

InDaChain: Transparency across the Supply Chain

Proof-of-Concept based on smart contracts

Pedro Herrera Lopez Guerrero

September 2019

Dissertation submitted in partial fulfilment for the degree of

Master of Science in Fintech

Computing Science and Mathematics

University of Stirling

II

Abstract

InDaChain is a proof-of-concept that benefits from blockchain capabilities to design a more

transparent supply chain. The initiative is empowered by three main ideals: becoming a

trustworthy source of information; create a decentralized system; and achieve a sustainable

way of production. This project aims to connect two opposite ends across the supply chain:

producers with the need to display a transparent way of production and customers interested

in knowing the exact content of the goods they are acquiring.

The purpose of this document is to define a framework for future development based on the

experience acquired by studying a real production process. Moreover, this text also provides a

thorough overview of the basic concepts required to understand the logic behind blockchain

and smart contracts, along all the technologies and processes required to interact with them.

The results pave the way for constructing smart contracts that can help revolutionize the

industry.

III

Attestation

I understand the nature of plagiarism, and I am aware of the University’s policy on this.

I certify that this dissertation reports original work by me during my University project except

for the following:

 The production process in detail, as well as the stakeholders involved, were mostly

obtained from meetings with an involved party.

 The IDC screenshot showing the result of the parsed ABI is result from Tommaso

Caramelli’s work.

Signature Date

IV

Acknowledgements

To my family, for supporting me my entire life. Words are not enough to demonstrate what

they represent to me;

To my friends, in particular Pablo Soria who awaken the inner competitor and always kept

me interested in computing science;

To my girlfriend for being my support at most difficult times and for teaching me how to

reference properly;

To my former EY leaders Julio I. Hernandez, Felix Tarano and Jorge Hernandez who believe in

me and gave me the opportunity to develop myself in a professional and competitive

environment never letting me stay in a comfort zone.

To my program colleagues, specially Tommaso Caramelli and Manaf Safarini whom I develop

the IDC project with. For making the dissertation time a one to remember and

To the University of Stirling and my Supervisor Andrea Bracciali for providing me with the

right insights during the dissertation and throughout the whole MSc degree.

“I can accept failure, everyone fails at something. But I can’t accept not trying”

 Michael Jordan

V

Table of Contents

ABSTRACT .. II

ATTESTATION .. III

ACKNOWLEDGEMENTS .. IV

LIST OF FIGURES ... VII

LIST OF TABLES ... VIII

1. INTRODUCTION .. - 1 -

1.1 BACKGROUND AND GENERAL CONTEXT .. - 1 -
1.2 SCOPE AND OBJECTIVE .. - 2 -
1.3 RISKS & CHALLENGES ... - 3 -

2. STATE OF THE ART ... - 4 -

2.1 BLOCKCHAIN ... - 4 -
2.1.1 FIRST GENERATION – BLOCKCHAIN 1.0 ... - 4 -
2.1.2 MAIN LIMITATIONS .. - 7 -
2.1.3 SECOND GENERATION – BLOCKCHAIN 2.0 ... - 9 -
2.1.4 SMART CONTRACTS .. - 13 -
2.1.5 RISKS IN SMART CONTRACTS ... - 19 -
2.2 TRANSPARENCY & TRACEABILITY IN THE SUPPLY CHAIN ... - 23 -
2.2.1 SUPPLY CHAIN / SMART CONTRACT USE CASE: PROVENANCE .. - 25 -

3. GENERAL REQUIREMENTS ... - 27 -

3.1 HARDWARE ... - 27 -
3.2 TECHNOLOGICAL REQUIREMENTS .. - 27 -
3.2.1 REMIX .. - 27 -
3.2.2 SOLIDITY ... - 30 -
3.2.3 ETHEREUM VIRTUAL MACHINE .. - 31 -
3.2.4 METAMASK ... - 31 -
3.2.5 INFURA ... - 33 -
3.2.6 WEB3.JS ... - 33 -
3.2.7 TRUFFLE FRAMEWORK .. - 34 -
3.2.8 ETHERSCAN ... - 35 -
3.3 SPECIFIC REQUIREMENTS ... - 35 -

VI

4. IMPLEMENTATION ... - 36 -

4.1 DEPLOYING A SMART CONTRACT .. - 36 -
4.2 TRANSACTIONS .. - 37 -
4.3 APPLICATION CASE: GLUTEN FREE OATS .. - 38 -
4.3.1 HIGH-LEVEL PROCESS .. - 39 -
4.3.2 STAKEHOLDERS .. - 41 -
4.4 IDC SMART CONTRACT: HIGH-LEVEL DESIGN .. - 42 -

5. FUNCTIONALITIES .. - 45 -

5.1 METAMASK AND REMIX SETUP .. - 46 -
5.2 IDC DEPLOYMENT .. - 49 -
5.3 ETHERSCAN EVENTS .. - 56 -

6. CONCLUSION .. - 60 -

6.1 EVALUATION ... - 61 -
6.2 LIMITATIONS ... - 62 -
6.3 FRAMEWORK FOR THE FUTURE .. - 62 -

REFERENCES ... - 65 -

APPENDIX: CONTRACT BOILERPLATE ... - 73 -

VII

List of Figures

FIGURE 1: BLOCK ARCHITECTURE (SOURCE[3]) ... - 6 -
FIGURE 2:TRANSACTIONS FLOW (SOURCE [3]) ... - 6 -
FIGURE 3: HOW THE BLOCKCHAIN WORKS? (SOURCE[4]) ... - 7 -
FIGURE 4: POW VS POS COMPARISON (SOURCE[16]) ... - 9 -
FIGURE 5: ETHEREUM BLOCKTIME CHART (SOURCE[22]) .. - 12 -
FIGURE 6: SMART CONTRACT LOGIC ... - 14 -
FIGURE 7: INSUFFICIENT GAS FUNDS ... - 17 -
FIGURE 8: SUFFICIENT FUNDS .. - 17 -
FIGURE 9: EXECUTION PROCEDURE OF PASSWORD THEFT (SOURCE[20]) .. - 20 -
FIGURE 10: REMIX LAYOUT (SOURCE[46]) .. - 28 -
FIGURE 11: COMPILER OPERATION FLOW .. - 28 -
FIGURE 12: REMIX COMPILER ... - 29 -
FIGURE 13: JSVM ACCOUNTS DISPLAY ... - 30 -
FIGURE 14: METAMASK MNEMONIC ARCHITECTURE .. - 32 -
FIGURE 15: METAMASK ATTRIBUTES COEXISTENT ENVIRONMENT ... - 33 -
FIGURE 16: TRUFFLE FRAMEWORK ... - 35 -
FIGURE 17: SMART CONTRACT DEPLOYMENT OVERVIEW SOURCE (ADAPTED FROM [57]) ... - 36 -
FIGURE 18: CONTRACT DEPLOYMENT FLOW USING REMIX VIA METAMASK .. - 37 -
FIGURE 19: GLUTEN-FREE OATS PRODUCTION PROCESS / IDC SCOPE ... - 40 -
FIGURE 20: SMART CONTRACT – CULTIVATION LOGIC ... - 43 -
FIGURE 21: SMART CONTRACT – HARVEST LOGIC ... - 44 -
FIGURE 22: SMART CONTRACT - TRACKING LOGIC... - 45 -
FIGURE 23: IDC FUTURE FRAMEWORK FOR SUPPLY CHAIN ... - 63 -

VIII

List of Tables

TABLE 1: ETHEREUM KEY INDICATORS (SOURCE[9]) .. - 12 -
TABLE 2: SMART CONTRACTS RISKS TAXONOMY (SOURCE [20]).. - 20 -
TABLE 3: SMART CONTRACTS VULNERABILITIES TAXONOMY (SOURCE [35]) .. - 21 -
TABLE 4: UNDER-OPTIMIZED SOLIDITY CODE PATTERNS (SOURCE[20]) ... - 22 -
TABLE 5: TRANSACTION PROPERTIES ... - 38 -

- 1 -

1. Introduction

InDaChain (IDC) is a Proof-of-Concept conceived along two colleagues of the MSc Fintech,

consisting in a distributed application prototype comprised by a web/mobile front-end

connected to a blockchain backend. The current project targets two main drivers: a transparent

supply chain, and the support for those mindsets that embrace a certain type of alternative

while producing or consuming a specific type of product, either organic, gluten-free or ethically

produced.

With this decentralized application (dapp), each producer would be able to register its own

data on the blockchain. Moreover, with the use of Smart Contracts along other technologies

such as smart censors, products and processes can be certified while shipments can be tracked,

providing trust across a whole supply chain. In the end, any potential end user can verify the

origin of a product or the type of conditions required to produce a certain good.

The present document will first explain the general concepts of blockchain and smart

contracts, as well as their risks and limitations. Then, a brief recap of the technologies involved

in the development of the IDC smart contract, and requirements needed. Afterwards, the

contract implementation and the main functionalities are also displayed. Finally, a conclusion of

the whole work, providing an assessment and a framework that references potential future

applications.

1.1 Background and general context

As Alvin Toffler once said, “the future comes fast”. As is happening across several industries,

Supply Chain is an important sector that is becoming increasingly involved with digitalization

and emerging technologies. From smart sensors that allow to track a freight in real time, to

processing billions of custom documents required for commercial activities, the Supply Chain

Business Model is evolving, paving the way to smarter and digitalized companies. It is estimated

that by 2020, 50% of the industry business software will feature cognitive processing

functionalities. [1]

- 2 -

At the same time, individuals have become more aware and cognizant about the impact that

industrial systems present to our ways of living. As defined by the World Commission on

Environment and Development, sustainability is the “development of the needs of the present

without compromising the ability of future generations to meet their needs” [2].

Taking advantage of blockchain intrinsic capabilities such as immutability, traceability and

accessibility, IDC offers the opportunity to have a transparent picture of how a certain good is

produced, complying with specific requirements along the journey, from soil to shelf. This

transparency is acquired by gathering certain data, which combined with smart contracts, can

generate a secure, accessible and trustworthy source of information for a certain good.

