 26

3.4 Loss function .. 26

3.5 Training Neural Networks (NNs) ... 27

3.6 Hyperparameter Optimization. ... 28

3.7 Random Search in scikit-learn .. 28

3.8 Model design and intervention of all layers ... 29

3.8.1 Model 1: Basic LSTM Networks... 29

3.8.2 Model 2: Stacked LSTM Networks. .. 30

3.8.3 GRID and Sequential Search for Hyperparameters ... 31

3.8.4 Random search .. 31

3.9 Experiments .. 32

3.9.1 Processing machines specifications ... 32

3.9.2 Training Optimization Algorithm .. 32

3.9.3 Tuning the number of epochs together with the batch size 34

3.9.4 Tuning the learning and decay rates .. 35

3.9.5 Tuning the number of neurons for the hidden layer... 36

3.9.6 Hyperparameter tuning optimized values .. 36

3.9.6.1 IBM Stock data: Batch Size and number of epochs. 36

3.9.6.2 US CPI Data: Batch Size and number of epochs. 38

3.9.6.3 Energy Consumption: Batch Size and number of epochs. 38

3.9.6.4 US CPI Dataset: Learning Rate. .. 39

3.9.6.5 IBM Stock data: Learning Rate. .. 40

3.9.6.6 Energy Consumption: Learning rate. ... 42

3.9.6.7 IBM Stock data: neurons for the hidden layer. .. 42

3.9.6.8 US CPI data: neurons for the hidden layer. .. 44

3.9.6.9 Energy Consumption: neurons for the hidden layer. 44

4 Results and Analysis ... 45

4.1 Introduction .. 45

4.2 Results .. 46

4.2.1 IBM Stock price forecasting the optimal parameters 46

4.2.2 Energy Consumption data forecasting using the optimal parameters 48

4.2.3 Consumer Price Index data forecasting using the optimal parameters 51

4.3 Critical evaluation ... 53

4.4 Conclusion and future work.. 53

5 References .. 55

Appendix 1 .. 59

- vi -

List of Figures

Figure 2.7-1: depicts a neuron unit ... 9

Figure 2.7-2: A feed-forward NN with one layer.. 10

Figure 2.8-1:A depiction of a looping RNN ... 11

Figure 2.8-2:The repeating module in a standard RNN contains a single layer 11

Figure 2.9-1:The repeating module in a in an LSTM contains four interacting layers........... 13

Figure 2.9-2: LSTM at time step t. Image adapted from [30]. .. 14

Figure 2.9-3: A LSTM building block Image adapted from [28]. .. 15

Figure 3.2-1: US Primary Energy Consumption in BTU ... 21

Figure 3.2-2: Seasonally adjusted Energy Consumption data .. 22

Figure 3.2-3: CPIAUCSL Seasonally adjusted US CPI data .. 23

Figure 3.2-4: US IBM Average daily stock price ... 25

Figure 3.8-1:Simple model of stacked LSTM .. 30

Figure 3.9-1: RMSE Vs. Batch Size from LSTM Time Series Prediction using US IBM

Stock Data ... 37

Figure 3.9-2: RMSE Vs. Batch Size from LSTM Time Series Prediction on US IBM Stock

Data batch size up to 50 .. 38

Figure 3.9-3: RMSE Vs. Batch Size from LSTM Time Series Prediction on US CPI Data .. 39

Figure 3.9-4: RMSE Vs. Batch Size from LSTM Time Series Prediction on US Energy

Consumption ... 40

Figure 3.9-5: RMSE Vs. Learning Rate from LSTM Time Series Prediction on US CPI

dataset ... 40

Figure 3.9-6: Results of RMSE Vs. Learning Rate from LSTM Time Series Prediction on US

IBM Dataset .. 41

Figure 3.9-7: Results of RMSE Vs. Learning Rate from LSTM Time Series Prediction on US

Energy Consumption data ... 41

Figure 3.9-8: Results of RMSE Vs. Neurons from LSTM Time Series Prediction on US IBM

Stock data ... 42

Figure 3.9-9: Results of RMSE Vs. Neurons from LSTM Time Series Prediction on US IBM

Stock data-2 .. 43

Figure 3.9-10: Results of RMSE Vs. Neurons from LSTM Time Series Prediction on US CPI

data.. 43

Figure 3.9-11: Results of RMSE Vs. Neurons from LSTM Time Series Prediction on US

Energy data ... 44

Figure 4.2-1: GRU and LSTM Results on IBM Stock Data on 10 iterations 46

Figure 4.2-2: GRU and LSTM results on IBM Stock Data on 20 iterations 47

- vii -

Figure 4.2-3: GRU and LSTM time and performance on IBM Stock Data (20 iterations) 47

Figure 4.2-4: GRU and LSTM performance on Energy Consumption Data on 20 iterations.49

Figure 4.2-5: GRU and LSTM performance on test data on Energy Consumption Data on 20

iterations. .. 49

Figure 4.2-6: GRU and LSTM time and performance on training data on Energy

Consumption Data on 20 iterations. ... 50

Figure 4.2-7: GRU and LSTM performance on CPI data on 20 iterations 51

Figure 4.2-8: GRU and LSTM time and performance on CPI training data on 20 iterations. 52

Figure 4.2-9: GRU optimized network prediction on some stock belonging to American

Airlines ... 52

- viii -

List of tables

Table 3.2-1: US Primary Energy Consumption in BTU: .. 21

Table 3.2-2: CPIAUCSL Seasonally adjusted US CPI sample data 24

Table 3.2-3: US IBM Stock Prices ... 24

Table 3.2-4: US IBM Stock sample data set ... 25

Table 3.3-1: Software libraries and tools .. 26

Table 3.9-1: Results of RMSE Vs. Batch Size from LSTM Time Series Prediction using US IBM

Stock Data ... 37

Table 3.9-2: Results of RMSE Vs. Batch Size from LSTM Time Series Prediction on US CPI

Data ... 38

Table 3.9-3: Results of RMSE Vs. Learning Rate from LSTM Time Series Prediction on US

CPI Data ... 39

Table 3.9-4: Results of RMSE Vs. Learning Rate from LSTM Time Series Prediction on US

IBM Dataset .. 41

Table 3.9-5: Results of RMSE Vs. Learning Rate from LSTM Time Series Prediction on US

Energy Consumption data ... 42

Table 3.9-6: Results of RMSE Vs. Neurons from LSTM Time Series Prediction on US IBM

Stock data ... 42

Table 4.2-1: IBM results from optimal configuration on IBM stock data 46

Table 4.2-2: Results from optimal configuration on IBM stock data 48

Table 4.2-3: Results from optimal configuration on IBM stock data 48

Table 4.2-4a: Mean and Std. Dev IBM stock data Table 4.2.4b: T-test values 48

Table 4.2-5a: Mean and Std. Dev Energy data Table 4.2.5b: T-test values 50

Table 4.2-6a: Mean and Std. Dev CPI data Table 4.2.6b: T-test values 51

- ix -

List of abbreviations:

ARIMA: Autoregressive Integrated Moving Average

GRU: Gated Recurrent Unit

LSTM: Long Short-Term Memory

MGRU: Minimal Gated Recurrent Unit

MGU: Minimal Gated Unit (refer to MGRU)

NN: Neural Network

RNN: Recurrent Neural Network

MAE: Mean Absolute Error

RMSE: Root Mean Squared Error

BTU: British Thermal Unit

CPI: Consumer Price Index

- 1 -

1 Introduction

Historically time series analysis has been important in many areas: economic, sales, finan-

cial, budgetary, stock market and weather forecasting; process, quality control, workload

projections, utility and inventory studies; census analysis etc. Classical models like Auto

Regressive Moving Average (ARMA) or the conditional volatility ones like Generalized Au-

toregressive Conditional Heteroskedasticity (GARCH) and its many variants [2] have been

used to model time series. Gheyas, I. A., & Smith, L. S. (2009) proposed a simpler and

more efficient algorithm (GRNN ensemble) for forecasting univariate time series. The pro-

posed algorithm was an ensemble learning technique that combined the advice from

several Generalized Regression Neural Networks [3]. Time is a key variable: it is the explicit

dependent variable in time series analysis. The model predicts y(t) from an input of x(t’)

for a sequence of values of time t’ < time t, but a different prediction may be associated

later with an identical input. The solution to this problem may be to have a memory of

past inputs or to make the model use more data input from the past. The latter approach

may make the size of the input larger than what the model would have handled in the

case of long-term dependencies. And the length of the time-dependencies may be en-

tirely unknown. The memory cell has remained the principal component of an LSTM

architecture. This is because it can maintain its state over time. Most recent studies incor-

porate many improvements that have been made to the LSTM architecture. This study

therefore aims to provide further evidence on the effectiveness of Long Short-Term

Memory (LSTM) and Gated Recurrent Unit (GRU) and addresses the open question of im-

proving the LSTM and GRU architectures using data domains which have hitherto not

been applied scientifically to LSTM and GRU as per my knowledge.

1.1 Background and Context

Rolling regression estimation based on capturing model parameters over a period of his-

torical data and being used to capture the evolving nature of the time series have had

limited success because of difficulties in capturing fast-changing dynamic data of high sta-

tistical significance [16]. In several ways with complicated behaviors, there have been

limitations with traditional statistical approaches in being used to construct a model for

predicting a target precisely. However, in the recent years, big data (i.e. large volumes of

- 2 -

data) has increasingly been used in time series studies. Researchers have been studying

the applications of big data in various fields including healthcare, education, manufactur-

ing, governance, insurance, transportation etc. With rapidly increasing computational

power and wide availability of data, a relatively new technology called deep learning is

gaining popularity for data forecasting. Deep learning uses neural networks to learn

things from data by mimicking aspects of the working of the human brain. Artificial neural

networks (ANN) are neural networks systems which "learn" to perform tasks generally

without being programmed with any task-specific rules by considering examples. ANN

have seen a resurgence in recent years and spectacular successes have been demon-

strated in sequential data processing. [4]

Derived from Artificial Neural Networks (ANN) is a class called Recurrent Neural Net-

works (RNN). These networks form a sequential directed graph using connections in

between nodes enabling it to exhibit a dynamic temporal behaviour characteristic of a

time sequence. RNNs normally process sequences of inputs using their memory. [5]

RNNs are essential in modelling data with sequential structures like time series. They in-

corporate previous time-step output as one of the current time-step input features.

Vanilla RNNs turn out to be quite effective for short-term dependencies. However, they

fail to take into consideration the context behind an input. Inputs from some time before

cannot be recalled when making predictions in the present. This is because of the prob-

lem of Vanishing Gradient [1]. In the current study, we look at one type or improvement

of RNN, called Long Short-Term Memory (LSTM) neural networks and its variants (Gated

Recurrent Unit (GRU). LSTMs can selectively remember or forget things [6]. This paper

will use Long Short-Term Memory (LSTM) neural network, a type of recurrent neural net-

work (RNN), to predict future time series data. LSTM network is being applied in this study

mainly because of the following:

 (1) LSTM is a flexible universal function approximator appropriate for time series

predictions like a deep neural network [17];

(2) Unlike vanilla RNN, LSTM rarely suffers from vanishing gradient problem [1];

(3) LSTM discovery of long-range characteristics is unmatched [6];

This project will explore how to configure an LSTM network on a time series forecasting

problem. We work on LSTM, Gated Recurrent Network (GRU) and the latest Minimal

Gated Recurrent Network (MGRU). Our primary measure of performance is how well

- 3 -

each model forecast out-of-sample data. Analysis of the variants will be done on four

representative datasets by optimizing the hyperparameters for each task using random

search.

1.2 Scope and Objectives

The past decade has seen an upsurge in interest of using recurrent neural networks (RNN)

specifically for forecasting thereby enhancing the quantity of research activities. However

the quality of the results has not been well established purely due to lack of standard

approaches of handling them. Advanced research using RNN has been carried out in the

areas of speech and human action recognition, language modelling, image captioning,

rhythm learning, question answering and video to text. The traditional times series has

also benefited from these studies. There are practically useful reasons for studying time

series. Time series is considered by Yang, Q. and Wu, X. (2006) as one of the top 10 chal-

lenging problems in data mining due to its unique properties. As Langkvist et al. (2014)

notes, “Time is a natural element that is always present when the human brain is learning

tasks like language, vision and motion. Most real-world data have a temporal component,

whether it is measurements of natural processes (weather, sound waves) or man-made

(stock market, robotics)” [9]. Literature provides mixed results and thorough examina-

tion of the elect of key modelling factors with regards to model performance and

efficiency for time series recurrent neural networks is limited. Several variants have been

added too to the LSTM network with the latest being MGRU [8]. Findings have reported

inconsistencies which may point to the lack of systematic approaches to model building

for RNN.

In this paper, we present an investigation of the application of Long Short-Term Memory

neural network time-series analysis and prediction. The aim is to study and compare the

effectiveness of time series models to make forecasts on real data. Specifically, we are

interested in evaluating the difference between Long Short-Term Memory (LSTM) [6] and

Gated Recurrent Unit (GRU) and a more recent method that has been studied in the time

series literature, Minimal Gated Recurrent Unit (MGRU) Network [8] but which is also

based on LSTM. A simple question we would attempt to ask is does GRU outperform va-

nilla LSTM for tasks like stock, energy consumption and consumer price index predictions?

These are domains where these techniques have not had the benefit of getting applied.

- 4 -

There was a detailed examination of the elects of certain important neural network mod-

elling factors on nonlinear time-series modelling and forecasting with specific emphasis

on LSTM, GRU and MGRU. MGRU is included here for reference purposes only. The inten-

tion would have been to include MGRU in comparing the performance, however there is

no publicly available implementation of the network libraries and an attempt to develop

them from scratch would have stretched the scoped time of the project. MGRU(MGU)

network was therefore not evaluated in this study.

1.3 Achievements

Developing an approach in an area with limited theory of doing it has not been easy. Com-

plexity was compounded when it came to developing appropriate algorithms and

techniques to execute the intended strategies. Neural network is relatively a fast-changing

field with numerous recent approaches in a broad but not deep manner. At the start of

the project my grasp of LSTM was far below average. Going through the mountains of

literature out there and picking appropriate approaches only increased the gradient of

learning making it steep. And these had a 3-month period to get accomplished. As if learn-

ing all the theory was not that challenging, practical implementation of the techniques

available proved even more ‘motivating’. Because Python was relatively new to me leave

alone frameworks like tensor flow on Keras. Add that to combining several frameworks

and libraries to make them to work together. The rate at which some of these libraries are

being churned out while making others obsolete ensured I was on top of my toes in trying

several options. Tensorflow are yet to release any plug and play library for Python 3.7.

Compiling existing libraries while manually trying to plug it to the latest Python version

added to the ever-moving clock time in my timeline. Systematically downgrading Python

and attempting different versions of the required software saw me settling on versions

described in section 3.3.1. This added to the knowledge and skills of tools that I currently

possess. Accurate, high quality data was not negotiable for implementing a proper pre-

dictor for meeting the objectives. As such some data preparation work was important. A

good understanding of Python and some specialized libraries was important for this work

and therefore quick and appropriate learning was necessary which added to the already

constrained timelines. Due to excessive usage of the computing resources, operating sys-

tems’ freezes and crashes somehow became part of the study allowing me to learn

- 5 -

different operating systems and putting in place appropriate and effective back-up pro-

cedures. As a Windows person, working with MacOS was a totally new experience to me.

The experiments and comparisons were successfully implemented. Based on our experi-

ments, we concluded no single network outperforms the other. And that superiority or

lack of it in one network for time series depends on the datasets and domain being stud-

ied as well as the level of optimization that can be achieved with parameters. We saw

LSTM and GRU performing comparatively well with stock price forecasting. However, GRU

appeared to be better than LSTM on CPI and Energy consumption datasets. Comparative

analysis on MGU was not achieved due to time constraints and limited available hardware.

1.4 Overview of Dissertation

This report is organised into chapters for this study.

Section 2 – State of the art provides an overview to the study carried out to accomplish

the outlined objectives. This will also touch briefly on the significance and the relevance

of time series analysis and prediction to real challenges. There will be a summary sub-

section on the background and current research in time series prediction and more so

LSTM to allow the reader to gain sufficient understanding. There will be a specific focus

on techniques used in the implementation in this study. Lastly, a presentation of the cod-

ing techniques and tools used will be unveiled.

Section 3 – Experimental design will present the activities involved in collecting and pre-

processing the training and test data. The design of neural networks (LSTM and variants)

experiments will also be outlined. The various techniques used in the study will be dis-

cussed as well as the optimal values of the different hyperparameters that were tuned.

Section 4 – Results and analysis will present a summary of the different results attained

by varying different hyperparameters and features. The optimal results achieved by the

models will be discussed. In this chapter we will also discuss critical evaluation which will

look at the challenges and limitations encountered as well as appropriate recommenda-

tions for possible improvements. We will conclude and discuss future work. This will

summarise the achievements of the project and emphasize the best configurations for

optimal results.

- 6 -

2 State-of-The-Art

2.1 Introduction

This chapter provides an overview to the available literature regarding time series and

time series forecasting. It will shed light on the significance of the study and real nature

of the problem. There have been advances in the front of machine learning techniques

relevant to time series prediction which will be briefly discussed. To give the reader suf-

ficient understanding a summary sub-section on the background and current research

in time series prediction and more so LSTM and GRU will be discussed with a specific

focus on techniques used for implementation in the study. Applications of time series

predictions availed in the literature will be pointed out.

2.2 Time series

A time series is a sequential set of data observations measured over successive times. It

can be mathematically represented as a set of vectors x(t), t = 0,1, 2... where t represents

the time elapsed [42]. The measurements or sequence of observations, st ∈ R, are usu-

ally ordered in time form or chronological order. Time series can be univariate or

multivariate depending on the number of variables it features. A discrete time series will

normally have observations measured at discrete points of time whereas continuous

will consist of observations measured at every instance of time which can only exist for

made-up problems and not in reality [44]. You will find discrete time series having con-

secutive observations recorded at equally spaced time intervals but having the variable

being observed as a continuous variable from the real number scale making discrete

series to be what is normally dealt with [42].

There are many applications of time series and can be found in:

a) Meteorology where variables like temperature, wind pressure can for a time

series of data: weather variables, like temperature, pressure, wind etc.

b) Finance and economy which contains parameters like exchange rates, finan-

cial indexes, Gross National Product, Inflation, Consumer Price Index etc which

are useful in making sense to economic and financial data.

- 7 -

c) Manufacturing and industry: Energy consumption, electric load, sensors, volt-

age etc can generate a sequence of data observations which can be modelled as

time series.

d) Medicine and biomedicine which is awash with heart-rate, patient tempera-

ture time series data

e) The cell cycle time series of gene expression which is normally applied in ge-

nomics.

2.3 Time series forecasting

Time series forecasting relies on past observations which have been collected and ana-

lysed to develop a suitable mathematical model capable of predicting future data points.

if there is not much knowledge about the statistical pattern on the successive observa-

tions then this approach can be useful. A future with certainty cannot be predicted and

so time series is non-deterministic in nature. Most of the time stochastic processes are

used to describe the probability structure of a time series. It is assumed that the time

series variables are independent and identically distributed (i.i.d) following the normal

distribution. However, this is not true and they in fact follow more or less regular pattern

in the long term [44].

2.4 Seasonality in time series (Trend, Cyclical, Seasonal)

Time series can contain a cyclic or seasonal component. This is a repeating cycle of sea-

sonal variation which may obscure or provide a strong signal to the model during

forecasting. The cyclic structure is considered seasonal only if it consistently repeats at

the same frequency otherwise it is a cycle. Understanding this component of time series

has significant influence on the performance of modelling using machine learning. Iden-

tifying and removing the seasonal component can result in output variables having a

clearer relationship to the input. The process of seasonality removal is called seasonal

adjustment or deseasonalizing (‘stationarized’) and will lead to seasonally stationary

data. A stationary time series exhibit constant statistical properties over time such as

mean, variance, autocorrelation, etc. A non-stationary data is one which has a clear sea-

sonal component. New data may be harvested from additional information about the

seasonal component which may be useful in improving model performance. There can

be different types of seasonality including time of day, daily, weekly, monthly, yearly etc.

- 8 -

We find that data with strong seasonal structure are forecast comparatively well by most

machine learning techniques. On the other hand, without strong seasonality, there is

very little information that can be extracted and forecasting performance is poor. Some

promising results were achieved from the experiments. This work enhances our confi-

dence and excitement that much more can be explored to potentially further improve

the prediction performance for time series data.

2.5 Significance of time series forecasting

While there are many significant reasons for time series forecasting some of the reasons

include:

a) The ability to predict the future using past observations.

b) Being in control of the process producing the series and therefore influencing

the future.

c) Gaining knowledge which comes with understanding the mechanism generating

the series.

d) In-depth understanding of the salient features of time series.

2.6 Actual nature of the problem

The effectiveness of time series models to make forecasts on real data is what research-

ers have not been able to agree on. Specifically, whether Gated Recurrent Unit (GRU)

performs better than Long Short-Term Memory (LSTM) or and a more recent method

that has been studied in the time series literature, Minimal Gated Recurrent Unit. From

literature LSTM and GRU have had little or no application on the domains of stock price

prediction, consumer price index and energy consumption forecasting. A simple ques-

tion we would attempt to ask is does GRU outperform vanilla LSTM for tasks like stock,

energy consumption and consumer price index predictions? A detailed examination of

the elects of certain important neural network modelling factors on nonlinear time-se-

ries modelling and forecasting with specific emphasis on LSTM and GRU on these

domains will be carried out.

2.7 Neural Networks

A neural network is a machine learning model that was developed through the inspira-

tion of a biological workings of the brain. It involves nodes (neurons) acting as

- 9 -

computational units. They work by receiving inputs incoming from their edges, while

multiplying them with their corresponding edge weights. A non-linear function called

activation function is then applied to the weighted result and this becomes an output.

NN assumes the independence among the data samples. However, in sequential data,

this does not hold true. Time series, speech, video etc are characterised by dependence

between elements across time. A mechanism to consider the time and/or sequential

dependency is crucial for sequential data. This gave birth to Recurrent Neural Network

(RNN).

y(x) = f (w x + b)

x = input vector, w = weight vector, b =neuron bias, f = element-wise multiplica-

tion, y = neuron output

Equation 2.4.1

Neuron vector equa-

tion

Figure 2.7-1: depicts a neuron unit

Fig 2-4-1

A neuron unit

Figure 2.7-1 depicts a neuron unit. A non-linear activation function works on the inputs and weights and produces

and output. Image adapted from [22]. logistic sigmoid (σ), tanh, and rectified linear units (ReLU) represent the typical

activation functions [23].

A feed forward network may be composed of a network of neurons within layers. Neu-

rons are connected to each other using directed and weighted edges. These layers in

most instances contain a minimum of input and an output layer for receiving an input

and producing an output respectively. A complex feed-forward network may have other

hidden layers and such networks are used for supervised learning tasks.

- 10 -

Figure 2.7-2: A feed-forward NN with one layer

Fig 2-4-2.

A feed-forward NN with one

hidden layer

In figure 2.7-2 each neuron in the layer, which is represented by circles, is inter-connected to all the neurons in the

previous (bottom) layer. Technically the input layer will not count as a neuron as they just forward the input signal

without processing. Image adapted from [22].

2.8 Recurrent Neural Network

An RNN is a special type of NN but with the special ability to process sequential data.

Conventional feedforward neural network handles input of sequences containing varia-

ble-lengths. A recurrent neural network (RNN) is an extension of such network. RNN for

time series does this by maintaining a recurrent hidden state which can be activated to

depend on the input of the previous time. RNN can be represented as follows:

Given a sequence X = (X1, X2, X3, . . ., Xt), then the recurrent hidden state, ht, according

to RNN is given by equation 2-6-2

ℎ� = � 0,																			 = 0
Ø(ℎ��, ��), �	ℎ������

Equation 2-6-2.

The recurrent hidden state of RNN

where Ø is a nonlinear function examples are logistic sigmoid. Additionally, it is possible for the RNN to have an

output Y = (Y1, Y2, Y3, . . ., Yt), with a variable length.

An implementation of the recurrent hidden

state in Equation 1 is stated below.ht = g

(W Xt + Uht−1)

Equation 2-6-3.

The recurrent hidden state of

RNN

- 11 -

Figure 2.8-1:A depiction of a looping RNN

Fig 2.8-1.

A depiction of a looping RNN

In fig. 2.8-1 above, a chunk of recurrent neural network, A, outputs ht by taking in input

Xt with the network allowing the information to be ‘looped’ through the steps of the

network.

In equation 2-6-3 above, g represents a hyperbolic tangent or a sigmoid function which

achieves a smooth bounded function, W is the coefficient matrix for the input, Xt at the

present step and U is the coefficient matrix for the activation of recurrent hidden units

at the previous step, ht-1.

Bengio et al. [1994] observed a limitation of traditional RNN, otherwise called vanilla

RNN in capturing long term dependencies because of the ‘curse of vanishing gradient’.

In this type of RNN the gradient vanishes or explode with severe effects on the model.

Because of these the gradient-based optimization method is severely weakened be-

cause of the long-term decencies becoming exponentially smaller in sequence length

when compared to short-term dependencies.

Figure 2.8-2:The repeating module in a standard RNN contains a single layer

Fig 2.8-2: The repeating module in a standard RNN contains a single layer. Xt-1, Xt, and Xt+1 are sequence

of input, A is Neural Network while ht-1, ht, and ht+1 are recurrent hidden states. Image adapted from [29].

- 12 -

Two dominant approaches have been proposed to address the vanishing gradient lim-

itation in the RNN. On such approach was the development of a better learning

algorithm than a simple stochastic gradient descent for example the Hessian-Free Op-

timization with structural damping approach [11]. The second approach in which we

are more interested in this paper is the development of a better activation function

consisting of affine transformation backed up by gating units of simple element-wise

non-linearities. This was first discovered in long short-term memory (LSTM) unit pro-

posed by Hochreiter and Schmidhuber [6] followed by another recurrent unit called

gated recurrent unit (GRU) proposed by Cho et al. [2014]. More recently, another type

of recurrent unit referred to as minimal gated recurrent unit (MGRU), was proposed by

Zhou et al. [2016] [8].

Research has indicated that for tasks that require capturing long-term dependencies,

RNNs employing either of the mentioned recurrent units have a better performance

than the vanilla RNN. This is especially so in speech recognition [13], machine transla-

tion [14] and image classification [15].

2.9 Recurrent Neural Network - Long Short-Term Memory (RNN -

LSTM)

One of the strengths of RNN is the idea that it can connect previous information to the

present task. This works most of the time when we only recent information is required

to perform the present task. In other situations where more context is required vanilla

RNN may not give the best result as it may not get the ability to learn to connect the

information.

To attempt to solve this problem, LSTM networks were proposed by Hochreiter &

Schmidhuber (1997) and were refined and popularized by many researchers thereafter

[12]. Studies have shown that they work better than vanilla RNN on a large variety of

problems including those that require learning long-term dependencies.