For producers and retailers, it is a unique opportunity to record the way in which a product is

made and eventually sold. Ideally, this situation will encourage more producers to avoid

harmful and compromising practices. Also, help local producers that are left out of any

potential competition against industrial organizations by showing a natural and authentic

customized process. In the other end, customers will have a more complete picture of the

goods they acquire, including the source of the ingredients used to produce a good, the journey

it experienced and the impact to the environment and society.

1.2 Scope and objective

This document is focused on defining and detailing the blockchain framework of the IDC

Proof-of-Concept. Other aspects as the general understanding of blockchain, smart contracts

and the technologies implementations and requirements behind these tools are covered in

detail.

It is important to note that a real study case was used for the implementation process.

Information regarding a gluten-free oat process was studied and interpreted. To understand

the general process in which oats are produced, two meetings were held with the process

owner to fully learn the know-how of the production process and the main stakeholders

involved.

At this early stage of the project, IDC is solely focused on developing the rationale behind the

smart contracts that support the interaction with the blockchain whilst complying with the

- 3 -

aforementioned framework. In this way, the current project intends to act as a “virtual

simulator” where interested parties can see how real or simulated data can be deployed on an

Ethereum test network and thus, managed using the tools incorporated within the dapp

architecture paving the way for a potential expansion.

1.3 Risks & Challenges

 Establish a reliable connect the product interface with the blockchain to keep register of live

data.

 Find the appropriate distribution patterns

 Lack of market opportunities that would lead to simulated data

 Dependence with the web application

 Truffle and Ethereum interfaces and environments in general are undergoing rapid

development. Some things or servers may not work well during simulations. Specially

(Truffle and Remix)

- 4 -

2. State of the Art

As previously stated, IDC intends to be a Decentralized Application that exploits the integral

capabilities of a blockchain to offer the user a complete scene regarding the origin of a given

product, from how it was grown or produced to the freight carrying it to the retailer shelf.

In this chapter, I will briefly introduce the evolution of Blockchain technologies to

understand the functioning of this technology which will be the foundation of smart contracts,

the machinery behind a dapp. I will highlight some advantages of using a Turing-complete

programming language such as Solidity as well as some limitations itself. Also, I will cover on

the basics to understand smart contracts and how they work. Finally, a high-level overview on

how a Supply Chain works and a blockchain use case applied to this industry to fully understand

how a functional business model would look like.

2.1 Blockchain

It happens that at a certain period of time, an invention or instrument completely

revolutionizes the way we live; as it was with the automobile in the 20s and the Internet in the

90s, blockchain has the chance to be the latest conception which is already entirely disrupting

our way of living.

To understand properly how the blockchain works and how it gains its main capabilities, it is

better to start by knowing the first generation of blockchain and how it evolves into our current

situation; the technological changes involved and applications and how it is applied into other

industries such as the supply chain.

2.1.1 First Generation – Blockchain 1.0

In 2008, Satoshi Nakamoto issued a paper explaining the creation of an electronic peer to

peer value transfer system which eliminates the need of the central figure in financial markets,

commonly played by the banks [3]. This concept is currently known as Bitcoin.

To get the Bitcoin running, a not so widely known technology at that time was used: the

Blockchain. A Blockchain is a peer-to-peer (P2P) distributed transactional database, commonly

recognized as a Distributed Ledger Technology (DLT), that provides secure digital signatures by

hashing transactions into blocks using timestamps. The distributed ledger is comprised by a

- 5 -

network of machines with processing capabilities called nodes [3]. Every node will record an

exact copy of the transactions comprised in order to verify whether the transactions are indeed

valid, i.e. the senders have sufficient credit to be spent and thus, avoid a potential double-

spending. This mechanism is called a proof-of-work (PoW) [4].

The PoW incorporates the need of solving an increasingly complex algorithm based on

asymmetricity; i.e. it is extremely complex for one side to solve the original problem but

surprisingly easily to validate the solution. In this way, the PoW accomplishes two main

purposes: the prevention of double-spending transactions and the creation of new digital

tokens that are rewarded to those servers in charge of processing the problem. This puzzle will

be solved by brute force, hence computational power is key to solve it. The bigger the block,

the harder an algorithm is to solve but the reward is also greater.

When a node finds a solution, it is communicated to the network where checkers will issue a

consensuated agreement [5]. Then, the PoW consensus is complete on a block and the first

node to solve the mathematical puzzle is rewarded a block for verifying the correctness of a

transaction. This process is called mining. The block will be added to the previous computed

block completing the mining cycle where each node can become a miner. Proof of Work

enables a distributed and consensuated manner to verify each transaction at any desired time

[6].

In blockchain, a block normally contains the generated unique hash value obtained from

solving the PoW puzzle, this unique value is called Nonce. A block will also be comprised of the

previous block’s hash as well as the transactional (Tx) data (Figure 1). When a block is widely

published into the blockchain, it will contain a unique set of data forming a continuing chain of

immutable and secure passwords [3]. If any person intends to change any data in a block that is

already mined, the nonce of this block will change, altering the established sequence with the

subsequent blocks. In this way, if a block were to change, the hash of the following blocks

should also be modified in a never-ending sequence the hash of the previous block, as well as

the data corresponding to the transactions registered in the block.

- 6 -

Figure 1: Block architecture (Source[3])

Blocks are protected by a strong security technique called public-key cryptography. This

method enables the hash values to act as passwords for any transaction happening in the

blockchain. In this system, each individual possesses a pair of cryptographic passwords, a Public

Key and a Private Key [7].

The Public Key is a randomly generated address which is visible to every user connected to

the blockchain. In the other hand, a Private Key is a secreted address, mathematically related to

all addresses connected to a blockchain but that must be maintained in secret to validate

transactions [3]. With this infrastructure, each transaction is protected through a digital

signature which is sent to the “public key” of the receiver, and is digitally signed using the

“private key” of the sender. In order to spend money, the owner of the cryptocurrency needs to

prove his ownership of the “private key” (Figure 2).

Figure 2:Transactions flow (Source [3])

While blockchain structure per se allows a distributed, consensus and immutable

transactional ledger, the security offered by cryptographic means (hash) along the consensus

mechanism thrusted into the network removes the need of a third party to verify the

- 7 -

ownership of the transactions once double spending was overruled. This situation altogether

brings one of the most vital properties of a blockchain: decentralization.

Figure 3: How the blockchain works? (Source[4])

2.1.2 Main limitations

Even though blockchain’s disruption factor was undeniable, the first generation presented a

group of challenges that, up to the date, are still existent. Issues related to sustainability,

scalability, latency and security were and probably are still stated as genuine concerns. Yet it is

precisely the blockchain consensus mechanism which is associated to these problems. The

Proof of Work concept existed even before bitcoin, but it was this principle that helped the

crypto asset revolutionize the way we can transfer value nowadays. In fact, probably the most

important blockchains as we know them (Bitcoin and Ethereum) apply this type of consensus

for the block generation and validation. However, this mechanism presents a huge deficiency

that constrains the efficiency of this technology [8].

Sustainability: One of the main tangible issues surrounding Blockchain technologies is the

computational power required to mine a transaction. The pessimistic side indicates that it could

only get worse due to an increase in the level of transactions and a subsequent increase in the

- 8 -

complexity of mathematical algorithms. The PoW mechanism basically facilitates a competition

between miners that will reward the node with the bigger hardware capabilities. For example,

to put things into perspective let’s use Bitcoin operational numbers. Each Bitcoin transaction

consumes 251 KWh of electricity which is enough to power 8.5 US homes for an entire day [9]

or a British home for a month [10]. The entire Bitcoin network annual consumption surpasses

the electricity consumed by 159 registered countries including Denmark and Colombia [11].

Scalability: The PoW consensus mechanisms, along other parameters such as the block-size,

determine how fast a network can validate and confirm transactions. While the potential

throughput transaction average in Bitcoin network and Ethereum is 7tps (transactions per

second) and 15tps respectively [12], commercial payment networks can process thousands of

transactions per second. Just to draw a comparison, if there is one, the tps average for other

transaction processing networks are 2,000tps for VISA payments and 5,000tps for the Twitter

social network [13]. Though a pragmatic solution would be increasing the rate of processing

transactions, new imperfections could arise in the network. Security protocols could take a hit

by those average-sized miners that would not be able to properly mine the upcoming

transactions leading to centralization risks. As stated by Madisetti and Bahga [14] there is a

theoretical trade-off between a blockchain processing speed and the level of decentralization

that can be maintained within the network.

Latency: One of the aspects a blockchain protects is from double-spending, which is the result

of successful spending of money more than once from one address. This makes latency a big

issue in Blockchain currently. In a perfect world, making a block and confirming the transaction

should happen in seconds, whilst also maintaining security.

Security: Blockchain and its based applications, which will be revised shortly, offer several

advantages against web applications for example. Decentralization ensures that there is no a

single breaking point where technical flaws or security breaches compromise either

functionalities and/or sensitive information. Nevertheless, blockchain is vulnerable to certain

type of security breaches. For example, by exploiting the PoW mechanism, an external entity

can be able to garner enough share of the network to achieve 51% majority, hence running its

- 9 -

Figure 4: PoW vs PoS comparison (Source[16])

own validations on upcoming transactions [15]. However, on the bright side, as processing

requirements increase, the cost-benefit of performing an attack may not be beneficial to the

criminal. Other flaws can be exploited if the programs that interact with a blockchain are poorly

constructed.

2.1.3 Second Generation – Blockchain 2.0

Blockchain’s next generation commenced as an attempt to overcome the limitations that the

technology intrinsically entails. Several developers started to conceive different perspectives of

the network which gave way to two critical innovations: a new consensus mechanism called

Proof of Stake and smart contracts which will be explained further in detail.