- 13 -

Figure 2.9-1:The repeating module in a in an LSTM contains four interacting layers

Fig 2.9-1a: The repeating module in a in an LSTM contains four interacting layers. Xt-1, Xt, and Xt+1 are sequence of

input, A is Neural Network while ht-1, ht, and ht+1 are recurrent hidden states. Image adapted from [29]. The symbols

are further described in fig 2-3 below:

Gate

Fig 2.9-1b: Elements of an LSTM network.

Under LSTM in figure 2.9-1a, each line is a vector transfer of output from one node to

become input to another node. The pointwise represent vector operations like addi-

tion, multiplication etc. The line Ct-1 to Ct represents the cell state and is key to LSTM.

Components of an LSTM:

a) A neural network with sigmoid (Forget Gate, f)

b) A NN with Tanh (Candidate layer, C)

c) A NN with sigmoid (Input Gate, I)

d) A NN with sigmoid (Output Gate, O)

e) A vector of Hidden state, H

f) A vector of Memory state, C

The LSTM operates through its ability to add or remove information to the cell state

through structures appropriately named gates. Typically, gates are used to control

flow of information. and they are made of sigmoid neural net layer and pointwise

multiplication operation. Sigmoid numbers are between zero and one with zero not

allowing anything through and one allowing everything through the gate.

- 14 -

Figure 2.9-2: LSTM at time step t. Image adapted from [30].

The LSTM operates through its ability to add or remove information to the cell state

through structures appropriately named gates. Typically, gates are used to control flow

of information. and they are made of sigmoid neural net layer and pointwise multipli-

cation operation. Sigmoid numbers are between zero and one with zero not allowing

anything through and one allowing everything through the gate[31].

Three groups of variables are found for each cell:

a) Xt which refers to external observations at each time step, t. This is represented

as a vector for multiple input signals like stock price, trade volume etc.

b) ht represents the short-term memory of LSTM internal state which is a direct

output from the LSTM cell.

c) Ct is a hidden LSTM state represented by a vector which can be accessed and/or

modified through controlled gates: input, an output and a forget gate.

The gates are instrumental in regulating the flow of information in the network. In fact,

they can capture important information and store them for long and short time as is

required deriving its name from there ‘long short-term memory’.

- 15 -

Figure 2.9-3: A LSTM building block Image adapted from [28].

Figure 2.9-3 displays an LSTM building block – a schematic diagram of the LSTM unit

with forget gates. Image adapted from [28]. This single unit makes decision by consid-

ering the current input, Xt, previous output, ht-1 and previous memory, Ct-1 and it

generates a new output, ht and alters its memory, Ct.

Equations for LSTM unit with a forget gate forward pass.

The equations 2-2-4 have variables which italicized in lowercase italics to represents a

vector. Matrices Wq collect the weights of the input and Uq collect the weights of the

recurrent connections, where q can either be the input �, gate �, output gate, the forget

gate � or the memory cell �, depending on the activation being calculated [31]. The

initial values are C0 = 0 h0 = 0 the operator ∘ denotes entry-wise product. The subscripts

t refers to the time step [12].

- 16 -

�� 	= ��(���� 	+ 	��ℎ��	 	+ 	 �)

�� 	= ��(�!�� 	+ 	�!ℎ��	 	+ 	 !)	
�� 	�� 	= ��(�"�� 	+ 	�"ℎ��	 	+ 	 ")	

�� 	= 	�� ∘ 	���	 	+ 	 �� 	 ∘ �#(�!�� 	+ 	�!ℎ��	 	+ 	 !)
ℎ� =	�� ∘ �$(��)

 Variables

 Equations 2-2-4.

�� ∶ 	�&'()��	��		�		ℎ�	*+,-	(&�t
�� ∶ 	���.�		./	�′�	/�	�)/	��&)��	��	�� ∶ 	�&'(./	�′�	/�	�)/	��&)��	��	�� ∶ 	�('(./	�′�	/�	�)/	��&)��	��	ℎ� ∶ 	�('()��	��	��		ℎ�	*+,-	(&�		
�� ∶ 	��11	�	/	�)��	��	�:			���.ℎ		3/	�����	/&4	
 5 ∶ 6	��	7�, �, �8	��	 �/�)��	��	'/�/3�	���	�ℎ��ℎ	&��4		�	 �	1�/�&�4	4(��&.		�/�&�&.

Activation functions

�� ∶ 	��.3��4	�(&�	��&.	
�# ∶ 	ℎ:'�� �1��		/&.�&		�(&�	��&.	�$ ∶ 	ℎ:'�� �1��		/&.�&		�(&�	��&.	

2.10 Recurrent Neural Network – Gated Recurrent Unit (RNN - GRU)

A gated recurrent unit (GRU) otherwise known as fully gated recurrent unit (FGRU) was

proposed by Cho et al. [2014]. This unit can capture and model tasks whose depend-

encies relate to different time scales. In terms of the flow of information, this network

has gating units which modulate its flow just like LSTM. However, it does not contain

an output gate and they do not have separate memory cells making it have less param-

eters than LSTM.

2.11 Recurrent Neural Network – Minimal Gated Unit (RNN - MGU)

Zhou et al. [2016] proposed a gated unit for RNN which contain only a single gate hence

designing a minimal gated hidden unit called Minimal Gated Unit. This design ensures

it does not lose LSTM’s accuracy benefits while maintaining the smallest number of

gates [8]. There was not enough time to study this latest variant in this project.

- 17 -

2.12 Evaluation methodology

In this study we are focused mainly in empirically comparing the LSTM and GRU vari-

ants and not to achieve the state of the art results. Our interests will therefore be drawn

to keeping the experiments fair and simple with LSTM as the baseline.

2.12.1 Evaluation of the algorithms

For the configurations of different algorithms on the data sets, the error measures that

will be used to compare the performance is Root mean squared error (RMSE). There

are two common metrics used to measure accuracy for continuous variables. Mean

Absolute Error (MAE) and RMSE. Given a set of predictions, MAE (equation 2.9.1) will

measure the mean magnitude of the errors. However, it does not consider the general

direction.

 Equation 2.9.1

RMSE on the other hand refers to the square root of the average of squared differences

between what was observed and what the model predicts. It is given as:

 Equation 2.9.1

Although Hyndman R.J. and Koehler A.B (2006) discuss the numerous measures of fore-

cast accuracy, we pick RMSE mainly because it avoids the use of taking the absolute

value which is undesirable as well as they are sensitive to outliers. RMSE (equation

2.9.2) also has the tendency to penalize large errors [20] while penalising small errors

less.

2.12.2 Evaluation of the techniques

To take care of cross-domain variations the evaluation is done on three different da-

tasets. For each variant we maintain a similar setup but each dataset has its own set of

hyperparameters to achieve good performance. The tuning therefore only considered

the baseline LSTM in getting the optimal hyperparameters for each data set. We need

- 18 -

a statistical hypothesis test to compare two machine learning classifiers. The choice

however is still an open problem for interpreting machine learning results.

The question we want to address here is given two machine learning algorithms LSTM

and GRU, with three data sets, which algorithm will produce more accurate predictions

when trained on same data sets. To be fair in comparing, each algorithm is evaluated

the same way and using each data set. Many types of test have been recommended by

researches to accomplish this task. Thomas Dietterich (1998) in his widely cited paper

recommends McNemar’s and 5X2CV (cross validation) tests. McNemar’s appears to be

more relevant to nominal predictions [21]. In our case therefore out intention was to

adopt a 10-fold cross validation procedure to evaluate each algorithm. Initially we had

placed initialized each configuration with the same random seed to ensure similar splits

to the training data and precisely similar evaluation for each algorithm. However, this

approached was abandoned later before the first run to evaluate the performance was

completed. By the time a decision to change evaluation method was made, the cross-

validation evaluation had already run for 49.5 hours non-stop with noticeable negative

performance signs of the operating system that was hosting the process (hardware is

described in section 3.9.1 and software in 3.3.1). It appeared therefore not viable with

the hardware architecture as it were to continue with cross-validation. Basic and simple

t-test assessment was therefore used to evaluate means of 10 to 20 iterations.

2.12.3 Student’s Test (T Test)

If we were to investigate the difference between two population averages, a t-test is

going to be used. A t-test is done when two means of sample or population data are

being compared. A researcher will normally want to state with some degree of confi-

dence that the differences in means arising out of sample groups of data is too

significant to be happening by chance. For example, if on calculation a t-test produces

a t-value that equates to a probability of 0.02 then the likelihood of getting the differ-

ence in means happening by chance is 2 in 100 times and it will mean that likelihood is

so low that the difference found in the samples could probably be in the population

from which the sample was drawn. The null hypothesis (H0) is a hypothesis in which

the researcher is attempting to reject, nullify or disprove a given position by carrying

- 19 -

out experiments while the alternative hypothesis(H1) is what the researcher really

thinks is the cause of a certain alternative behaviour or phenomena. Therefore, the

main objective of the one sample t-test is to determine whether the sample data has

provided enough information to reject the null hypothesis[46]. We will invoke this hy-

pothesis t-testing when looking at the GRU vs LSTM results.

2.13 LSTM Applications:

LSTM Networks is considered one of the state of the art algorithms and believed to

perform better than other types of RNNs. Some of the areas where LSTM has been

used include:

• Handwriting Recognition: This LSTM network [33] won a Handwriting Recognition

Contest by achieving a recognition rate of up to 91%. It proved to surpass HMM-

based models designed to recognize printed text using optical character.

• Speech Recognition: The architecture described in [34] was proposed by Graves et

al. in 2013 and performed to a relatively recognisable level of 17.7% of accuracy.

This was done on the TIMT Phoneme Recognition Benchmark and maintained that

record up to recently. This same technique has also been attempted in large scale

acoustic speech modelling [35].

• Handwriting Synthesis: A successful comprehensive study by Graves which

demonstrated sequence generation tasks like text prediction by using LSTM to pro-

duce human-like handwriting synthetically [36].

- 20 -

3 Experimental Design

3.1 Introduction

In this section we search for the optimal parameters for each data set using LSTM ar-

chitecture as the baseline and attempt to explore their performance regarding their

ability to make useful predictions in restricted conditions. We considered number of

neurons, batch size, number of epochs and learning rate as the main hyperparameters

which can influence the most the performance of the machine learning neural network

algorithm[39]. We use a combination of grid search and sequential search in finding

the optimal parameters. This was informed by the hyperparameter space and the

length of time it takes to run the experiments. For short runs we attempted grid search

and for time-consuming ones we used sequential to shorten the time. On getting the

optimal parameters, they are then applied to the both LSTM and GRU. An evaluation is

then done to compare the performance results.

3.2 Data Sets

Three types of data sets were used. They are described below

3.2.1 Total Primary Energy Consumption (US):

There are many different types and sources of energy being produced by The United

States. Generally they can be grouped as renewable and non-renewable; pri-

mary and tertiary; and fossil fuels. Primary energy is the raw form of energy before

transformation to any tertiary form. Nuclear fuels (uranium), coal, the sun, oil, tides,

natural gas and wood, the wind, the rivers, mountain lakes forms part of primary en-

ergy. It also includes all non-combustion uses of fossil fuels. Energy is the foundation

of our highly developed society. Our public life organization as well as industrial devel-

opment and scientific activities depend on energy.

Life without energy cannot be imagined. This energy is sometimes invisible and in most

occasions taken for granted. It is therefore very important that its production, supply

and consumption be carefully planned, developed and secured with great organiza-

tional, systemic and strategic efforts. Predicting energy consumption accurately can

- 21 -

help to inform decisions on production levels and sources. We therefore used energy

consumption data set as one of those used for validating and evaluating performance

of the algorithms. Our data set has the following summary statistics and trend captured

monthly.

Period: 1973 January – 2018 March No. of. Instances: 543

Minimum: 5438.115 btu (1975 June) Maximum: 9676.835 btu (2018 January)

Mean: 7373.362 btu Std. Dev: 948.209

1 Kilowatt Hour = 3412.14 btu 1 btu = 0.000293071-Kilowatt Hour. BTU-British Thermal Unit

Figure 3.2-1: US Primary Energy Consumption in BTU

Sample Data Set: US Primary Energy Consumption in BTU

Month Primary Energy Consumption Total

1973 January 7226.265

1973 February 6594.709

1973 March 6524.198

Table 3.2-1: US Primary Energy Consumption in BTU:

As can be seen from figure 3.2-1 the data are heavily jagged. To attempt to improve on

the accuracy, the inputs are made statistically independent. Seasonality was common

in this data set. A random experiment indicated that there was seasonality in this data

set with a cyclic spike noticeable as from around November to March of every year.

This pointed to the winter periods of the year when it is a very cold season demanding

5000

5500

6000

6500

7000

7500
8000

8500

9000

9500

10000

US Primary Energy Consumption Total (in BTU (1973-2018))

- 22 -

more energy needs. There is therefore an increase in energy consumption over this

period yearly. This dataset therefore contained annual trends and seasonality, which

needed to be removed prior to modelling. Since there are 12 observations in a year,

the difference functionality 3.2-1 was applied to the seasonal data set which removed

the seasonality signal resulting in figure 3.2-2. Normalization was done on the results

to increase the learning rate

Functionality 3.2-1

creating / de-trending a differenced series

def deseason(dataset_train, interval=1):

 deseason_data = list()

 for i in range(interval, len(dataset_train)):

 value = dataset_train [i] - dataset_train [i - interval]

 deseason_data.append(value)

 return deseason_data

Figure 3.2-2: Seasonally adjusted Energy Consumption data

3.2.2 Consumer price index for all urban consumers: all items (US CPIAUCSL)

Consumer price index is an important measure of inflation. Every time we are in the

grocery, gas station, mall, mart, shopping mall etc we experience its consequences.

With every increase of prices, our ability to purchase (purchasing power) is eroded. At

the same time if wages were to remain constant then we end up being poor eventually

- 23 -

lowering our living standards. It is therefore clear the role inflation, and by extension,

CPI, plays as a measure of economic, and social stability and generally indicates the

welfare of the consumer. CPI identifies the price changes across different product cat-

egories with regards to consumption. It’s therefore vital that this tool is tracked and if

possible forecasted to allow for a systematic approach to planning for inflation and

other economic indicators. The United states department of labour has publicly availa-

ble data resulting from tracking this important component. All items measured in terms

of mean monthly changes in the price for goods and services paid. The data is season-

ally adjusted (Figure 3.2-3). Our data set has the following summary statistics and trend

captured monthly.

Period: Period: 1947 January – 2018 April No. of. Instances: 856

Minimum: 21.48 (1947 January) Maximum: 250.013 (2018 April)

Mean: 106.74 Std. Dev: 75.403

Figure 3.2-3: CPIAUCSL Seasonally adjusted US CPI data

Sample Data Set: CPIAUCSL Seasonally adjusted US CPI data

DATE CPIAUCSL

01/01/1947 21.48

01/02/1947 21.62

01/03/1947 22

01/04/1947 22

01/05/1947 21.95

0

50

100

150

200

250

300

7/17/1946 3/25/1960 12/2/1973 8/11/1987 4/19/2001 12/27/2014

CPIAUCSL- Seasonally adjusted USA CPI Data

- 24 -

01/06/1947 22.08

Table 3.2-2: CPIAUCSL Seasonally adjusted US CPI sample data

3.2.3 US IBM Stock Prices

From the available literature, stock market prediction is complex. This is partly at-

tributed to the market prices which are quite volatile and very unpredictable [7]. There

are no consistent data patterns to be used to model trading prices for stock for a spec-

ified period in a near-perfect way. According to “In a Random Walk Down Wall Street”

by Burton Malkiel (1973), the market could reflect all factors immediately as soon as

they're made public if it were truly efficient to the extent that a blindfolded monkey

throwing darts at a newspaper stock listing should do as well as any investment profes-

sional. It is therefore only a possibility to model the exact stock values of the future,

but the stock price movements (that is, if it is going to rise or fall soon).

We picked US IBM stock data largely because of its unique stock price behaviour over

time. This type of scenario makes learning more robust and is a good test of prediction

for a variety of situations. There are fluctuations though which will be dealt with

through normalization. The recent updates to the LSTM network has not benefited

stock market prediction as far as available literature is concerned. The data is publicly

available. Table 3.2-3 displays the descriptive statistics and 3.2-4 the sample data set.

The names of the associated attributes

Date: Date of trading

Open: Value during opening of the trading

High: Highest value during the trading day

Low: Lowest Value during the trading day

Close: Value during closing of the trading day

Volume: Volume of stock traded during the

day

Summary Statistics:

Period: 1962 January 2nd – 2017 November 10

No. of. Instances: 14059

Description Date Open High Low Close Volume

Minimum 02 Jan 1962 3.39 3.566 3.324 3.39 0

Maximum 10 Nov 2017 186.01 186.46 185.06 186.36 83165905

Mean - 48.536 48.987 48.112 48.554 5782966.342

Std. Dev. - 49.271 49.664 48.913 49.298 5429532.641

No. of. Instances 14059 14059 14059 14059 14059 14059

Table 3.2-3: US IBM Stock Prices

- 25 -

Sample data set

Date Open High Low Close Volume

02/01/1962 6.413 6.413 6.3378 6.3378 467056

03/01/1962 6.3378 6.3963 6.3378 6.3963 350294

04/01/1962 6.3963 6.3963 6.3295 6.3295 314365

05/01/1962 6.3211 6.3211 6.1958 6.2041 440112

08/01/1962 6.2041 6.2041 6.0373 6.087 655676

09/01/1962 6.1208 6.2376 6.1208 6.1621 592806

Table 3.2-4: US IBM Stock sample data set

NB: Added a column Average = (High + Low)/2. We are focusing on this is the attribute.

Figure 3.2-4: US IBM Average daily stock price

3.3 Implementation methodology

In this paper a quantitative research method was primarily used. Literature review was

done to identify the main challenges as well as recent developments in the field. The

implementation was carried out in a very explorative and iterative nature especially

progressing from basic to more complex techniques.

0

20

40

60

80

100

120

140

160

180

200

2
/1

/1
9
6
2

3
0
/0

9
/1

9
6
3

3
0
/0

6
/1

9
6
5

3
0
/0

3
/1

9
6
7

4
/2

/1
9
6
9

3
/1

1
/1

9
7
0

1
/8

/1
9
7
2

3
/5

/1
9
7
4

3
0
/0

1
/1

9
7
6

2
7
/1

0
/1

9
7
7

2
6
/0

7
/1

9
7
9

2
3
/0

4
/1

9
8
1

1
9
/0

1
/1

9
8
3

1
5
/1

0
/1

9
8
4

1
5
/0

7
/1

9
8
6

1
1
/4

/1
9
8
8

5
/1

/1
9
9
0

2
/1

0
/1

9
9
1

2
9
/0

6
/1

9
9
3

2
7
/0

3
/1

9
9
5

1
9
/1

2
/1

9
9
6

1
8
/0

9
/1

9
9
8

1
9
/0

6
/2

0
0
0

2
5
/0

3
/2

0
0
2

1
9
/1

2
/2

0
0
3

2
0
/0

9
/2

0
0
5

2
1
/0

6
/2

0
0
7

2
0
/0

3
/2

0
0
9

1
6
/1

2
/2

0
1
0

1
4
/0

9
/2

0
1
2

1
8
/0

6
/2

0
1
4

1
7
/0

3
/2

0
1
6

S
to

ck
 p

ri
ce

 (
U

S
D

)

Average daily stock price

US IBM Daily Stock Prices

- 26 -

The models were evaluated on at least three different types of datasets to ascertain

their efficacies. Software libraries used include the following identified in table 3.3.1.

Quality assurance on the code was done to ensure no bugs were inherited into the

outcome of the experiments. Python 3.54 was used and code made available in Github

[16] to ensure reproducibility. The project environment is tabulated below. Keras is

written in python as a high-level neural networks API with the ability to run on top

of Google’s TensorFlow or Theano libraries.

3.3.1 Software libraries and tools

Tool/Library Version

Keras 2.0.3 and 2.2.2 distributions

TensorFlow 1.0.0 and 1.1.0

Scikit-learn 0.18.2 and 0.19.2

Python 3.54 and 3.6.6

Matplotlib 2.2.3

Numpy 1.14.5

Pandas 0.23.4

sklearn -

LSTM and GRU Libraries from KERAS -

Table 3.3-1: Software libraries and tools

In this project, the focus is on time series using LSTM and GRU (its variant) while in-

depth discussion of other alternative techniques has been avoided due to time con-

straints. There are many software packages providing the LSTM libraries, functionality

and implementations, however we chose to use Keras with Tensorflow backend mainly

because it provides a high-level API hence enabling faster experimentation. The frame-

work is easy to use although moderately restrictive making custom implementations

difficult.

3.4 Loss function

During training of a supervised learning task, a loss function tracks and calculates the

distance between the desired output and what the network is producing as an output.

Error is calculated as the difference between the predicted value and real value and

- 27 -

most regression problems will use the averaged squared distance between the true

value and predicted value otherwise known as the Mean Squared Error (MSE) as dis-

cussed in section 2.12.1

3.5 Training Neural Networks (NNs)

During training of NN, the goal of a learning problem is to optimise the loss function by

minimizing the error. This is done by tuning the parameters of the NN. To achieve this

an optimization algorithm called the gradient descent is used to train the NNs. In this

method the gradients of the loss function is calculated while considering the network

parameters i.e. the weights and their biases. A small change in a network parameter

will trigger a change in the loss value resulting in a gradient change. Back-propagation

method which uses a chain rule of derivates is used in calculating the gradients [23].

A learning rate scalar is normally useful in updating the parameters towards the oppo-

site direction of the gradient. This process is iterated through the training data over

several number of passes called epochs. Each epoch pass-through triggers progression

towards optimum parameter values hence minimizing the loss function. Large data sets

make the loss function computation to slow down and sometimes infeasible. The solu-

tion to this has seen gradient descend being enhanced. Stochastic Gradient Descent

(SGD), Adam, RM-Prop and AdaGrad [24] are variants of gradient descend which work

by subdividing data sets into training batches and calculates the loss function before

updating the parameters. These are used in practice to increase the efficiency of the

training process. Sometimes as the parameters get close to the optimum, decay pa-

rameter is used to slow down the learning rate to avoid overshooting the optimum

value.

Sometimes the network learns the training data too well but performs poorly during

test data. This causes overfitting and is a condition which can be triggered by a complex

model than is normally adequate for the process. This can be prevented by early stop-

ping where a small validation subset is used from the training data. NN connections

can also be removed at random from each epoch up to a certain maximum to control

overfitting.

- 28 -

3.6 Hyperparameter Optimization.

Weights and biases are network parameters that are learned by the training algorithm.

However, batch size, learning rate, dropout, decay, number of hidden layers, number of

epochs etc are learning algorithm parameters required to be set by the user outside of

the training process (introduced in section 3.5). These parameters are called hyper-

parameters and their setting in a supervised learning task is called tuning. The hyperpa-

rameters significantly affect the performance of the model. Sometimes the process of

tuning the hyperparameters is iterated until optimal values are achieved using a pro-

cess called HyperParameter Optimization (HPO) and will form part of the subject of

our research. Chapters 5,6,7 and 8 of [25] provides a detailed study of NNs, gradient

descent and back-propagation and can be useful in learning more.

Hyper-parameter optimization aims at finding an optimal solution out of a possible

training sets with a potential to minimize the expected error of the algorithm. However,

calculating the expected error is impossible and so the solution to this HPO problem

takes either of the two forms:

1. The manual/random approach: several attempts are made using different param-

eters until the best one is found. This uses some random combinations for a range

of values for a defined number of iterations.

2. Grid search: attempts are made at different sets of pre-set lists of values of hy-

perparameters and the best combinations is selected based on cross-validation

score.

Grid search is better in terms of guarantee for an optimal solution. However, the com-

puting resources cost for this approach is extremely expensive. Random search

minimizes the potential values that each parameter can take. Studies have shown that

random experiments are more efficient than grid experiments for HPO in the case of

several learning algorithms on several data sets [26] and so a combination of random,

grid and sequential search for HPO will be adapted to this study depending on expected

performance levels.

3.7 Random Search in scikit-learn

Random search is one of the model hyperparameter optimization technique. This is

contained in the RandomizedSearchCV class of the Scikit-learn. The class function takes

- 29 -

in some arguments including the estimator, a dictionary of parameters grid and the

number of jobs to allow for parallelised processing.

The search normally defaults to one thread but this can be changed by tuning the num-

ber of jobs to -1 which then triggers the use of all cores on the processing machine. The

parameters grid holds the dictionary of the hyperparameters being evaluated which

then maps onto an array of values to try. This method implements a randomized search

over the parameters. A computation of budget refers to the number of sampled candi-

dates or sampling iterations denoted by number of iterations.

The advantage of random search is that it allows choosing of an independent budget

from the number of parameters and their possible values. Further efficiency is not af-

fected when parameters with less influence on the performance are added.

3.8 Model design and intervention of all layers

Window period in LSTM was utilised and set depending on the data set. The form of

training set is like {(Xt−6, Xt−5, …, Xt) → X+1}. In this paper we develop an optimized model

for LSTM. Then using the optimized parameters, we apply the same to GRU. According

to [27], some parameters are more important than others in influencing performance

of an LSTM when tuned. We therefore consider four main parameters in optimizing and

default the rest. These are the learning rate, the number of epochs, the batch size, the

hidden layer size (number of layers and number of units in each layer) and the opti-

mizer. The comparative analysis is done with regards to the baseline LSTM and a t-test

for 10 iterations done.

LSTM Input Layer contains the 3D tensor. The number of samples, timesteps and the

input dimension informs the shape of the tensor. The number of samples is informed

by the data and the timesteps are determined through experiment, but input dimen-

sion remains 1. For the problems being discussed here the hidden layer has no

reference structure and therefore it was given based on experience and further deter-

mined by experiments.

3.8.1 Model 1: Basic LSTM Networks.

A basic LSTM network is configured with a single visible input layer, given number of

LSTM blocks (neurons) of hidden layer and an output layer responsible for single value

- 30 -

prediction. Sigmoid is used as the activation function for the LSTM blocks. Sigmoid

function because of its nonlinearity and the computational simplicity of its derivative.

[38]. We set a dropout to 0.2 to avoid over-fitting [37]. A simple experiment suggested

50 epochs for the training with a batch size of 1. But this will vary for the different data

sets.

3.8.2 Model 2: Stacked LSTM Networks.

In stacked LSTM network, two or more layers are stacked on each other enabling the

network to have superior capabilities for temporal representations. Figure 3.8-1 below

represents a three-layer stacked LSTM network.

An experiment is done to attempt and place the optimal number of layers. The criteria

for building models implied that we use similar number of parameters, similar dropout

rate of 0.2, with the four specified parameters being tuned first. Testing across the

three data sets

Stacked LSTM

Figure 3.8-1:Simple model of stacked LSTM

• Stacked three LSTM

layers.