With Proof-of-Work, the probability of

mining a block depends on the

computational capabilities of each miner

[16]. Unlike the PoW where miners

compete one another for solving

mathematical problems, the Proof-of-Stake

(PoS) presents a new paradigm. A new

block is created in a deterministic way

based on the wealth of the maker, which in

this case are not called miners but forgers

as previously mentioned. This means that

in the PoS system there is no block reward

per se, so the miners end up taking the

transaction fees. For example, someone

holding 15% of the Bitcoin can mine 15% of

the “Proof-of-Stake blocks” [16]. This theory depends upon the theory of the larger “stake”

anyone holds within the network, the lower chances to get breached due to the already high

stakes if performance is optimal.

https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0163477#pone.0163477.ref012

- 10 -

From an economic standpoint, a PoS mechanism can constitute an important

countermeasure to the PoW protocol. The stake possessed by each forger can yield directly

proportional results in terms of security and efficiency at the moment of creating new blocks.

As Saleh states [17], the more modest the block reward schedule becomes, the laxer the

necessary restriction becomes. The benefit of a modest block reward arises in part because

block rewards enable validators to accrue vested interest on lagging branches which in turn

creates an incentive for those validators to persist disagreement.

Unlike the PoS which is still struggling to function properly at a large scale, the second

generation of blockchain gave birth to one of the main disruptors in today’s world: smart

contracts.

To understand smart contracts, it is important to understand first the technology on which

these programs are run: Ethereum. In 2013, Vitalik Buterin issued a paper that described a

decentralized network capable of processing payment transactions within its own internet

browser, using a built-in coding language. In words of Buterin, Ethereum’s mission is to create a

network of private computers that run various applications without a third party [18] where

parties agree to collaborate into common goals or outcomes including exchange of goods and

service.

Ethereum is a public, open-source, Blockchain-based distributed software platform that

allows developers to build and deploy decentralized applications. Although Bitcoin is recognized

as the first blockchain technology to go big, Ethereum presents a vast array of characteristics

that make this platform a more enticing option for the project to be developed, especially with

the inclusion of smart contracts [19].

Supported with a built-in Turing-complete programming language, Ethereum allows the

users to write smart contracts and decentralized applications where they can create their own

arbitrary rules for ownership, transaction formats and state transition functions. Additionally,

the network consensus mechanism deployed by the nodes is driven around this type of

functions [18].

- 11 -

Moreover, the categorical structure of an Ethereum protocol is slightly different than the

one used for mining Bitcoins. Each Ethereum node serves as an Ethereum Virtual Machine

(EVM), a provisional environment that provides the users with capabilities of executing a smart

contract [20]in an open and secure manner. In this way, an EVM removes the strict need for

having huge hardware capabilities to store transactions but only enabling executing features.

Although Ethereum is not ready to operate live under a PoS mechanism yet, Smart Contracts

allow the Russian blockchain to overpower Bitcoin in terms of technology and potential. Several

authors including Swan [21], have identified some potential disadvantages when comparing

Bitcoin to Ethereum. No matter which version is being used, Ethereum offer enticing

advantages, when compared to the Bitcoin Blockchain.

In terms of sustainability, scalability and latency, Ethereum provides better indicators than

its more famous peer. For example, when comparting the amount of electricity needed to mine

a transaction in an Ethereum network is almost 1/10 of the energy required to mine a Bitcoin

one. The following table (Table 1) presents the most important metrics of the network in terms

of sustainability:

Description Value

Ethereum's current estimated annual electricity consumption (TWh) 7.1

Annualized global mining revenues $1,821,485,047

Annualized estimated global mining costs $709,855,697

Current cost percentage 38.97%

Country closest to Ethereum in terms of electricity consumption Bolivia

Estimated electricity used over the previous day (KWh) 19,448,101

Implied Watts per MH/s 4.707

Total Network Hashrate in GH/s (1,000 MH/s) 172,150.00

Electricity consumed per transaction (KWh) 24

Number of U.S. households that could be powered by Ethereum 657,274

Number of U.S. households powered for 1 day by the electricity consumed
for a single transaction 0.82

- 12 -

Description Value

Ethereum's electricity consumption as a percentage of the world's
electricity consumption 0.03%

Table 1: Ethereum key indicators (Source[9])

In terms of latency and scalability, when deploying a smart contract in an Ethereum public

network, there is approximately 13 seconds from the moment the transaction is executed to

get a proper validation in the entire network. For example, as of the end of August 2019, an

Ethereum network computes a transaction in slightly more than 13 seconds (Figure 5).

Figure 5: Ethereum blocktime chart (Source[22])

As previously mentioned, Ethereum does not operates yet under a PoS consensus

mechanism. However, at the start of 2019, Vitalik Buterin, Ethereum creator, and Virgil Griffith

[23] issued a paper to introduce Casper, an Ethereum Proof of Stake mechanism that combines

PoS with Byzantine fault tolerant algorithm that rely on consensus theory. By shifting the

consensus mechanism, Ethereum will substantially reduce the energy required for creating and

validating transactions. It is believed that with these implementations, the network will be able

- 13 -

to process in the order of hundred transactions per second, improving both sustainability and

scalability [24]. Although far from being finished, the Casper PoS aims for a more efficient

process limiting the energy consumption and thus working in a greener manner. Nevertheless,

it is outstanding the way in which Ethereum took advantage of economic theory and defined

the framework on which a gas prioritizes the forging process. Without knowing, Buterin had

already envisioned a system that prioritized significant transactions by optimizing

computational costs.

2.1.4 Smart Contracts

Perhaps the most important generational leap from the first generation to the second one is

the inclusion of smart contracts. A Smart Contract is the basic group of programmable functions

behind the applications and programs deployed in Ethereum [18]. These cryptographic “boxes”

contain lines of code that automatically execute any agreement based on the fulfilment of

certain conditions required by the contract itself. Let’s try a simple example: Transporter A

carriages dairy products into Storage X. These products must maintain a certain temperature

during the transportation and need to arrive at an agreed time. If these conditions are met,

Storage X will pay a defined amount of Ether to Transporter A. If the conditions are met, the

contract will automatically release the payment, but if any condition is not fulfilled, the

payment will not be performed (Figure 6).

- 14 -

Figure 6: Smart Contract logic

With smart contracts, the value offered by blockchain changed from being a decentralized

network that allows the transfer of a digital currency to bringing the user with the opportunity

of programming the transactions itself. As stated by Tsao [25], by linking smart contracts to a

blockchain, a potent processing network is created which also be decentralized, censorship-

resistant and immutable.

The “revolutionary aspect” of Ethereum is the ability that allows users to code their own

functions and deploy them under specific circumstances as explained in Figure 6. The programs

ran on an Ethereum network consist of functions executing transactions. Hence, a program

executed on an Ethereum network ought to pay a miner for every transaction that is

successfully verified. In addition, the cryptocurrency associated to the network, Ether, is not

only used as a digital currency to be transferred between individuals, but is literally the gas that

empowers the blockchain. These decentralized smart programs combined can virtually allow

any program that exists today to be adapted for the Ethereum network [25].

- 15 -

A smart contract consists of three main parts: a program code, a storage file, and an account

balance. Any user can create a contract by posting a transaction to the blockchain that will cost

a certain amount of gas.

The program code of a contract is fixed when the contract is created, and cannot be

changed, while its storage file, is stored on the public blockchain. A contract’s program logic is

executed by the network of miners who reach consensus on the outcome of the execution and

update the blockchain accordingly. While the contract’s functions can be invoked by any user or

from another contract, the contract may just retrieve data or update the storage file. Also, a

contract can execute value transfers between different user accounts [26].

Gas is a concept that has been previously mentioned and is critical to understand smart-

contracts operation and their relation with the Ethereum ecosystem. Gas is a resource used in

Ethereum to manage the implementation of smart contracts [27]. It is mainly used by a contract

as a “currency” based on Ethers to pay fees to the forgers (Ethereum miners) for their services.

Every time a contract is deployed in a real Ethereum network it spends an amount of money to

pay the forgers so that transaction can be published in the Blockchain.

For example, in a world without ETH, to run code in a decentralized server (e.g. Amazon Web

Services - AWS) the user will pay for the infrastructure to run the code, in the same way, a user

will pay the forgers to run the contracts. The name is even ironic as a real-life comparison to

how gasoline affects a car performance: higher speed consumes more gasoline than driving

conservatively.

In this way, every time a contract is executed, a certain amount of gas is spent, and also

every time a transaction gets executed the entire PoW mechanism validates it. The value of a

transaction can be measured in the smallest denomination of Ether called Wei (1018 Ether),

GWei (1010 Ether), Finney (103 Ether), or Ether itself [28].

There are two important concepts to consider when calculating the amount of gas spent.

The first one is the gas Price, which is the amount of Wei a sender is willing to pay per gas unit

to get a transaction processed; i.e. the price at which gas is being traded. If the gas Price is not

properly valuated, miners will not be compensated accordingly, hence, the transaction will not

- 16 -

be validated which will result in desertion. A higher gas Price is most costly to the sender in

terms of real Ether, but is also more likely to be selected by forgers for inclusion [18].

Secondly, there is a gas Limit, which can be defined as the units of gas that a transaction can

consume. By using appropriate thresholds, developers can ensure that their contracts can be

deployed steadfastly on a network [29].

The amount of gas consumed by a contract is variable. There are innumerable different

operations that can be executed by a contract, and each one of them carry a different cost

depending on the task performed [18]. Also, a certain amount of gas consumed by each

transaction is used to pay for the storage on the blockchain.

In the following example (Figure 7), a contract is trying to call a function called ‘DoMath’,

which adds, subtracts, multiplies and divides a certain integer. The Price paid for each unit of

gas is set by the developer at 300 Wei, while the gas Limit is set at 10. At the moment the node

runs all the mathematical functions, it will halt the operation at 6 gas, since the subsequent

command will not possess enough funds to pay for the operation. Should the contract run the

multiplication function, gas Limit would exceed the established limit. No other code will be

executed inside the function. In this case, 10 units of gas will be paid at no more than 300 Weis

per Gas unit.

- 17 -

Figure 7: Insufficient gas funds

In the other hand, in the following figure (figure 8), the gas limit is set at 20; hence all

transactions could be executed. However, the contract will not consume the whole 20 Gas units

in Wei; at 14 Gas the transaction will be complete thus only 4,200 (14*300) Weis will be spent.