• First and second

layers returns a se-

quence

• Third layer doesn’t

return a sequence

Keras Python deep learning has tools which achieve Stacked LSTM models. To achieve

this, we would require LSTMs memory cells to have a 3D (3D tensor with shape (batch

size, timesteps, input dim)) input such that the output of a memory cell will be the

- 31 -

value of the entire sequence as a 2D array when LSTM processes one input sequence

of time steps. The following functionality 3.8-2 accomplishes a three stacked LSTM

layer network.

Functionality 3.8-2

This example of a whole sequence has a single output

from keras.models import Sequential

import numpy as np

from keras.layers import LSTM

We are defining an LSTM model in which LSTM acts also a layer(output)

data_dimension = 16

timesteps = 8 #different for each dataset

LSTM_mod = Sequential()

LSTM_mod.add(LSTM(32, input_shape=(timesteps , data_dimension), return_se-

quences=true))

LSTM_mod.add(LSTM(32, return_sequences=true)

LSTM_mod.add(LSTM(32))

LSTM_mod.add(Dense(10, activation='softmax'))

LSTM_mod.compile(optimizer='adam', loss='mse')

need to reshape data to 3D as

Data_array = np.array([sequential data]).reshape((1,3,1))

The predictions can be made here

print(LSTM_mod.predict(Data_array))

3.8.3 GRID and Sequential Search for Hyperparameters

LSTM has many hyperparameters to be tuned and some of them were introduced in

section 2.8. The challenge in tuning all of them is the kind of resources it will require

and the amount of effort. Even though there are quite many parameters to be tuned;

learning rate, hidden layer size and optimizer has been established as the most im-

portant hyperparameters to be tuned and which had the ability to influence the

performance of the network while input noise and momentum had nil or reduced per-

formance [39]. The GridSearchCV process will construct a combination of parameters

before evaluating one model for each. Each individual model is evaluated using Cross

validation with the default of 3-fold cross validation being used. While under

3.8.4 Random search

In contrast to Grid Search, Random search approach uses random, uniform distribution

to sample hyperparameters from the parameters dictionary. The model will then be

trained and evaluated based on the set of randomly sampled parameters. This is done

for a preset number of times (iterations), and normally matches the time the user/ex-

perimenter is willing to wait. The number of iterations can be made low or high

- 32 -

depending on the goal of the experiment. What matters in simple random sampling

delivers in randomised search when it comes to exploring a large set of possible hy-

perparameter space quickly and in an optimal manner. It is common to find set of

hyperparameters (optimization surface) exists that can optimally satisfy the problem.

Random search can hit one of this surface faster and still obtain the same accuracy as

Grid search.

3.9 Experiments

3.9.1 Processing machines specifications

The experiment is implemented using LSTM models (TensorFlow) and executed on CPU

with four cores. We had the following keys specs of the laptops used for processing:

Lenovo computer G50-80 15.6 inch with storage of 1 GB. The processor is Quad Core

i7 5th Generation, 2.6GHz running Windows 10. Initial manufacturer RAM was 8GB but

was upgraded for project work to 16GB. Later after Lenovo crashed, most likely due to

running out of virtual memory, and revival process took longer than anticipated, a new

laptop was prepared for this process whose specifications were: MacBook Air (13-inch,

2017), Processor 1.8 GHz Intel, Core i5, 8GB RAM 1600 MHz DDR3 with Macintosh HD

and macOS Sierra Version 10.

The evaluation experiments were carried out using MacBook air while the hyperparam-

eter tuning was carried out using Lenovo Laptop. Fortunately, both phases were carried

out in their entirety using each respective laptop.

3.9.2 Training Optimization Algorithm

Keras models is useful to Scikit-learn when wrapped with the KerasClassifier. There are

functions that must be defined which creates and returns the sequential models. The

constructor for the KerasClassifier class has a constructor which takes default argu-

ments received when calls are made to the model.fit(). These arguments can be the

number of epochs and the batch size. This same classifier class can accept new argu-

ments delivered through the create_model() function. Scikit-learn provides a technique

called GridSearchCV which accepts a dictionary of hyperparameters in the param_grid

- 33 -

argument. This is used in mapping the model parameter and the array of value argu-

ments (hyperparameters) that needs to be tried. n_job argument determines the

ability to utilize the all cores of the hosting machine.

For each dataset, optimization algorithm that was used to train the network was tuned

using the default parameters. The options are the ones that are supported by Keras

API. Grid search was used to optimize the optimizer since we had a finite number of

options to search from. Here we evaluated ['Nadam', 'Adamax', 'Adadelta', 'SGD’,

‘Adagrad', 'RMSprop', 'Adam'] optimizers [43].

Use scikit-learn to grid search the optimization algorithm.
from keras.wrappers.scikit_learn import KerasClassifier
from keras.models import Sequential
from keras.layers import Dense
import numpy as np
from sklearn.model_selection import RandomizedSearchCV, GridSearchCV
This function will create the model which is required for KerasClassifier
def create_keras_model(optimizer='adam'): #defaulting the optimizer to adam
 # create model
 Keras_model = Sequential()
 Keras_model = Sequential() # LSTM network, changed to reflect each network (GRU, MGU)
 Keras_model.add(Dense(12, activation='relu', input_dim=8)) #using default values
 Keras_model.add(Dense(1, activation='sigmoid'))
 # compiling the model in preparation for fiting
 Keras_model.compile(loss='binary_crossentropy', optimizer=optimizer, metrics=['accuracy'])
 return Keras_model
To allow for reproducibility we must fix the random seed
Init_seed = 8
np.random.seed(Init_seed)
Then we have to load dataset
dataset = numpy.loadtxt("dataset.csv", delimiter=",") # loading our dataset. For each dataset, this

process is done.
split data into test and train Y and X variables
X = dataset[:,0:67] #ratio of training to test
Y = dataset[:,67] #use the remainder as test
#Keras model is then created
Keras_model = KerasClassifier(epochs=100, build_fn= create_keras_model, batch_size=10, ver-

bose=0)
At this point we define the parameters for the grid search
Optimizr_lstm= ['Nadam', 'Adamax', 'Adadelta', 'SGD’, ‘Adagrad', 'RMSprop', 'Adam']
grid_for_parameters = dict(optimizer= Optimizr_lstm)
search_grid = GridSearchCV(estimator= Keras_model, param_grid= grid_for_parameters , n_jobs=-

1) # parallelize the jobs
result_from_grid = search_grid.fit(X, Y)
The results and output are analysed and summarised
print("The best performance of: %f is achieved when using %s" % (result_from_grid .best_score_,

result_from_grid .best_params_))
mean_score_test= result_from_grid .cv_results_['mean_score_test']
stdd_dev = result_from_grid .cv_results_['std_test_score']
paramtrs = result_from_grid .cv_results_['params']
for mean, stddev, param in zip(mean_score_test, stdd_dev, paramtrs):
 print("%f (%f) is achieved using: %r" % (mean_score_test , stdd_dev , param))

The best performance of: 0.691247 is achieved when using {'optimizer': 'Adam'}

0.357414 (0.024654) is achieved using: {'optimizer': 'SGD'}
0.335187 (0.023892) is achieved using: {'optimizer': 'RMSprop'}
0.679251 (0.030749) is achieved using: {'optimizer': 'Adadelta'}

- 34 -

0.652759 (0.015365) is achieved using: {'optimizer': 'Adamax'}
0.465412 (0.146526) is achieved using: {'optimizer': 'Adagrad'}
0.685125 (0.003354) is achieved using: {'optimizer': 'Nadam'}
0.698247 (0.029465) is achieved using: {'optimizer': 'Adam'}

ADAM emerged as the best optimizer in all the scenarios. According to Kingma et al.

Adam is an algorithm for first-order gradient-based optimization of stochastic objective

functions [41].

3.9.3 Tuning the number of epochs together with the batch size

In iterative gradient descent the batch size represents the network-picked number of

patterns just prior to the weights being updated. During training this batch size will

define the number of patterns that can be read at a time and memorised. The number

of epochs represents the number of times (iterations) the entire training dataset will

be shown to the network while training. [24]. For the batch size and number of epochs,

we evaluate the batch sizes in groups from 5 then 10 to 50 in steps of 10 then 60, 80

and 100 and for epochs 10 to 50 in steps of 10 then to 200 in steps of 50 as shown in

functionality 3.9.1 below [43].

Functionality 3.9.1
#To load the libraries, we need to import them
import numpy as np
import pandas as pd
from keras.wrappers.scikit_learn import kerasclassifier
from kerras import models
from sklearn.datasets import make_classification
from keras import layers
from sklearn.model_selection import randomizedsearchcv

#we are setting the random seed
np.random.seed(8)

At this point we define the parameters for the grid search

Discrete_batch_sizes = [5,10,20,30,40,50,60,80,100]

number_of_epochs = [10, 20,30,40,50, 100,150,200]

optimizer = ['Adam']

parameter_grid = dict(optimizer=optimizer, epochs= number_of_epochs ,batch_size= Dis-

crete_batch_sizes, epochs= number_of_epochs)

parameter_grid = dict(optimizer=optimizer)

search_grid = GridSearchCV(param_grid= parameter_grid, estimator= Keras_model, n_jobs=-1) #

parallelize the jobs

##other functionality appears here

- 35 -

This was done for the three data sets and the optimum for each data set obtained.

Baseline network being LSTM. The results below pointed out the best performing pair.

The best performance of: 0.696112 is achieved using {‘number of epoch’: 100, 'batch_size': 5}
0.352463 (0.023114) is achieved using: {‘number of epoch’: 10, 'batch_size': 10}
0.352463 (0.023114) is achieved using: {‘number of epoch’: 50, 'batch_size': 10}
0.651357 (0.022232) is achieved using: {‘number of epoch’: 10, 'batch_size': 20}
0.452140 (0.148963) is achieved using: {‘number of epoch’: 100, 'batch_size': 10}
0.659256 (0.015216) is achieved using: {‘number of epoch’: 50, 'batch_size': 20}
0.483283 (0.076066) is achieved using: {‘number of epoch’: 10, 'batch_size': 40}
0.653874 (0.018718) is achieved using: {‘number of epoch’: 50, 'batch_size': 40}
0.696112 (0.025213) is achieved using: {‘number of epoch’: 100, 'batch_size': 5}
0.654855 (0.025426) is achieved using: {‘number of epoch’: 100, 'batch_size': 40}
0.502512 (0.031004) is achieved using: {‘number of epoch’: 10, 'batch_size': 60}
0.663565 (0.004782) is achieved using: {‘number of epoch’: 100, 'batch_size': 60}
0.532241 (0.163013) is achieved using: {‘number of epoch’: 10, 'batch_size': 80}
0.604569 (0.051213) is achieved using: {‘number of epoch’: 50, 'batch_size': 60}
0.591023 (0.093894) is achieved using: {‘number of epoch’: 50, 'batch_size': 80}
0.662454 (0.055214) is achieved using: {‘number of epoch’: 100, 'batch_size': 80}

0.652434 (0.032855) is achieved using: {‘number of epochs’: 50, 'batch_size': 100}
0.403243 (0.106254) is achieved using: {‘number of epoch’: 10, 'batch_size': 100}
0.542996 (0.158025) is achieved using: {‘number of epochs’: 100, 'batch_size': 100}
The optimal performance turned out to be 100 epochs and batch_size of 5

3.9.4 Tuning the learning and decay rates

Updates on the weights are controlled by the learning rate, whereas the level of influ-

ence that the previous update has on the current weight update is controlled by the

momentum. We tried several values as specified below for each. Functionality 3.9.3

displays the piece of code like the one used.

learning_rate = [0.001,0.002, 0.003, 0.01, 0.02, 0.03, 0.1, 0.2, 0.3, 0.4]

decay_rate = [0.0, 0.2, 0.4, 0.6, 0.8, 0.9]

Functionality 3.9.3
def create_lstm_model(momentum=0, learn_rate=0.01):

learning_rate = [0.001,0.002, 0.003, 0.01, 0.02, 0.03, 0.1, 0.2, 0.3, 0.4]

decay_rate = [0.0, 0.2, 0.4, 0.6, 0.8, 0.9]

optimizer = Adam(lr=learn_rate, decay= decay_rate)

param_grid = dict(decay= decay_rate, lr= learning_rate, momentum= momentum)

sgd = optimizers.Adam(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True) model.com-

pile(loss='mean_squared_error', optimizer=’Adam’)

Including the number of epochs would be recommended reason being there exists

some form of relationship between the number of epochs, the amount of learning per

batch (learning rate), the number of updates per epoch (batch size). However, an at-

tempt on this was not possible due to architecture constraints where an experiment

- 36 -

on significantly small portion of data set (30 observations) and two values for each pa-

rameter did not yield any result even after 24.5 hours running and the experiment had

to be aborted. This is something that future studies may want to consider.

3.9.5 Tuning the number of neurons for the hidden layer.

The representational capacity of the network at the level in topology is controlled by

the number of neurons in the network. We tuned the number of neurons applicable to

one hidden layer. Values ranging in steps of 5 from 1 to 500 were explored. For a large

network optimization, more training is necessary and the batch size and number of

epochs should be optimized together with the number of neurons. Functionality 3.9.4

displays the piece of code like the one used [43].

Functionality 3.9.4
here we specify the grid search parameters

neurons = [K for K in range (1,500,5)]

parameters_grid = dict(neurons=neurons)

grid_search = GridSearchCV(param_grid= parameters_grid, estimator=model, n_jobs=-1)

3.9.6 Hyperparameter tuning optimized values

3.9.6.1 IBM Stock data: Batch Size and number of epochs.

The best RMSE was at batch size 5 producing a performance of 16.5 and 76.3 during

training and test respectively. Figure 3.9-2 below suggests there could be little chance

of better results after batch size of 20 but it is something that can be experimented on.

As discussed in section 3.9.2, the best performing number of epochs was 100.

The best performance of: 0.696112 is achieved using {‘number of epoch’: 100, 'batch_size': 5}

- 37 -

Figure 3.9-1: RMSE Vs. Batch Size from LSTM Time Series Prediction using US IBM Stock Data

Batch Size 4 5 6 7 8 9 10

Time (Sec) 7 6 6 6 5 5 5

Train RMSE 22.86 16.49 21.00 20.59 22.20 17.36 21.46

Test RMSE 107.30 76.28 97.15 95.39 102.17 82.46 99.43

Table 3.9-1: Results of RMSE Vs. Batch Size from LSTM Time Series Prediction using US IBM Stock Data

- 38 -

Figure 3.9-2: RMSE Vs. Batch Size from LSTM Time Series Prediction on US IBM Stock Data batch size up to 50

3.9.6.2 US CPI Data: Batch Size and number of epochs.

For this dataset, the best RMSE was observed at batch size 6 followed by size 12 pro-

ducing a performance of 38.30 and 40.35 respectively during training. Figure 3.9-4 and

table 3.9-2 below contains the results of the experiment.

Batch Size 2 4 6 8 10 12 14

Time 3 3 3 2 2 2 2

RMSE Train 47.78 48.15 38.30 43.71 49.49 40.35 55.30

RMSE Test 150.56 152.14 126.85 145.60 164.72 134.37 183.09

Table 3.9-2: Results of RMSE Vs. Batch Size from LSTM Time Series Prediction on US CPI Data

3.9.6.3 Energy Consumption: Batch Size and number of epochs.

This data set had some seasonality in it which required to be removed. Normalization

was done on the residual information. The best RMSE was observed at batch size 4 with

a performance slightly below 500 btu’s for training data. Figure 3.9-4 below displays

the results of the experiment.

- 39 -

Figure 3.9-3: RMSE Vs. Batch Size from LSTM Time Series Prediction on US CPI Data

3.9.6.4 US CPI Dataset: Learning Rate.

For this dataset, the best RMSE was observed at learning rates of 0.5. and 0.4 for train-

ing and test data respectively producing a performance of 569.59 and 834.37 during

training and test respectively. Figure 3.9-5 and table 3.9-3 below contains the results

of the experiment.

Learning Rate 0.05 0.08 0.1 0.2 0.3 0.4 0.5 0.8

RMSE Train 888.86 824.87 824.47 634.93 896.08 809.87 569.59 919.74

RMSE Test 1210.55 1186.01 1071.85 699.21 588.67 514.45 834.37 492.10

Time (sec) 3 3 3 3 3 3 4 3

Table 3.9-3: Results of RMSE Vs. Learning Rate from LSTM Time Series Prediction on US CPI

Data

- 40 -

Figure 3.9-4: RMSE Vs. Batch Size from LSTM Time Series Prediction on US Energy Consumption

Figure 3.9-5: RMSE Vs. Learning Rate from LSTM Time Series Prediction on US CPI dataset

3.9.6.5 IBM Stock data: Learning Rate.

For this dataset, the best RMSE was observed at learning rates of 0.3. for training pro-

ducing a performance of 0.61 during training. Figure 3.9-5 and table 3.9-3 below

contains the results of the experiment.

- 41 -

Learning Rate 0.05 0.08 0.1 0.2 0.3 0.4 0.5 0.8

RMSE Train 12.02 2.58 1.98 0.73 0.61 0.67 0.71 3.78

RMSE Test 60.5 18.6 22.5 11.3 8.1 11.8 13.6 12.0

Time (sec) 6 7 7 7 7 7 7 7

Table 3.9-4: Results of RMSE Vs. Learning Rate from LSTM Time Series Prediction on US IBM Dataset

Figure 3.9-6: Results of RMSE Vs. Learning Rate from LSTM Time Series Prediction on US IBM Dataset

Figure 3.9-7: Results of RMSE Vs. Learning Rate from LSTM Time Series Prediction on US Energy Consumption data

- 42 -

Learning Rate 0.05 0.08 0.1 0.2 0.3 0.4 0.5 0.8

RMSE Test 141.20 128.17 131.72 63.87 116.28 54.50 55.06 59.08

RMSE Train 42.13 40.91 43.02 23.17 35.35 13.56 21.29 34.31

Time (sec) 4 5 4 4 5 5 5 5
Table 3.9-5: Results of RMSE Vs. Learning Rate from LSTM Time Series Prediction on US Energy Consumption data

3.9.6.6 Energy Consumption: Learning rate.

For this dataset, the best RMSE was observed at learning rate of 0.4. for training pro-

ducing a performance of 13.56 during training. Figure 3.9-7 and table 3.9-5 above

contains the results of the experiment.

3.9.6.7 IBM Stock data: neurons for the hidden layer.

For this dataset, 500 neurons produced the best RMSE for training with a performance

of 0.61 during training. Figure 3.9-5 and table 3.9-6 below contains the results of the

experiment.

Neurons 500 550 600 650 700 750 800 850 900 950 1000

Time (sec) 78 92 110 127 147 163 182 211 225 260 294

RMSE Test 1.30 1.39 1.34 1.36 1.33 1.32 1.40 1.32 1.36 1.30 1.31

RMSE Train 0.61 0.97 0.67 0.64 0.60 0.65 0.78 0.60 0.81 0.60 0.60

Table 3.9-6: Results of RMSE Vs. Neurons from LSTM Time Series Prediction on US IBM Stock data

Figure 3.9-8: Results of RMSE Vs. Neurons from LSTM Time Series Prediction on US IBM Stock

data

- 43 -

Figure 3.9-9: Results of RMSE Vs. Neurons from LSTM Time Series Prediction on US IBM Stock data-2

Figure 3.9-10: Results of RMSE Vs. Neurons from LSTM Time Series Prediction on US CPI data

- 44 -

3.9.6.8 US CPI data: neurons for the hidden layer.

For this dataset, 50 neurons produced the best RMSE for training with a performance

of 48.89 during training. Figure 3.9-10 above contains the results of the experiment.

3.9.6.9 Energy Consumption: neurons for the hidden layer.

For this dataset, 50 neurons produced the best RMSE for training. Figure 3.9-11 dis-

plays the results of the experiment.

Figure 3.9-11: Results of RMSE Vs. Neurons from LSTM Time Series Prediction on US Energy data

- 45 -

4 Results and Analysis

4.1 Introduction

First, we built an LSTM network with the main basic layers, one hidden layer, one input

layer and one output layer with default configurations of hyperparameters. To set us

up, we start by choosing the optimum number of neurons using trial and error. Tanh

and a linear activation function is used for the input and output layer. Linear activation

is used for the input layer and the output layer while tanh is used for the hidden layer.

The three data sets used in this experiment were split in the ration 20:8 which is roughly

72% for training and 28% for test. We did several experiments on learning rate, batch

size, hidden units, optimizer, number of epochs. The intention was to use LSTM as a

baseline to tune the network and obtain the optimal hyperparameters. RMSE was used

as an error function. The resultant optimal parameters were then applied on the two

networks, LSTM and GRU. The results for the two training techniques were more often

similar. We made use of all the cores in the machines (section 3.9.1 describes the com-

puter specifications). At first the configuration for hyperparameter optimization were

done on a windows 10 machine configured with python 3.52. The Lenovo started freez-

ing and eventually crashed most likely because the values stored in RAM got corrupted

unpredictably and the host did not manage to recover from that. CPU usage most of

the time during processing was at 96-100% with about 14GB of the 16 GB RAM being

utilised. The crashing happened at the commencement of the LSTM and GRU compar-

ative experiments. Fortunately, we had made a back of data files, source code files and

hyperparameter optimization and configuration files. It was therefore not much of a

challenge to set up and configure an available Macintosh machine for the same pur-

pose. Some tests on hyperparameter configuration were done to confirm that the new

environment did not introduce significant bias to the results.

We optimized the hyperparameters separately for practical purposes. Analysis of inter-

actions of hyperparameters had discovered minimal effect on performance even for

the highest influencers of network performance (learning rate and network size). This

allowed us to treat hyperparameters independently. The hyperparameters were tuned

- 46 -

using a small network to save a lot of experimentation time [27]. Learning rate, hidden

size, epoch size and batch size were independently configured.

4.2 Results

Default configuration values for all techniques and data sets:

Network activation function used was the default hyperbolic tangent (tanh) whereas

for recurrent steps’ activation used hard sigmoid. Dropout rate was fixed at 0.2. and

momentum at 0.8. with decay rate being (learning rate / epochs). Fig 4.2.1 is a plot of

GRU and LSTM on IBM Stock Data running 10 iterations using optimal parameters

above.

4.2.1 IBM Stock price forecasting the optimal parameters

Learning rate: 0.3 Number of neurons: 500

Optimizer: Adam Batch size: 5

Number of epochs: 100 Number of iterations: 10 and 20

Table 4.2-1: IBM results from optimal configuration on IBM stock data

Figure 4.2-1: GRU and LSTM Results on IBM Stock Data on 10 iterations

- 47 -

Figure 4.2-2: GRU and LSTM results on IBM Stock Data on 20 iterations

Figure 4.2-3: GRU and LSTM time and performance on IBM Stock Data (20 iterations)

0

20

40

60

80

100

120

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19

T
o

ta
l

T
im

e
 t

o
 t

ra
in

(M
in

)

R
M

SE
 f

o
r

tr
a

in
in

g

Index of iteration

RMSE and Time taken for each iteration of IBM Stock data

LSTM rmse_train GRU rmse_train LSTM time GRU time

- 48 -

LSTM iter_id 1 2 3 4 5 6 7 8 9 10

LSTM RMSE Train 0.73 0.73 1.12 0.61 0.98 0.81 0.84 0.62 0.71 0.74

LSTM RMSE Test 1.95 1.50 1.87 1.93 2.31 2.70 3.99 1.75 1.83 2.01

LSTM Time (min) 87.0 91.0 90.0 92.0 91.0 89.0 103.0 99.0 97.0 95.0

GRU RMSE Train 0.95 0.63 0.90 0.76 0.75 0.68 0.83 0.81 0.75 1.05

GRU RMSE Test 1.41 1.81 2.07 1.50 1.31 1.56 1.53 2.65 2.55 1.41

GRU Time (min) 61.0 67.0 60.0 63.0 61.0 64.0 61.0 61.0 60.0 61.0

Table 4.2-2: Results from optimal configuration on IBM stock data

LSTM iter_id 11 12 13 14 15 16 17 18 19 20

LSTM RMSE Train 0.68 1.05 0.64 0.87 0.88 0.80 0.61 0.61 0.70 1.03

LSTM RMSE Test 1.44 3.08 2.32 2.56 1.35 2.11 1.68 1.79 3.05 1.60

LSTM Time (min) 90.0 93.0 89.0 85.0 89.0 86.0 86.0 86.0 88.0 93.0

GRU RMSE Train 0.68 0.81 0.64 1.16 0.78 0.81 0.62 0.68 0.61 0.73

GRU RMSE Test 1.51 1.57 1.47 2.94 1.69 1.30 1.61 2.01 1.54 1.43

GRU Time (min) 62.0 62.0 61.0 59.0 61.0 61.0 61.0 62.0 60.0 64.0

Table 4.2-3: Results from optimal configuration on IBM stock data

 Mean Std. Dev

 P-Value (T

Test)

LSTM RMSE Train 0.78844 0.15652 RMSE 0.43863344

LSTM Time (min) 90.95 4.69574

 Time 0.000000000

00000008441

GRU RMSE Train 0.78234 0.14270

GRU Time (min) 61.6 1.78885

Table 4.2-4a: Mean and Std. Dev IBM stock data Table 4.2.4b: T-test values

From table 4.2.4a the P Value for student t test on RMSE is 0.43863344 wwhich is more

than 0.05 hence we accept the null hypothesis that there is no significant difference

between LSTM and GRU for IBM stock data prediction regarding performance RMSE.

GRU and LSTM had comparable performance on IBM stock data.

However, the P value for time is 0.00000000000000008441 allowing us to reject the

null hypothesis that there is no difference between the means and conclude a signifi-

cant difference does exist. Table 4.2.4a and Table 4.2.4b GRU takes less time to train

as compared to LSTM.

4.2.2 Energy Consumption data forecasting using the optimal parameters

Learning rate: 0.4 Number of neurons: 50

Optimizer: Adam Batch size: 4

Number of epochs: 100 Number of iterations: 20

- 49 -

Figure 4.2-4: GRU and LSTM performance on Energy Consumption Data on 20 iterations.

Figure 4.2-5: GRU and LSTM performance on test data on Energy Consumption Data on 20

iterations.

0

200

400

600

800

1000

1200

1400

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

E
n

e
rg

y
 C

o
n

su
m

p
ti

o
n

 (
b

tu
)

iteration index

RMSE on Test Data for LSTM and GRU iterated 20 times

LSTM RMSE Test GRU RMSE Test

- 50 -

Figure 4.2-6: GRU and LSTM time and performance on training data on Energy Consump-

tion Data on 20 iterations.