Figure 8: Sufficient funds

Hereby lies the importance of selecting the proper functionalities for a contract. For

example, if a fetch function is executed it may only spend a fixed amount of gas. However, if a

- 18 -

contract contains a loop function, the amount of gas spent can vary. A function is more

expensive depending on the tasks deployed by each contract.

One situation worth considering is that apart from the main Ethereum network, there are

different test networks where developers are able to test their contracts under development.

Deploying a contract in the real Ethereum network incurs in real gas costs translating into real

money used to deploy a contract.

The three main test networks are Ropsten, Rinkeby and Kovan. All of them present

differences among them. Nevertheless, they share one critical trait: the ethers used within

these networks are forged for the sole purpose of testing; i.e. they are not worth real money.

So, these networks are mainly used to test a contract’s performance by getting free ether and

using virtual gas [30].

The versatility of Smart Contracts allows the interaction with several programming languages

that are Turing-complete such as Solidity, Serpent and LLL. This level of adaptability allows

Smart Contracts to perform highly complex functions whilst adding awareness and stability

[31]. This flexibility allows Ethereum users to build on top network applications known as

Decentralized Applications or dapps. The holistic implications of dapps are not limited to a

single context but is a complete game changer from any perspective. Being able to build and

deploy in Ethereum means that any service can be decentralized.

A dapp is a smart contract executing itself within a blockchain network. It fills a typical role

played by a web application but adding some special characteristics [15]:

1. Blockchain’s decentralization nature allow smart contracts and thus the DAPP to run

autonomously.

2. All the information recouped as a result of a dapp activity is traceable and verifiable.

3. Cryptographic properties along the consensus mechanism ensure the DAPP with a secure

layer to a certain extent. Some limitations will be covered shortly.

4. Probably the most important contribution is the stability provided by a blockchain. Each

node is fully connected and communicated to every other point in the network. In addition,

- 19 -

each node will store smart contract making this structure almost failure free in terms of

operation.

In the last years, a group of successful dapps have achieved to bring a functionality beyond a

transaction. Startups like steemit, storj or openbazaar have established themselves as integral

leaders of an emerging industry. In addition, since there is no centralized client server

architecture, this type of systems has become a more secure option.

As previously revisited, a dapp containing complex functions such as loops and iterative

approaches, can become a problem since it can be really expensive to run. It is uttermost

important to highlight that the individual that runs the transaction, pays the gas price for it. For

example, were Twitter a dapp, each time a user wants to send a tweet, it ought to pay a certain

amount of gas. This situation can limit the scope of applications to be developed.

2.1.5 Risks in Smart Contracts

Vulnerabilities are persistent in all platforms and networks across the globe even bringing

down the most sophisticated defences down. Blockchain is no different and present some risks

that are inherent to its own nature. Therefore, it is important to acknowledge the potential

risks that are present in a Blockchain network.

Not only functionalities and features are different from one blockchain generation to the

other. While Ethereum enjoys a wide array of possibilities thanks to the Touring-code

capabilities, it also triggers potential security complications due to its complexity. Since smart

contracts are linked to an Ether balance, they are a common target for criminals.

Hacks targeting blockchain include the Decentralized Autonomous Organization (DAO)

attack which in 2016 claimed roughly 3.6 million Ether [32] and Parity multi-sig attack [33]

have led to millions of dollars in losses. Li [20] enlists nine blockchain risks that are present in

the technology (Table 2). Five of them attain both generations and are mostly related to the

operation mechanism of the network. However, there are four critical risks that affect

exclusively the Blockchain 2.0 specifically vulnerating the development, deployment and

execution of smart contracts.

- 20 -

Table 2: Smart Contracts Risks Taxonomy (Source [20])

o Criminal Smart Contracts (CSC)

This flaw is presented in the deployment and execution of a smart contract. It is conceived

when an attacker compromises the functionality of a smart contract to perpetuate a crime,

most commonly related to leakage or theft of privileged information, theft of private keys and

the so called “calling-card” crimes [34]. Li [20] provides a graphic example (figure 9) of a CSC in

which a perpetuator (P) is contacted by a contractor (C) to steal a targeted account (A)

information. P uses an SGX instruction code via HTTPS connection to confirm that the CSC code

is able to retrieve the private key of the targeted account after generating a private / public key

pair to interact with A. If the CSC verifies successfully the information using the generated keys,

it will send the data to C who will validate the information and will send a compensation to P

for the services.

Figure 9: Execution procedure of Password Theft (Source[20])

- 21 -

o Vulnerabilities in smart contract

“With great powers come great responsibilities”. As powerful tool a smart contract can be,

the level of vulnerability is high as well. It depends on the strength, integrity and structure of

the code to be executed in an effective manner. The risks of having a weak written SC is being

exposed to tampering attacks in order to corrupt the desired instructions, in most cases, to

deviate the final destination if the resources involved [35]. The following table (3) defined by

Atzei, Bartoletti and Cimoli [35] describe the taxonomy of the main identified vulnerabilities in

SC based on the level on which an attack is introduced: Programming language, EVM or

network.

Level Cause of vulnerability

 Solidity Call to the unknown

Gasless send

Exception disorders

Type casts

Re-entrancy

Keeping secrets

EVM Immutable bugs

Ether lost in transfer

Stack size limit

Blockchain Unpredictable state

Generating randomness

Time constraints

Table 3: Smart Contracts Vulnerabilities Taxonomy (Source [35])

o Under-optimized smart contract

- 22 -

As previously explained, when a user interacts with a smart contract deployed in Ethereum,

a certain amount of gas is charged. Unfortunately, the development and thus the deployment

of some smart contracts are not adequately optimized. Chen et al. [20] identify 7 gas-costly

patterns and group them into 2 categories (as shown in table 4): useless-code related patterns,

and loop-related patterns.

Table 4: Under-optimized Solidity code patterns (Source[20])

The same group of authors, propose a tool named Gasper, which can automatically discover

3 gas-costly patterns in smart contracts:

 Dead code: those operations that are deployed in the blockchain but are never executed

causing a gas consumption.

 Opaque predicate: the presence of these statements originates useless operations guzzling

additional gas.

 Expensive operations in a loop

o Under-priced operations

Gas is a valuable resource that can be manipulated by an attacker to provoke unwanted

behaviour in a victim’s smart contract (e.g., wasting or blocking funds of said victim) [27]. When

the Gas Price for a transaction is set in a low threshold, an attacker can call for the contract

https://www.sciencedirect.com/science/article/pii/S0167739X17318332#tbl6

- 23 -

several times in one transaction causing a desynchronization in the network. This umbrage can

be interpreted as an Ethereum Denial of Service (DoS) attack.

Some pioneer work has been done to improve the efficiency of blockchain. Zyskind, Nathan

and Pentland [36] proposed a lightweight blockchain architecture to protect personal data.

They improved the efficiency of blockchain by using off-chain data storage and heavy

processing. Only references to data and lightweight processing tasks were handled in the

blockchain. Paul, Sarkar and Mukherjee [37] proposed a new scheme that could lead to an

energy-efficient Bitcoin. The authors modified added some extra bytes to the newest block

header and utilize the timestamp more effectively.

Moreover, since developed dapps are built using an open source code like Solidity, it is

highly important to follow best practices to avoid leaving any hacking opportunity in the

contract code [28]. Conceptually, one can think of a contract as a special “trusted third party” –

however, this party is trusted only for correctness and availability but not for privacy. In

particular, a contract’s entire state is visible to the public.

2.2 Transparency & Traceability in the Supply Chain

One of the most intriguing aspects of the Ethereum platform is the flexibility offered by the

smart contracts’ architecture. They can “communicate” between them, adapt to the

requirements of the user and can be deployed and tested immediately without losing any of

their properties. Not stopping there, due to the extensive amount of open code available,

developers have begun to adopt more comprehensive dapps. Decentralized applications have

opened a revolving door of options for several sectors to implement real business processes

into the blockchain with the usage of smart contracts. Different sectors such as financial

services, healthcare, education and voting E-Systems [38] have benefited from this technology.

For logistics and supply chain, it is no different story. dapps allow transactions and processes

to be autonomous, traceable and secure [15]. These characteristics offer an enticing

environment for these sectors. A decentralized P2P system in such a bureaucratic environment

such as this one can help mitigating corruption and potential fraud whilst optimizing the

- 24 -

services provided. The data comprised in the application is not owned by one organizational or

govern body but its shared between several organizations. Also, the immutability inherent to

smart contracts helps to constitute a tamper-proof application.

Blockchain set of competences (decentralization, autonomy and immutability) facilitate the

creation of a transparent and traceable supply chain. Each individual operation or interaction,

such as the provision of a new employee or the recording of outgoing stock, is perfectly

recorded and archived. Information can be shared in a real time and accessible manner where

users can visualize processes, places and materials used in the production cycle of a good or

service. In this context, audit and certification process are also integrated. Auditing is thus as

simple as joining the blockchain network, as this allows one to “replay” the operations of the

past in order to build a correct model of the present. As in a domino effect, every individual

interacting with a certain blockchain will have access to a product’s provenance.

Provenance is a quite an enthralling concept. It can be defined as the true origin of a

product, englobing, what it contains, how it was produced and by who. To fully know the

provenance of a product, transparency and traceability must exist at a high extent. Blockchain

facilitates both circumstances by creating a distributed and immutable ledger.

Several occurrences around the globe have been originated due to opacity in the

provenance of a product. It is a problem that can affect all type of goods and services, from

buying a Picasso replica for millions of dollars [39] to the 2013 horse meat scandal in Ireland

and the UK where 85% of the meat sold in big supermarkets showed presence of horse DNA

[40].

Just like Provenance, which will be shortly explained, there are several other initiatives trying

to bring a more transparent supply chain. Everledger [41] is one example. This company, in

cooperation with Barclays, created a blockchain to certify that the diamonds that they are

producing are not consider “Blood diamonds” ensuring that no human or ethical rights were

infringed during their production.

- 25 -

2.2.1 Supply Chain / Smart Contract Use Case: Provenance

One of the most successful use cases in the supply chain industry is Provenance. Provenance

is a startup originated in the UK that bases their core operations in the use innovative

technologies like the blockchain to create a more transparent supply chain and garner trust

around a certain product. As Jessi Baker, Provenance’s CEO mentions [42], Provenance

embraces sustainability by knowing where the products they offer come from. This benefits

businesses and customers that embrace certain type of ideology, such as avoiding products that

involve environmental or human harm.

Provenance works with different stakeholders to ensure that its main mission is being

accomplished: enable every product to come with an open, secure record of its journey and

creation. The main stakeholders involved in this process are [43]:

o Producers or manufacturers

o Registrars, or accreditation service organizations

o Standards organizations (e.g., Fairtrade)

o Certifiers and auditors

o End consumer

By being based on blockchain technologies, Provenance exploits the so much mentioned

blockchain capabilities to build a transparent supply chain and build trust in the products they

offer. The main premises in this case are traceability and security.

Being traceable means that all the interactions – inputs and outputs – across the whole

process are perfectly auditable. In this way, any transaction related to a given product can be

challenged. This level of traceability facilitates the creation of diverse programs for suppliers

where inspections carried out by a certifier or auditor can be easily accessible. Through these

programs, organizations can openly inform certifying agencies about animal testing,

biodynamics or human labour conditions; production parameters to certify production capacity

or specific product attributes or manufacturing conditions that need to be met [43].

- 26 -

Security in several contexts can be translated to trust. The security in Provenance is mostly

enabled through the Public and Private Key authentication protocols. It enables a platform

where the origin, quality and quantity of a product can be assigned and verified. An

organization or a client can access the registration program and thus link their real-life data to

the Provenance profile by using a private key. Should an authority commands to inspect certain

traces of a given good, the public key will work in both ends to ensure a secure record [43].

Beyond the cryptographic infrastructure, establishing secure bridges between the real and

digital world is also critical. By implementing QR codes and Near-Field Communication Tags

(NFC) Provenance enables a user interface that keeps tracking in a secure way. [44]

Furthermore, the products we acquire from any supermarket or even online stores go

through a fairly complex pathway. Several actors are involved throughout the cycle making the

tracking of the whole production process a monumental task. That’s when we can ask, at what

extent can we be sure that the label in the products we buy is representative to its true

provenance?

If we are able to know how the whole production process is undertaken, the situation might

be very different. Opportunity areas in planning (demand forecasting, inventory management)

and management (data sharing and product traceability, managing risks and disruptions,

transparency and building trust and reputation) are enticing, especially when another

disruption factor like Machine Learning is thrust into the equation.

Without decentralized consensus, the party providing centralized consensus often enjoys

huge market power (e.g., a third party with data monopoly). And traditional resolutions by third

parties, such as courts or arbitrators, involve high degrees of human intervention that are less

algorithmic, potentially leading to greater uncertainty and cost. Smart contracts can increase

contractibility and facilitate exchanging money, property, shares, service, or anything of value

in an algorithmically automated and conflict-free way.

- 27 -

3. General Requirements

In this section, the main technological and program specific requirements used to develop

the smart contracts will be discussed. Furthermore, it will detail the main functionalities and

roles of each program used. It is important to consider that working with Ethereum, means that

from the moment of the first interaction, a whole network of computers will be involved, either

to validate an Ether transfer or simply to invoke or store any sort of transactional data required

by the user.

In the last chapter, I briefly mentioned the existence of Ethereum test networks that

developers use to assess those smart contracts that are still in development. For testing the IDC

smart contract, the Rinkeby Test Network was used. This network uses a consensus algorithm

called “Proof of Authority” [45]. With this type of mechanism, the user must authenticate to

receive worthless ethers from a faucet [30].

3.1 Hardware

To develop the contracts, a MacBook Pro was used. 2.3GHz quad-core Intel Core i5

processor with 128 MB of eDRAM; 16GB of RAM, 512 GB SSD with Intel Iris Plus 655 Graphics

Card.

In general terms, any PC with basic capacity should handle smart contracts deployment on

an IDE such as Remix. A robust web connection is stringently required.

3.2 Technological requirements

Before describing the functional process of how to put a blockchain into full operation, there

are some considerations to integrate the entire functionalities in a holistic manner.

3.2.1 Remix

Remix is an Integrated Development Environment (IDE) that acts as an online code editor

that allows the user to write and test Solidity code directly on the browser. Remix can be

accessed through any modern browser through the URL https://remix.ethereum.org/

Remix offer important advantages by supporting built-in smart contract development

features such as testing, deploying and debugging by hosting a “fake” EVM in its own backend.

https://remix.ethereum.org/

- 28 -

As of the writing of this document, Remix layout (Figure 6) consists of an icon panel where

different modules and plugins can be enabled, a side panel that will represent the Graphic User

Interface for enabled modules and functions, the main panel where the main code can be

modified and the terminal where results of GUI’s interactions will be shown [46].

Figure 10: Remix Layout (Source[46])

The compiling task in Smart contract

development is essential. When a contract is

run, a compiler script will generate two

additional files: the first one, is called bytecode,

an array of characters that represent the actual

Solidity code that is going to be stored and

executed on the Ethereum network; the second

file is called the Application Binary Interface

(ABI) that will be deployed to the Ethereum

network (figure 11). The ABI is essentially a

translator between Solidity and JavaScript

languages since the latter code has no ability

whatsoever to interact with the bytecode that

Figure 11: Compiler operation flow

- 29 -

has actually been deployed on the Ethereum blockchain [47].

Remix is a powerful tool that supports a built-in compiler (Figure 12). It is necessary to

ensure that the Remix compiler matches the Pragma Solidity version used in the contract.

Pragmas are common instructions for compilers about how to treat the source code (e.g.

pragma once) [48].

Figure 12: Remix compiler

The other vital part of developing a smart contract is the deployment (chapter 4.1) to an

Ethereum network. In Remix, there are three options to deploy a contract: by using a JavaScript

Virtual Machine (JVSM), through an injected Web3 option like Metamask, or with a web3

provider, where Remix will connect to an Ethereum Client – or node – by providing the

corresponding URL. Metamask and Web3 packages will be explained next [REM creating a

contract [48].

When deploying through the JSVM, Remix will create a virtual blockchain sandbox in the

browser. Anytime the tab is reloaded, a “new blockchain” will be generated. Additionally, The

- 30 -

JSVM will generate five simulated account addresses to interact with the deployed contract

(figure 13).

Figure 13: JSVM accounts display

When the gas Limit is set, the contract can be deployed. Next, the user will be able to

interact with the deployed contract within the side panel where functions and other contracts

can be called. The Terminal should confirm that the contract was successfully deployed also

displaying the contract details.

3.2.2 Solidity

Solidity is an object-oriented programming language specifically invented for authoring

smart contracts whilst interacting with an Ethereum Virtual Machine (EVM) [49]. Solidity is

written into .sol files compatible with any standard code editor (Atom was used for coding of

the IDC contracts). This language incorporates several libraries, inheritance and other features

that facilitate the execution of smart contracts. Solidity is strongly typed unlike JavaScript which

is dynamically typed. [50]

One of the main things to consider when coding in Solidity is that the language is in constant

change. The version running as of the writing of the document is Solidity v0.5.11 [50].

The Solidity code predefined in a contract is not what is interacts with the Ethereum

network; instead, the data is fed into a Compiler file. The Solidity Compiler1 (solc) can be used

through several ways, but the two most used ways are either through the Remix itself as

When not deployed through Remix, IDC smart contract was deployed using solc0.4.25 version1

- 31 -

previously explained, and second, by installing a npm global instruction directly in the Terminal

(npm install -g solc) [48].

As previously mentioned, if Remix is used, it is important to revise that the compiler version

matches the Solidity (Pragma) version. However, If the contract is deployed using another

alternative, a compiler script will be required. This script will be written in JavaScript syntax

using standard library modules and will reference the Solidity file under the same directory.

The full Solidity documentation can be found in https://solidity.readthedocs.io/en/v0.4.25/

3.2.3 Ethereum Virtual Machine

The Ethereum Virtual Machine (EVM) is the infrastructure contained in Ethereum nodes that

enable a runtime environment for smart contracts to run in the network. As DDoS attacks

became widespread during recent years, the EVM focused on isolating the data deployed into

the EVM. In this way, the EVM ensures that contracts have limited access to each other’s state,

entrusting the code deployed in the network [48].

As previously mentioned, Ethereum is supported by a built-in Turing program, meaning that

the system enables a program or contract to find a solution for a certain problem albeit

guaranteeing any performance regarding runtime and memory. Since the contracts’

performance is constrained by a gas limit, the EVM is consider semi Turing [48].

Moreover, the binary data contained in a transaction is taken to be EVM bytecode and

eventually executed in the blockchain. The output data of this execution is permanently stored

as the code of the contract.

3.2.4 Metamask

Metamask is a browser extension commonly supported by Google Chrome that allow users

to interact with dapps in regular web browsers; i.e. it is a link between an Ethereum node and a

web browser [51]. Consequently, Metamask allow users to create accounts that can be linked

to the main Ethereum Network, Ethereum Test Networks or any other customized RPC (Remote

Procedure Call). Any individual with a Metamask account will be able to perform real

https://solidity.readthedocs.io/en/v0.4.25/

- 32 -

transactions, test developed code using free Ether or even activate a local host (8545) to host

an EVM.

To generate a Metamask account, instructions can be found on https://metamask.io/ After

installing the extension and entering the corresponding password, an account will be created

(figure 14). Each account created will have a public address, a public key and a private key. The

address is a unique identifier that can be shared with any individual. It can be thought as a user

name. The public and private key are pieces of information that will act as security protocols as

previously revised in the last chapter. These three elements will be stored as hexadecimal

values.

In addition, to enhance Metamask’s security, when an account is created, a 12 word

“password” called mnemonic phrase will be generated. Mnemonics are comprised by easy to

remember words. One of the most important faculties of mnemonic phrases is the capability of

restoring an address, public and private keys to a linked account. This is critical, especially when

an account is storing real Ethers.