 Mean Std. Dev Paired T Test

 P Value

LSTM Train RMSE 697.9159353 31.12977 Training RMSE 0.000184281

GRU Train RMSE 638.8481595 42.10173 Total Time Taken 0.00010312

LSTM Time (Min) 5.05 0.686333

GRU Time (Min) 2.95 0.759155

LSTM Test RMSE 989.2920463 86.66707

GRU Test RMSE 781.2608959 97.39702

Table 4.2-5a: Mean and Std. Dev Energy data Table 4.2.5b: T-test values

From table 4.2.5a the P Value for student t test on RMSE is 0.000184281 which is less

than 0.05 hence we reject the null hypothesis that there is no significant difference

between LSTM and GRU for Energy Consumption Data forecasting regarding perfor-

mance RMSE. GRU and LSTM had comparable performance on IBM stock data. The test

is at 95% significance value. 4.2.5a and Table 4.2.5b indicates that GRU takes less time

to train as compared to LSTM and GRU’s performance is significantly higher as indicated

by lower RMSE on average. With this dataset GRU’s overall performance is superior.

0

1

2

3

4

5

6

7

0

100

200

300

400

500

600

700

800

900

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

T
o

ta
l

ti
m

e
 T

ra
in

in
g

 (
m

in
)

E
n

e
rg

y
 C

o
n

su
m

p
ti

o
n

 (
b

tu
)

Iteration index

RMSE on Train Data for LSTM and GRU iterated 20 times

GRU RMSE Train LSTM RMSE Train

LSTM Time Taken (min) GRU Time Taken (min)

- 51 -

4.2.3 Consumer Price Index data forecasting using the optimal parameters

Learning rate: 0.4 Number of neurons: 50

Optimizer: Adam Batch size: 12

Number of epochs: 100 Number of iterations: 20

Figure 4.2-7: GRU and LSTM performance on CPI data on 20 iterations

 Mean Std. Dev P-Value (T Test)

LSTM Train 4.485262 1.348956 RMSE 0.000000000018443

GRU Train 0.563188 0.161137 Time 0.00000000000000000001

LSTM Time 9.35 0.933302

GRU Time 5.45 0.825578

LSTM Test 9.939039 4.445375

GRU Test 2.553771 0.413248

Table 4.2-6a: Mean and Std. Dev CPI data Table 4.2.6b: T-test values

- 52 -

Figure 4.2-8: GRU and LSTM time and performance on CPI training data on 20 iterations

Figure 4.2-9: GRU optimized network prediction on some stock belonging to American

Airlines

T-test P value for time is 0.000000000018443 and for performance is

0.00000000000000000001 at 95% significance value. We therefore reject the null hy-

pothesis that there is no difference between the means and conclude a significant

difference does exist. GRU takes less time to train as compared to LSTM. GRU’s perfor-

mance is significantly higher as indicated by lower RMSE on average. The conclusion is

that that vanilla LSTM performs comparably to GRU on stock price prediction. However,

0

2

4

6

8

10

12

0

1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

T
o

ta
l t

im
e

 (
m

in
)

R
M

S
E

Iteration index

LSTM and GRU perfomance

GRU RMSE Train LSTM RMSE Train

LSTM Total time (min) GRU Total time (min)

- 53 -

two datasets CPI and Energy consumption had GRU performing reasonably better than

LSTM.

4.3 Critical evaluation

k-fold Cross Validation. There were noticeable variances in the results that were being

achieved especially for LSTM majorly because of lack of cross validation. Configuration

of the cross validation on a high-performance environment may be tested to check the

stability of the results.

Parallelizing the training. Even though I was using all the six cores of my computer ma-

chine, neural networks have been known to be very slow to train. An exhaustive search

for neural networks involves trying a lot of different parameters. Considering AWS in-

stances may seem appropriate in the future.

Sample sets of datasets. While neural networks are slow to train, trying a smaller sam-

ple of the training dataset helps to give some general directions. Optimal configurations

may not be achieved on the sample and may require the whole data set. This was the

case for IBM stock prediction where samples of data set were used.

Transferring optimal results between problems. Optimal configurations on each new

problem may differ. It is unlikely to have optimal results discovered in one problem

getting transferred to another problem. An attempt was made to configure optimal

settings for each new dataset. However, training resources were limiting and so the

hyperparameter solution space was limited. At some point we defaulted the search to

sequential independent searches rather than random search or Grid search. This was

informed by hardware capacity.

Reproducibility is a problem. For most of the experiments the seed for the random

number generator in Numpy is set in order to attempt to achieve reproducibility. How-

ever, this is not normally the case. Keras has presented more reproducibility for grid

and random searches that the basic configuration we attempted to achieve here. I be-

lieve this is a subject that can be explored in the future.

4.4 Conclusion and future work

We optimized the hyperparameters separately for practical purposes. The achieved

optimal configurations indicated that the vanilla LSTM performs comparably to GRU

- 54 -

on stock price prediction. However, two datasets on CPI and Energy consumption had

GRU performing better than LSTM. Neural networks are a hurdle to new comers to the

field since in most cases intuition of experts and their experiences inform most practi-

cal choices. Our attention has been to provide some evidence for some of those

intuitions. New insights on architecture choice for specific datasets and hyperparame-

ter tuning for LSTM and GRU have been presented. The study has also provided

domains where LSTM can be equally useful as GRU and others where GRU is deemed

superior. We evaluated different hyperparameters for the commonly known LSTM-ar-

chitecture, otherwise called vanilla LSTM, for Time Series Analysis. We recommend

that different tasks should consider different configurations of the hyperparameters

using the approach that was adopted. In future performance between GRU and the

recent MGU(MGRU) can be investigated. More complex configurations of LSTM, GRU

and MGU can also be explored and or investigated to gain new insides and hopefully

improve on performance. Experiments on wider sets of data may be carried out with

ideally appropriate hardware architectures. We were also limited to single steps ahead

in terms of prediction. This scope can be expanded to have prediction spanning several

steps which may useful in long-term planning.

- 55 -

5 References

[1]. Hochreiter, S. (1998). The vanishing gradient problem during learning recurrent

neural nets and problem solutions. International Journal of Uncertainty, Fuzzi-

ness and Knowledge-Based Systems, 6(02), 107-116.

[2]. Tsay, R. S. (2005). Analysis of financial time series (Vol. 543). John Wiley & Sons.

[3]. Gheyas, I. A., & Smith, L. S. (2009, July). A neural network approach to time

series forecasting. In Proceedings of the World Congress on Engineering (Vol. 2,

pp. 1-3).

[4]. LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. nature, 521(7553),

436.

[5]. Owda, H. M., Omoniwa, B., Shahid, A. R., & Ziauddin, S. (2014). Using Artificial

Neural Network Techniques for Prediction of Electric Energy Consump-

tion. arXiv preprint arXiv:1412.2186.

[6]. Schmidhuber, J., & Hochreiter, S. (1997). Long short-term memory. Neural Com-

put, 9(8), 1735-1780.

[7]. Malkiel, B. G., & Malkiel, J. A. (1973). Male-female pay differentials in profes-

sional employment. The American Economic Review, 63(4), 693-705.

[8]. Zhou, G. B., Wu, J., Zhang, C. L., & Zhou, Z. H. (2016). Minimal gated unit for

recurrent neural networks. International Journal of Automation and Compu-

ting, 13(3), 226-234.

[9]. Längkvist, M., Karlsson, L., & Loutfi, A. (2014). A review of unsupervised feature

learning and deep learning for time-series modeling. Pattern Recognition Let-

ters, 42, 11-24.

[10]. Bengio, Y., Simard, P., & Frasconi, P. (1994). Learning long-term dependencies

with gradient descent is difficult. IEEE transactions on neural networks, 5(2),

157-166.

[11]. Martens, J., & Sutskever, I. (2011). Learning recurrent neural networks with hes-

sian-free optimization. In Proceedings of the 28th International Conference on

Machine Learning (ICML-11)(pp. 1033-1040).

[12]. Gers, F. A., Schmidhuber, J., & Cummins, F. (1999). Learning to forget: Continual

prediction with LSTM.

- 56 -

[13]. Graves, A., Mohamed, A. R., & Hinton, G. (2013, May). Speech recognition with

deep recurrent neural networks. In Acoustics, speech and signal processing

(icassp), 2013 ieee international conference on (pp. 6645-6649). IEEE.

[14]. Luong, M. T., Sutskever, I., Le, Q. V., Vinyals, O., & Zaremba, W. (2014). Address-

ing the rare word problem in neural machine translation. arXiv preprint

arXiv:1410.8206.

[15]. Mou, L., Ghamisi, P., & Zhu, X. X. (2017). Deep recurrent neural networks for

hyperspectral image classification. IEEE Trans. Geosci. Remote Sens, 55(7),

3639-3655.

[16]. Shengnan Y. (2018). Financial Time Series Analysis of Stock Data, 2-3.

[17]. Ghiassi, M., Saidane, H., & Zimbra, D. K. (2005). A dynamic artificial neural net-

work model for forecasting time series events. International Journal of

Forecasting, 21(2), 341-362.

[18]. Yang, Q., & Wu, X. (2006). 10 challenging problems in data mining research.

International Journal of Information Technology & Decision Making, 5(04), 597-

604.

[19]. Github: https://github.com/RaymondRono/LSTM-and-GRU-Prediction.

[20]. Hyndman, R. J., & Koehler, A. B. (2006). Another look at measures of forecast

accuracy. International journal of forecasting, 22(4), 679-688.

[21]. Dietterich, T. G. (1998). Approximate statistical tests for comparing supervised

classification learning algorithms. Neural computation, 10(7), 1895-1923.

[22]. “Introduction to Artificial Neural Networks - Part 1.”

[Online]. Available: http://www.theprojectspot.com/tutorial-post/

introduction-to-artificial-neural-networks-part-1/7.

[23]. LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. nature, 521(7553), 436.

Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning representations

by back-propagating errors. nature, 323(6088), 533.

[24]. Ruder, S. (2016). An overview of gradient descent optimization algorithms. arXiv

preprint arXiv:1609.04747.

- 57 -

[25]. Goodfellow, I., Bengio, Y., Courville, A., & Bengio, Y. (2016). Deep learning

(Vol.1). Cambridge: MIT press.

[26]. Bergstra, J., & Bengio, Y. (2012). Random search for hyper-parameter optimiz-

tion. Journal of Machine Learning Research, 13(Feb), 281-305.

[27]. Greff, K., Srivastava, R. K., Koutník, J., Steunebrink, B. R., & Schmidhuber, J.

(2017). LSTM: A search space odyssey. IEEE transactions on neural networks and

learning systems, 28(10), 2222-2232.

[28]. https://medium.com/mlreview/understanding-lstm-and-its-diagrams-37e2f46f1714.

Accessed 08/21/2018

[29]. http://colah.github.io/posts/2015-08-Understanding-LSTMs/.Accessed 07/27/2018

[30]. https://medium.com/deep-math-machine-learning-ai/chapter-10-1-deepnlp-lstm-long-

short-term-memory-networks-with-math-21477f8e4235. Accessed 08/11/2018

[31]. https://en.wikipedia.org/wiki/Long_short-term_memory. Accessed 08/15/2018

[32]. Wu, Z., & King, S. (2016). Investigating gated recurrent neural networks for

speech synthesis. arXiv preprint arXiv:1601.02539.

[33]. A. Graves, M. Liwicki, S. Fernandez, R. Bertolami, H. Bunke, and J. Schmidhuber.

A Novel Connectionist System for Unconstrained Handwriting Recognition. IEEE

Transactions on Pattern Analysis and Machine Intelligence, 31(5):855–868, May

2009.

[34]. A. Graves, A.-R. Mohamed, and G. Hinton. Speech recognition with deep recur-

rent neural networks. In 2013 IEEE International Conference on Acoustics,

Speech and Signal Processing (ICASSP), pages 6645–6649, May 2013.

[35]. Hasim Sak, Andrew W. Senior, and Françoise Beaufays. Long short-term memory

recurrent neural network architectures for large scale acoustic modeling. pages

338–342, 2014.

[36]. Graves, A. (2013). Generating sequences with recurrent neural networks. arXiv

preprint arXiv:1308.0850.

[37]. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R.

(2014). Dropout: a simple way to prevent neural networks from overfitting. The

Journal of Machine Learning Research, 15(1), 1929-1958.

- 58 -

[38]. Han, J., & Moraga, C. (1995, June). The influence of the sigmoid function pa-

rameters on the speed of backpropagation learning. In International Workshop

on Artificial Neural Networks (pp. 195-201). Springer, Berlin, Heidelberg.

[39]. Greff, K., Srivastava, R. K., Koutník, J., Steunebrink, B. R., & Schmidhuber, J.

(2017). LSTM: A search space odyssey. IEEE transactions on neural networks

and learning systems, 28(10), 2222-2232.

[40]. https://keras.io/optimizers/ Accessed 07/27/2018

[41]. Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv

preprint arXiv:1412.6980.

[42]. Adhikari, R., & Agrawal, R. K. (2013). An introductory study on time series mod-

eling and forecasting. arXiv preprint arXiv:1302.6613.

[43]. https://machinelearningmastery.com/ Accessed 07/27/2018

[44]. Adhikari, R., & Agrawal, R. K. (2013). An introductory study on time series mod-

eling and forecasting. arXiv preprint arXiv:1302.6613.

- 59 -

Appendix 1

PIECES OF PYTHON SOURCE CODE

Ploting and Visualizing

#import libraries

from math import sin

from matplotlib import pyplot

import matplotlib.pyplot as plt

import pandas as pd

import numpy as np

from math import radians

from sklearn.preprocessing import MinMaxScaler

#set file name parameter and names

#filename = 'data/ibm_us_with_average_R_only.csv'

####filename = 'data/Energy_Consumption_by_Sector_R.csv'

#filename = 'data/CPIAUCSL_seasonally_adjusted_R.csv'

names = ['date', 'mean_value']

#function to create data set

def create_dataset(dataarray, look_back=1): # converting arrays into datasets

 datasetX, datasetY = [], []

 for j in range(len(dataarray)-look_back-1):

 a = dataarray [j:(j+look_back), 0]

 datasetX.append(a)

 datasetY.append(dataarray[j + look_back, 0])

 return np.array(datasetX), np.array(datasetY)

function to get and extract train and test sets

def get_data():

 #data_fil

 filename = 'ibm_us_with_average_R_only.csv'

 names = ['date', 'mean_value']

 #split here

 valid_ratio = (20/28)

 length = 5 #(20/4)=5 samples

 dataframe = pd.read_csv(filename, names=names, engine='python', usecols=[1])

 dataset = dataframe.values

 ds = np.array(dataset)

 print((ds.shape()))

 dataset = dataset.astype('float32')

 # here the data is being normalized

 MinMaxScaler = MinMaxScaler(feature_range=(0, 1))

 dataarray = MinMaxScaler.fit_transform(dataset)

 train_size = int(len(dataarray) * valid_ratio)

 test_size = len(dataarray) - train_size

 traindata, testdata = dataarray[0:train_size,:], dataarray[train_size:len(dataarray),:]

 #steps to lookback

 lookback = 1

 dataset= dataarray

 traindataX, traindataY = create_dataset(traindata, lookback)

 testdataX, testdataY = create_dataset(testdata, lookback)

 #traindataX = np.reshape(traindataX, (trainX.shape[0], 1, trainX.shape[1]))

- 60 -

 testdataX = np.reshape(testdataX, (testdataX.shape[0], 1, testdataX.shape[1]))

 return(traindataX, traindataY, testdataX, testdataY)

Seasonality adjustment

creating / de-trending a differenced series

def deseason(dataset_train, interval=1):

 deseason_data = list()

 for i in range(interval, len(dataset_train)):

 value = dataset_train [i] - dataset_train [i - interval]

 deseason_data.append(value)

 return deseason_data

df = pd.read_csv(filename, names=names, engine='python')

X = df['date']

Y = df['mean_value']

data=Y

#ds = df.values

#print (Y)

Z = [i for i in range(len(Y))]

#plot data

pyplot.title("IBM stock over time")

pyplot.xlabel("Time period")

pyplot.ylabel("Value of stock - USD")

pyplot.plot(Y)

pyplot.show()

RMSE Vs No. of Epochs from LSTM Time Series Prediction US IBM Stock

Data#file_name_l ='_lstm_0_500'

init = 0

endi = 15

stepss = 5 #(init,endi,stepss)

file_name_l ='_lstm_cpi_' + str(init) + '_' + str(endi) + '_' + str(stepss) + ''

from keras.models import Sequential

import pandas as pd

from keras.layers.recurrent import LSTM, GRU

import numpy as np

import matplotlib.pyplot as plt

from keras.layers.core import Dense, Activation, Dropout, Flatten

import time

from sklearn.preprocessing import MinMaxScaler

from keras.callbacks import EarlyStopping

from sklearn.metrics import mean_squared_error

from keras.layers import BatchNormalization

import math

from keras.models import load_model

from datetime import datetime

from sklearn.preprocessing import RobustScaler

from keras import regularizers

import keras

import math

from sklearn.model_selection import GridSearchCV

- 61 -

from keras.wrappers.scikit_learn import KerasClassifier

from keras import backend as K

import seaborn as sns

trainRMSE = []

testRMSE = []

epochss = []

def post_data(data_id, rmse_train, rmse_test, tim):

 import json

 data = {}

 with open('output_data/rmse.json') as json_file:

 data = json.load(json_file)

 if data_id in (data['data_id']):

 return True

 else:

 data['time'].append(tim)

 data['rmse_test'].append(rmse_test)

 data['rmse_train'].append(rmse_train)

 data['data_id'].append(data_id)

 with open('output_data/rmse.json', 'w') as outfile:

 json.dump(data, outfile)

 return False

def create_dataset(dataarray, look_back=1): # converting arrays into datasets

 datasetX, datasetY = [], []

 for j in range(len(dataarray)-look_back-1):

 a = dataarray [i:(i+look_back), 0]

 datasetX.append(a)

 datasetY.append(dataarray[i + look_back, 0])

 return np.array(datasetX), np.array(datasetY)

function to get and extract train and test sets

def get_data():

 filename = 'data/ibm_us_with_average_R_only.csv'

 names = ['date', 'mean_value']

 valid_ratio = (20/28)

 length = 5 #(20/4)=5 samples

 dataframe = pd.read_csv(filename, names=names, usecols=[1], engine='python')

 datasetarray = dataframe.values

 datasetarray = datasetarray.astype('float32')

 # normalize the datasetarray

 scaler = MinMaxScaler(feature_range=(0, 1))

 dataset = scaler.fit_transform(datasetarray)

 train_size = int(len(dataset) * valid_ratio)

 test_size = len(dataset) - train_size

 traindata, testdata = dataset[0:train_size,:], dataset[train_size:len(dataset),:]

 look_back = 1

 traindataX, traindataY = create_dataset(traindata, look_back)

 testdataX, testdataY = create_dataset(testdata, look_back)

 traindataX = np.reshape(traindataX, (traindataX.shape[0], 1, traindataX.shape[1]))

- 62 -

 testdataX = np.reshape(testdataX, (testdataX.shape[0], 1, testdataX.shape[1]))

 return(traindataX, traindataY, testdataX, testdataY)

def lstm_new_call(NUM, EPOCS):

 filename = 'CPIAUCSL_seasonally_adjusted_R.csv'

 names = ['date', 'mean_value']

 valid_ratio = (20/28)

 length = 5 #(20/4)=5 samples

 datafr = pd.read_csv(filename, names=names, usecols=[1], engine='python')

 dataarray = datafr.values

 dataarray = dataarray.astype('float32')

 # to normalize the dataarray

 MinMaxScaler = MinMaxScaler(feature_range=(0, 1))

 dataset = MinMaxScaler.fit_transform(dataarray)

 #plt.plot(dataarray)

 #plt.show()

 # split into train and test sets

 train_size = int(len(dataset) * valid_ratio)

 test_size = len(dataset) - train_size

 train, test = dataset[0:train_size,:], dataset[train_size:len(dataset),:]

 NB_EPOCH = 250

 BATCH_SIZE = 128

 VERBOSE = 1

 NB_CLASSES = 10 # number of outputs = number of digits

 OPTIMIZER = SGD() # optimizer, explained later in this chapter

 N_HIDDEN = 128

 VALIDATION_SPLIT=0.2 # how much TRAIN is reserved for VALIDATION

 DROPOUT = 0.3

 X_train /= 255

 X_test /= 255

 # class vectors are converted to binary matrix classes

 Y_train = np_utils.to_categorical(y_train, NB_CLASSES)

 Y_test = np_utils.to_categorical(y_test, NB_CLASSES)

 # M_HIDDEN hidden layers 10 outputs

 model = Sequential()

 model.add(Dense(N_HIDDEN, input_shape=(RESHAPED,)))

 model.add(Activation('relu'))

 model.add(Dense(N_HIDDEN))

 model.add(Dropout(DROPOUT))

 model.add(Activation('softmax'))

 model.add(Dense(NB_CLASSES))

 model.summary()

 model.compile(loss='categorical_crossentropy',

 optimizer=OPTIMIZER,

 metrics=['accuracy'])

 history = model.fit(X_train, Y_train, epochs=NB_EPOCH,

 batch_size=BATCH_SIZE, validation_split=VALIDATION_SPLIT,

 verbose=VERBOSE)

 score = model.evaluate(X_test, Y_test, verbose=VERBOSE)

def lstm_call(NUM, EPOCS):

 filename = 'data/ibm_us_with_average_R_only.csv'

- 63 -

 names = ['date', 'mean_value']

 valid_ratio = (20/28)

 length = 5 #(20/4)=5 samples

 dataframe = pd.read_csv(filename, names=names, usecols=[1], engine='python')

 dataarray = dataframe.values

 dataarray = dataarray.astype('float32')

 # the dataarray is normalized

 MinMaxScaler = MinMaxScaler(feature_range=(0, 1))

 dataarray = MinMaxScaler.fit_transform(dataarray)

 #plt.plot(dataarray)

 #plt.show()

 # split into train and test sets

 train_size = int(len(dataset) * valid_ratio)

 test_size = len(dataset) - train_size

 traindata, testdata = dataset[0:train_size,:], dataset[train_size:len(dataset),:]

 #print(len(traindata), len(testdata))

 # reshape into X=t and Y=t+1

 lookback = 1

 traindataX, traindataY = create_dataset(traindata, lookback)

 testdataX, testdataY = create_dataset(testdata, lookback)

 ##print("train")

 # reshape input to be [samples, time steps, features]

 traindataX = np.reshape(traindataX, (traindataX.shape[0], 1, traindataX.shape[1]))

 testdataX = np.reshape(testdataX, (testdataX.shape[0], 1, testdataX.shape[1]))

 # create and fit the LSTM network

 #scaler = MinMaxScaler(feature_range=(0, 1))

 #look_back = 1

 model = Sequential()

 model.add(LSTM(4, input_shape=(1, look_back)))

 model.add(Dense(1))

 model.compile(loss='mean_squared_error', optimizer='SGD')

 #print('summary')

 #print(model.summary)

 t1 = datetime.now()

 model.fit(traindataX, traindataY, epochs=EPOCS, batch_size=1, verbose=0)

 t2 = datetime.now()

 delta = t2 - t1

 tim = delta.seconds

 model_file = 'output_data/lstm_model_' + str(NUM) + file_name_l + '.h5'

 #####model.save('lstm_model.h5')

 model.save(model_file)

 # using to make predictions

 trainPredict = model.predict(traindataX)

 testPredict = model.predict(testdataX)

 score = model.evaluate(testdataX, testdataY, verbose='VERBOSE')

 #print(score)

- 64 -

 #print(score[0], score[1])

 # this is used to invert the predictions that have been made

 trainPredict = scaler.inverse_transform(trainPredict)

 traindataY = scaler.inverse_transform([traindataY])

 testPredict = scaler.inverse_transform(testPredict)

 testdataY = scaler.inverse_transform([testdataY])

 #np.savetxt('Train3.txt',traindataY)

 #np.savetxt('Test3.txt',testdataY)

 # accuracy using root mean squared error

 trainScore = math.sqrt(mean_squared_error(traindataY[0], trainPredict[:,0]))

 testScore = math.sqrt(mean_squared_error(testdataY[0], testPredict[:,0]))

 #print('Test Score: %.2f RMSE' % (testScore))

 trainRMSE.append(trainScore)

 testRMSE.append(testScore)

 epochss.append(EPOCS)

 # train predictions are shifted for plotting

 PredictTrainPlotData = np.empty_like(dataset)

 PredictTrainPlotData [:, :] = np.nan

 PredictTrainPlotData [lookback:len(trainPredict)+lookback, :] = trainPredict

 # shift test predictions for plotting

 PredictTestPlotData = np.empty_like(dataset)

 PredictTestPlotData [:, :] = np.nan

 PredictTestPlotData [len(trainPredict)+(lookback*2)+1:len(dataset)-1, :] = testPredict

 # the predictions and the baseline are plotted

 post_data(NUM, trainScore, testScore, tim)

 main_file = 'output_data/Main_' + str(NUM) + file_name_l + '.txt'

 train_file = 'output_data/Train_' + str(NUM) + file_name_l + '.txt'

 test_file = 'output_data/Test_' + str(NUM) + file_name_l + '.txt'

 np.savetxt(main_file,scaler.inverse_transform(dataset))

 np.savetxt(train_file,trainPredictPlot)

 np.savetxt(test_file,testPredictPlot)

 import matplotlib.patches as mpatches

 #plt.legend(handles=[red_patch],loc=1)

 #plt.legend(handles=[blue_patch],loc=2)

 #plt.legend(handles=[green_patch],loc=3)

 #plt.plot(scaler.inverse_transform(dataset),label='Observed Instance', marker='o')

def main_exec(NUM, EPOCS):

 trainX, trainY, testX, testY = get_data()

 time_now1 = datetime.now()

 for i in range(init,endi,stepss):#(0,2,2):

 if (i%50==0):

 print('Percent Complete: %.2f ' % int(i*100/15))

 #lstm_call(NUM, EPOCS)

 lstm_call(NUM, i)

 time_now2 = datetime.now()

 diff = time_now2 - time_now1

 plt.plot(epochss, trainRMSE, label='Train Data Plot', marker='*')

 plt.plot(epochss, testRMSE, label='Test Data Plot', marker='o')

 plt.legend()

 plt.title('RMSE Vs No. of Epochs from LSTM Time Series Prediction US IBM Stock Data')

 plt.xlabel('Number of Epochs')

- 65 -

 plt.ylabel('Root Mean Squared Error')

 plt.grid(True)

 #fig = plt.figure()

 #ax = fig.add_subplot(111)

 #ax = plt.Subplot()

 #for i,j in enumerate(trainRMSE):

 # ax.annotate(j,(trainRMSE[i],epochss[i]+0.5))

 plt.show()

 print('time:' + str(diff))

 rmse_file = 'output_data/rmse_file_' + str(NUM) + file_name_l + '.txt'

 with open(rmse_file, 'ab') as rmse_file:

 np.savetxt(rmse_file,epochss,newline='\r\n')

 np.savetxt(rmse_file,trainRMSE,newline='\r\n')

 np.savetxt(rmse_file,testRMSE,newline='\r\n')

main_exec(1,1)

- 66 -