Figure 14: Metamask mnemonic architecture

Furthermore, when considering token valuation in a Metamask accounts, it is important to

differentiate that Ethers owned in different test networks will have different values among

each other network (figure 15). Each Metamask account will contain the same data for address,

public and private key but coexisting in different networks. Once the account is created,

https://metamask.io/

- 33 -

Metamask’s front displays all the available network options with the corresponding balance for

each account, either real or test Ethers accordingly.

Figure 15: Metamask attributes coexistent environment

3.2.5 Infura

Transactions signed by a Metamask account need to be broadcasted to an EVM. Rather than

running a full Ethereum node on a machine, there is a service that acts as a portal beyond

Web3 into an Ethereum Public Network called Infura.

Infura works as an API for decentralized applications that grant users the ability to access an

Ethereum Client without actually hosting a full node. The service hosted by Consensys [52] is a

collection of full nodes on the Ethereum network that enable developers to connect to these

nodes through its interface. As such, a significant amount of dapps’ transactions run through

Infura.

3.2.6 Web3.js

Web3 is used as the absolute end solution for establishing communications between a

JavaScript app and the Ethereum network. Web3 can be best understood when compared to a

sort of portal into the Ethereum network, it is a channel to enable program and programmatic

access to an Ethereum network. Web3.js is a group of libraries that allows a user to interact

with an Ethereum node through a HTTP connection[web3.js]. Web3.js can be installed by

writing a npm global instruction directly in the Terminal2 (npm install -web3) [53].

2
 Web3 version used for IDC contracts is Web3 v1.0.0 beta 35

- 34 -

This library will enable different functions as creating or deploying contracts, storing data

and even performing currency transfers.

3.2.7 Truffle Framework

The Truffle framework is a series of open source software comprising three tools, Drizzle,

Ganache and Truffle, that facilitate the creation and development of smart contracts and

dapps. Each tool possesses different capacities depending on the user requirements. is library

will enable different functions as creating or deploying contracts, storing data and even

performing currency transfers. For the development of IDC contracts, Ganache and Truffle were

used.

Drizzle is a collection of front-end libraries that mainly, simplify the interaction between a

contract and an Ethereum node [54].

Ganache is used to create an Ethereum blockchain that runs locally. This tool is available as a

desktop application or as a command-line tool (also known as TestRPC). One of the main

features of Ganache is the creation of 10 unlocked accounts containing an address, a private

key and 100 ETH each [55]. All 10 accounts are also linked to a mnemonic phrase. In this way,

Ganache can be used to deploy contracts and run tests, as shown in 5.1. Another magnificent

feature is that Ganache can serve as the Web3 Provider in Remix, so the 10 accounts that were

automatically generated, can be used to deploy a contract on an Ethereum Test Network.

Ganache can also be linked to Metamask, as well as other additional features that require a

deeper understanding of blockchain development such as setting the mining time of each

block.

Finally, Truffle [56] is a very complete

development environment used for the

development of smart contracts seizing its

compiling and deploying capabilities, as well as a

robust testing framework and accessing

Ethereum nodes (figure 16).

- 35 -

3.2.8 Etherscan

When a transaction is successfully deployed on a public Ethereum Network, it creates a

series of data related to its deployment such as the transaction hash, block, timestamp, value,

etc.

Etherscan is a search engine that allows any individual, first to confirm if a transaction was

properly deployed, to look for the transactional data of a deployed transaction. Instances can

be searched by contract address, transaction hash or block number.

3.3 Specific requirements

In addition to the aforementioned requirements, in order to properly either use or develop a

contract, further requisites are needed for a proper function.

 Install the Node Package Manager (NPM) required to install additional functions and libraries

 In the Terminal, using the npm global functions, install solc, web3, ganache-cli and truffle hd

wallet provider

 Have a web browser that supports the current version of Remix and Metamask. These

browsers include Google Chrome, Mozilla Firefox, Opera and Brave

 Create a Metamask account ensuring to keep safe the mnemonic phrase

 Request free Ether on the Rinkeby Faucet https://faucet.rinkeby.io/

 Create an Infura project to link with the contract

 Recommended to download Ganache console software to interact with deployed contracts

Figure 16: Truffle framework

https://faucet.rinkeby.io/

- 36 -

4. Implementation

This chapter will cover first, the most utilized approaches to implement or deploy a smart

contract in an Ethereum public network are briefly revised, as well as how transactions work in

the Ethereum context; afterwards, the application case used to apply the IDC smart contracts is

explained; and finally, a high-level approach of the IDC smart contracts architecture is detailed.

4.1 Deploying a Smart Contract

There are several ways to deploy a Smart Contract. The network where a contract wants to

be deployed plays the first role on choosing the appropriate method to deploy it, whether it’s a

local host, a Test Network or the Ethereum Main Network [57]. Then, depending on the

complexity of each contract, there are several methods that allow the user to have different

levels of control and interaction. For example, if a contract includes convoluted functions, it

may be better to host an Ethereum Client locally via Geth or Parity (figure 17).

Figure 17: Smart Contract Deployment Overview Source (adapted from [57])

- 37 -

The IDC contracts deployed to the Rinkeby network using Remix. As explained in section

3.2.1, Remix offers a wide array of options at the moment of deploying a contract. In case of

the IDC contracts, the injected Web3 option was chosen. With this method, Remix will connect

to a Metamask account, for example, an account linked to the Rinkeby network (figure 18). The

detailed process will be covered in section 5.

Figure 18: Contract deployment flow using Remix via Metamask

4.2 Transactions

No matter the way in which a contract was deployed it is important to differentiate the type

of actions a contract can perform.

A transaction object is a cryptographically-signed record that describes the attempt of one

account to interact with another account. These transactions are publicly recorded on the

blockchain by taking the form of an object in programming languages such as Solidity. As Wood

[58] indicates, users create transactions to the Ethereum network in order to: create new

contracts; invoke functions of a contract or transfer between accounts.

There are two main types of transactions: get functions and set functions. Whereas the first

is a single call to a specific function or contract, the latter involve direct relation with the

blockchain changing the content on it. When a transaction is broadcasted and published into

the network, miners will consume Ether for writing an operation that will affect related

- 38 -

accounts whilst updating the blockchain. Therefore, each set function will have a gas cost as

stated before. On the other hand, get functions can be called without incurring in any gas

charge.

No matter the type of transaction, it will always contain a group of properties as shown in

table 5.

Transaction Properties

Name Description

nonce
How many times a sender has sent a
transaction. Different from the nonce in a
block

to Address of the message recipient

value
Number of Ether or Wei to be transfer to the
recipient

gasPrice
Amount of Wei the sender is willing to pay
per gas unit to get the transaction mined

gasLimit Units of gas this transaction can consume

v Cryptographic pieces of data generated from
the sender's private key to determine the
address of origin

r

s
Table 5: Transaction properties

4.3 Application case: Gluten Free Oats

IDC contracts aim to generate a traceable journey of a given product or service along the

supply chain to bring transparency and trust through a tamper-proof system based on

blockchain technologies. To gain a more accurate impression of the potential performance of

the IDC contract, a real-life production process was studied; in this case, the production process

of a Gluten-Free Oat Production Center (GFO Farm) was used as a parameter to test the

application.

The GFO Farm crops and produces a specific type of oat grain that require special treatments

at different times of the production process. Under this context, IDC would be an ideal fit to

ensure the cultivators that the grains are treated adequately in specific stages whilst also

- 39 -

“certifying” a product from the customer standpoint. Additionally, a tracking process can be

incorporated between different stages of the production if required.

4.3.1 High-level process

1. Field cultivations: although the Gluten-Free qualification is not earned at the initial stage of

the process, it is important to acknowledge the provenance and amount of the seed, as well

as other specifications relevant for the cultivation stage.

a. Sowing – seed is certified depending upon how many times it has been used i.e. Seed

that comes direct from the breeder is free from any contamination, later generations

many become more contaminated but there are standards for each generation.

b. Previous cropping – important as grain lost in the field can appear in following crops.

c. Field cultivations – verification of seed origin and amount cultivated.

d. Other inputs such as agro-chemicals and fertilizer - there are restrictions on the plant

growth stages that certain agro-chemicals can be used on the crop.

2. Harvest and on-far storage

a. Many combine harvesters now have yield monitors which shows the volume of grain

coming off different areas of each field through a combination of GPS and automatic

in-harvest sample weighing on the combine. This is usually displayed as a heatmap of

the field.

b. Transport from harvester to on-farm storage – usually done by the farm staff and

equipment. Care needs to be taken to thoroughly clean down machinery and storage

before and in use between different crops. Each trailer load is usually weighed before

the crop is put into store.

3. Transport to processor – usually done by external haulage contractor. Again, thorough

cleaning of the lorry necessary between loads.

4. Storage and processing. Most oats are processed in ‘conventional’ rather than dedicated

gluten free facilities so need to be cleaned down between batches. Other competitor

farms are building their own dedicated gluten-free processing facility on one of the farms.

- 40 -

a. After processing the oats will generally be packed into bags of different sizes

depending upon the customer’s requirements. Occasionally for large orders they may

be transported in bulk but this is not that common.

b. They will be transported to the manufacturers either as pallets of small bags or in large

(0.5 or 1 ton) bags.

5. Manufacturer – The main concern of most manufacturers is that the oats conform to the

required specification. The gluten-free aspect could be taken on trust but there is likely to

be some form of paper trail for this although it could well be disjointed and at present

there is no gluten-free assurance / certification scheme for gluten–free oats.

6. Retailer – Generally will expect the specification / safety / certification of the product to

be the responsibility of the manufacturer so it is taken on trust.

7. Consumer – generally expect the retailer to provide them with safe food of a consistent

quality.

Figure 19: Gluten-free Oats Production process / IDC scope

- 41 -

The main scope of the current IDC contracts is solely focused on the first two stages of the

process, as well as the Transport and Storage phases. Albeit the IDC contract contains

functionalities to trace a product’s journey, advanced infrastructure is required to provide an

efficient tracking system. Therefore, these stages are not considered currently covered by the

contract’s setup (figure 19).

4.3.2 Stakeholders

Smart contracts can be triggered by key stakeholders at critical stages of the process, acting

as checkpoints. Having verifiable data on the blockchain can ease audit services or can serve to

meet certain requirements (e.g. Scotch Beef requires farmers to be a member of the QMS

Assurance Scheme).

Each stakeholder will be able to call a smart contract that will verify whether a condition is

being met. Initially, retailers and manufacturers should cooperate to act as accreditors while

the blockchain smoothly enables those capabilities.

In the other hand, the final customer should be able to see the provenance of a product

through the web application front-end (interfaced to the blockchain). Many consumers are

becoming increasingly interested in how their food is produced and its environmental impact so

blockchain does present an opportunity to fulfill this condition.

The main stakeholders identified for the GFO Farm case were:

 Seed breeders

 Cultivation supervisor

 Machinery supervisor

 Harvest supervisor

 Transport & logistics

 Retailing

 Consumer service

 Legislation and certification

 Farming & food expert

 Environmental Health and Trading Standards

- 42 -

4.4 IDC Smart Contract: high-level design

The IDC contract was developed to comply with certain logic based on the GFO Farm

process. The variables and functions were defined focusing on the aforementioned stages of

the process.

The contract is called by the Administrator figure. First, a producer must be registered for

eventually recording a seed, crop or harvest. This marks the first stage of the contract logic

where duplicated or null values will be marked as errors and thus, reverted by the EVM. Prior to

the cultivation stage, a breeder should register the seed data (figure 20) in the blockchain.

Again, some requirements such as null values, and a registered producer will cause an EVM

revert if occurring.

- 43 -

Figure 20: Smart Contract – Cultivation logic

For the Cultivation stage, a farmer will register a crop (figure 20). In this stage, data such as

agro-chemicals, previous cropping and sowings will be registered. Also, if the quantity

registered for a crop exceeds the amount of a certain registered seed, an error will be thrown.

This will enhance the traceability by ensuring that the seeds used for each crop can be

identified avoiding mixtures.

Then, a registered producer will record the harvest data (figure 21). The logic for this part of

the process is similar than the one used for Cultivation; however, since the oat at this point is a

different good, the quantity will only be registered but not monitored.

- 44 -

Figure 21: Smart Contract – Harvest logic

Finally, a product can be tracked from the time of the harvest collection to the

manufacturing & storage phase. In this part, the contract registers a shipment of a harvest from

a registered producer. Afterwards, on the other end, a party in charge of receiving the product,

will verify its state and will again verify that the amount received complies with requirements

upon agreement (figure 22).

- 45 -

Figure 22: Smart Contract - Tracking logic

The EVM will again revert the transaction in case the receiver has the same address as the

sender. Also, there is a weight verification.

5. Functionalities

In this section, the whole contract functionalities are displayed. The setup procedures

required for the deployment are also established. The contract boilerplate (tables A-D) enlists

the variables used, their type and description. Also, the list of functions as well as the

functionality are covered. (Appendix).

- 46 -

5.1 Metamask and Remix setup

As explained in 4.1. Remix can deploy a contract to an Ethereum Test Network with an

injected Web3 via

Metamask. Before

connecting the IDE to

Metamask, seven accounts

were imported from a local

Ganache project. As a

reminder, Ganache serve

as a local blockchain

creating 10 open accounts

every time this framework

is run.

Next, it is necessary to set up Metamask

by importing those Ganache accounts into

the browser extension. This can be done by

restoring a Metamask account using the

mnemonic or seed phrase

This will create a new account which, in

this case, will be connected to the Rinkeby

network.

The rest of the Ganache accounts can be imported using the Private Key

- 47 -

Unfortunately, the Ethers contained in the Ganache accounts can only be used locally, so

when connected to the Rinkeby, these are lost. However, as mentioned in section 3.3, through

the Rinkeby faucet, Rinkeby Ether can be requested following the procedure specified on the

site.

- 48 -

For this simulation, 3 Ethers were requested, which is more than enough to fully test the

contract. When the procedure is completed, and after a 30 second wait approximately, the

Metamask account should reflect the new balance.

Then, from Account 1, the rest of the accounts are credited with 0.4 ETH. Now, all accounts

have sufficient funds to interact with the contract. After funding six additional accounts with

0.4 ETH each plus the transfer fees, the balance in Account 1 is 0.5ETH approximately.

- 49 -

Then, start Remix (https://remix.ethereum.org/). As previously mentioned, it is important to

set the compiler in the same versioning as the writing of the contract.

Also, set the environment at Injected Web3. By accessing Web 3, all the Metamask accounts

will be automatically connected.

5.2 IDC deployment

Constructor Function

The contract will be deployed from Account 1, so it will be deemed as Administrator (admin).

A contract is deployed by executing the constructor function which will create an instance of

the contract to interact with. A constructor function is considered a set function, hence, a

confirmation of the gas fee required will be sent.

https://remix.ethereum.org/

- 50 -

When the contract is deployed, the get and set functions, as well as the defined variables

will appear on the Remix side panel. The transaction receipt will also be displayed in the

console.

- 51 -

On the other hand, the Metamask account will reflect the transaction as well as the new

balance after it.

Register Producer

This function registers the data for a Producer and stores it on the blockchain. In this way, an

account is recorded as a registered producer unlocking the upcoming contract functions.

Addresses corresponding to accounts 2 to 6 will call the function and hence be registered as

producers. Restrictions prevent storing a null or duplicated value.

- 52 -

When the function is transacted, a confirmation from Metamask will be required. Once the

transaction is mined, it will be reflected on the account, as well as in the console. Additionally,

the data can be monitored as an event through Etherscan.

All Suppliers

This is a get function, meaning that only a call will be

placed. Also, it is a public function so all parties would be

able to see the result. No requirements, or modifiers are

coded. The result of this function can only

be visualized either as part of the

bytecode or in the console.

Find Producer / Crop / Shipment

Again, a get function to find a producer, crop or shipment details through its address or ID

respectively. Like the previous function, they are public with no requirements, or modifiers. The

result of the functions can only be visualized either as part of the bytecode or in the Remix

front.

- 53 -

Filter by ProdType

Again, a get function to find a producer’s detail based on the type of product associated to it.

Like the previous function, it is a public with no requirements, or modifiers. The result of this

function can only be visualized either as part of the bytecode or in the Remix front.

Remove Producer / Crop

These functions remove the registered status of a Producer or Crop albeit not “deleting” it

from the database due to blockchain immutability property. A producer will no longer be able

to register anything thereafter. These functions can only be called by the admin (Account 1),

otherwise, the transaction will be reverted by the EVM.

- 54 -

Certify Producer

This function confers a certified status to a producer. It can only be executed by the admin.

However, additional requirements need to be established to obtain this level. Also, the function

has work for improvements since the certified status is not updated as part of the producer’s

data.

Register Seed / Crop/Harvest

These functions share the same operating principle, likewise to register producer.

Nonetheless, only a registered producer is able to interact with it, otherwise, the EVM will

revert the transaction. Additional requirements such as avoiding duplicates and null values are

also applied. For the crops, there is an additional validation regarding the amount of seeds (in

kg) where the amount cropped cannot exceed the amount of seeds linked to it. Data is updated

in the blockchain and an event is emitted.

- 55 -

Receive Shipment

Although the transportation and storage stages are not targeted in the current framework,

this function intends to provide a source of trust for those products that are being shipped. The

function requires the receiver address to be different from the sender; also, the weight from

point A to point B should remain the same. The receiving transaction is stored on the

blockchain and emitted as an event.

- 56 -

The previous image throws an error due to inconsistency in both weights. Also, the same

account that registered the shipment is invoking the function causing the EVM reversion.

5.3 Etherscan events

As revised in 3.2.8. Etherscan, will serve as a dashboard to visualize the transactions

executed within the contract, as well as the events emitted by certain functions.

Once the contract is successfully deployed, a contract address will be generated. The

contract information includes the transaction hash, the block where the transaction was

included, the timestamp, the address of the sender, as well as the value and the corresponding

fee.

- 57 -

Additional information is included at a transactional level, where details such as the gas price

and limit, nonce, and bytecode among others can be found.

- 58 -

Finally, information regarding the events emitted by a contract can also be accessed. This

part is critical for the IDC project since these items constitute the bridge between the

blockchain and the mobile application development. As of now, the IDC contract currently

emits only test data (sender address and block timestamp in hexadecimal form) to verify that a

connection can be established.

- 59 -

Using the Etherscan integrated API [API], the mobile application is able to parse the data

deployed by the contract, essentially functioning as the ABI.

- 60 -

6. Conclusion

Nowadays, the world relies more than ever on different production factors across several

industries despite its questionable impact on the planet and society. All variety of goods and

materials are being produced at alarming rates [59]. As a result, suppliers violate fundamental

human rights, cause lasting environmental damage whilst exploiting the poor and powerless.

The inclusion of emerging technologies such as blockchain, that allows data to be

trustworthy, interoperable and auditable, bring significant benefits and improvements into the

operational nature of almost any business. Successful applications contribute to a culture shift

providing tailored solutions for specific contexts.

Yet, there are important challenges ahead for adapting the traditional systems and

processes into a more digital environment. Sustainable and scalable paradoxes surrounding the

blockchain constrain the potential of the inclusion of blockchain and smart contracts in our

daily habits. For example, as Aztori mentions, the current blockchain applications are generally

not yet compatible with Internet of Things (IoT) networks since this type of devices possess a

low computational capability when compared to a blockchain [60].

Still, most of times, “it’s the last key in the bunch that opens the door”. The IDC project is an

idea that target the needs from two opposite ends across the supply chain process. First, it

provides brands and retailers with a platform to show the world how their products and

services are being delivered, either they are producing a natural or organic food or bringing a

clean service that embraces sustainability. In the other end, it gets to consumers who are

interested in understanding and can interpret information to learn where a product really

comes from.

IDC intends to empower local business by showing the community true value in non-

industrialized products, supporting the authenticity of valuable items, but most importantly,

giving the customer an alternative to buy goods and services that halt harmful farming and

production practices. All of these, achieved by bringing a true and transparent supply chain.

- 61 -

6.1 Evaluation

In general terms, the IDC smart contract is able to show how a production process could

operate at a high-level when applied to a blockchain. As a whole, it creates a more transparent

supply chain.

The deployment of the contract was achieved through Remix. Nevertheless, a robust testing

should be applied before going into production in the main Ethereum network.

The contract is able to show some of the blockchain capabilities such as immutability

(tamper-proof), decentralization and accessibility. The producers can record their own data, as

well as their own goods information in the blockchain. The network participants can retrieve

the registered attributes to verify whilst the contract is accessible to the participants in the

network. Also, a producer can achieve a certified status although the logic.

Moreover, in terms of tracking, the contract allows to record the shipment of a product. In

the blockchain Upon arrival, the receiving party can confirm whether the product arrived in the

expect conditions. The contract also allows individuals to retrieve a shipment information.

On the other hand, the contract still has room for improvement.

 First, the contract functions can be optimized. A smart contract objective should target on

storing and keeping a trustful source of information and implementing a simple process

rather than performing complex math since most of operations occurring inside a contract

incur in a cost.

 The Certification logic currently allows the contract administrator to gran the certified

status to a certain producer. However, the data of the producer is not being updated in the

blockchain yet. Additional requirements can also be included as part of the certification

rationale.

 Once the producer establishes the product that is being recorded, the contract should

automatically invoke another contract based on the type of good to complete the

registration.

- 62 -

 Currently, the events emitted only show information related to the block where a

transaction is being stored per se. The inclusion of data more useful for users and

producers should be integrated.

6.2 Limitations

 The most important limitation experienced was connecting the blockchain to the mobile

application front-end scripts using Web3. At the time of deploying a contract via Web3

with Infura, the resulting ABI from the operation could not be parsed into the JavaScript

front-end files.

 Due to consistent updates in the technologies used, several inconsistencies were

experienced during the development of the project causing setbacks on the original plan.

Remix and Web3 were the most affected parties.

 When deployed through Web3, the provider could not be properly set up at times,

prompting a change in the way of deployment to Remix. In the end, Remix was a very

useful tool due to the versatility at the moment of demonstrating the results in a friendlier

manner.

 Although a real production process was studied and applied to the contract development,

the data and logic at some points was completely simulated.

 The contract was not tested using an installed Ethereum Client such as Geth or Parity.

6.3 Framework for the Future

If certain factors are aligned, the potential of IDC or any other related initiative is significant.

By including smart censors and Enterprise Resource Planning systems, Provenance and Coop

are working together in an initiative that empowers customers with knowledge of the true

origin of the goods they are acquiring [61]. IBM and Maersk [62] are joining efforts to reduce

international barriers in logistics by providing an end to end traceable shipping platform.

Based on the previous work, IDC can evolve into a digital integrated environment by adding

three layers of solutions to a traditional supply chain process (figure 23). The future framework

considers first, the inclusion of technologies such as IoT devices, smart censors and Near-Field

- 63 -

Communication devices. By adding this layer, traceability is enhanced along a product’s journey

while special requirements like temperatures and geo-location data can be enabled.

A second layer considers the inclusion of mathematical algorithms and infrastructure

techniques to optimize and create a more efficient data life cycle. Also, by developing machine

learning algorithms, several processes can be optimized resulting in a more efficient way of

production.

Figure 23: IDC future framework for Supply Chain

Finally, the third layer is the blockchain. Smart contracts are key for a transparent and

trustful supply chain. Moreover, by connecting to the previous layers, new capabilities can be

achieved. One example can be oracles, which connected to smart contracts by Python scripts,

can create a real-time intelligent ecosystem based on three main foundations: becoming a

- 64 -

trustworthy source of information; create a decentralized system; and achieve a sustainable

way of production.

- 65 -

References

[1] McGovern, M. (2017, April 13). Creating a thinking supply chain for the Cognitive Era.

Watson Customer Engagement. Retrieved from https://www.ibm.com/blogs/watson-customer-

engagement/2017/03/27/thinking-supply-chain/

[2] Hutchins, M. J., & Sutherland, J. W. (2008). An exploration of measures of social

sustainability and their application to supply chain decisions. Journal of Cleaner Production,

16(15), 1688-1698. https://doi.org/10.1016/j.jclepro.2008.06.001

 [3] Nakamoto, S. (2008). Bitcoin: A peer-to-peer electronic cash system. Retrieved from

https://nakamotoinstitute.org/bitcoin

[4] Botjes, E. (2017, August 11). Pulling the Blockchain apart. The transaction life-cycle. Unlock

innovation. Retrieved from https://medium.com/ignation/pulling-the-blockchain-apart-the-

transaction-life-cycle-7a1465d75fa3

[5] Temitayo, A. (2019, June 30). EDC Blockchain. Medium. Retrieved from

https://medium.com/@temitayoadebanjo2/every-day-coin-edc-blockchain-is-a-blockchain-

technology-that-uses-the-more-advanced-form-of-76e354bc17f7

[6] Crosby, M., Nachiappan., Pattanayak, P., Verma, S., & Kalyanaraman, V. (2016). Blockchain

technology: Beyond Bitcoin. Applied Innovation Review. Retrieved fromhttps://j2-

capital.com/wp-content/uploads/2017/11/AIR-2016-Blockchain.pdf

[7] Housley, R. (2004). Public Key Infrastructure (PKI). John Wiley & Sons, Inc.

https://doi.org/10.1002/047148296X.tie149

[8] Dwork, C., & Naor, M. (2001). Pricing via Processing or Combating Junk Mail. Annual

International Cryptology Conference, 139-147. https://doi.org/10.1007/3-540-48071-4_10

https://www.ibm.com/blogs/watson-customer-engagement/2017/03/27/thinking-supply-chain/
https://www.ibm.com/blogs/watson-customer-engagement/2017/03/27/thinking-supply-chain/
https://doi.org/10.1016/j.jclepro.2008.06.001
https://nakamotoinstitute.org/bitcoin
https://medium.com/ignation/pulling-the-blockchain-apart-the-transaction-life-cycle-7a1465d75fa3
https://medium.com/ignation/pulling-the-blockchain-apart-the-transaction-life-cycle-7a1465d75fa3
https://medium.com/@temitayoadebanjo2/every-day-coin-edc-blockchain-is-a-blockchain-technology-that-uses-the-more-advanced-form-of-76e354bc17f7
https://medium.com/@temitayoadebanjo2/every-day-coin-edc-blockchain-is-a-blockchain-technology-that-uses-the-more-advanced-form-of-76e354bc17f7
https://j2-capital.com/wp-content/uploads/2017/11/AIR-2016-Blockchain.pdf
https://j2-capital.com/wp-content/uploads/2017/11/AIR-2016-Blockchain.pdf
https://doi.org/10.1002/047148296X.tie149
https://doi.org/10.1007/3-540-48071-4_10

- 66 -

[9] Digiconomist. Bitcoin Energy Consumption Index [Blog]. Retrieved from

https://digiconomist.net/bitcoin-energy-consumption

[10] Lock, C., & Wright, A. (2011, January 18). Typical domestic energy consumption figures).

Office of Gas and Electricity Markets. Retrieved from https://www.ofgem.gov.uk/ofgem-

publications/64026/domestic-energy-consump-fig-fs-pdf

[11] Barnard, M. (2018, December 8). The dark side of blockchain: Electricity Consumption

(blockchain report excerpt). CleanTechnica. Retrieved from

https://cleantechnica.com/2018/12/08/the-dark-side-of-blockchain-electricity-consumption-

blockchain-report-excerpt/

[12] Daily Hodl (2018, April 27). Cryptocurrency Transaction Speeds: The Complete Review. The

daily Hodl: News and insigh for the Digital Economy. Retrieved from

https://dailyhodl.com/2018/04/27/cryptocurrency-transaction-speeds-the-complete-review/

[13] Yli-Huumo, J., Ko, D., Choi, S., Park, S., & Smolander, K. (2016). Where is current research

on Blockchain Technology? – A Systematic Review. PLoS ONE, 11(10):e0163477.

https://doi.org/10.1371/journal.pone.0163477

[14] Madisetti, V., & Bahga, A. (2018). Method and system for tuning blockchain scalability for

fast and low-cost payment and transaction processing. Retrieved from

https://patents.google.com/patent/US10102265B1/en

[15] Rosic, A. (2016). Smart contracts: The blockchain technology that will replace lawyers.

BlockGeeks. Retrievedf rom https://blockgeeks.com/guides/smart-contracts/.

[16] Tokia. Proof of work and proof of Stake [Blog]. Retrieved from

https://www.tokia.io/blog/learn/what-is-pow-pos/

https://digiconomist.net/bitcoin-energy-consumption
https://www.ofgem.gov.uk/ofgem-publications/64026/domestic-energy-consump-fig-fs-pdf
https://www.ofgem.gov.uk/ofgem-publications/64026/domestic-energy-consump-fig-fs-pdf
https://cleantechnica.com/2018/12/08/the-dark-side-of-blockchain-electricity-consumption-blockchain-report-excerpt/
https://cleantechnica.com/2018/12/08/the-dark-side-of-blockchain-electricity-consumption-blockchain-report-excerpt/
https://dailyhodl.com/2018/04/27/cryptocurrency-transaction-speeds-the-complete-review/
https://doi.org/10.1371/journal.pone.0163477
https://patents.google.com/patent/US10102265B1/en
https://blockgeeks.com/guides/smart-contracts/
https://www.tokia.io/blog/learn/what-is-pow-pos/

- 67 -

[17] Saleh, F. (2019). Blockchain without waste: Proof-of-stake.

http://dx.doi.org/10.2139/ssrn.3183935

[18] Buterin, V. (2013). A next generation smart contract & decentralized application platform.

Ethereum White Paper. Retrieved from

https://cryptorating.eu/whitepapers/Ethereum/Ethereum_white_paper.pdf

[19] DistrictOx Educational Portal. (2019). What Is Ethereum?. Retrieved from Error!

Hyperlink reference not valid.https://education.district0x.io/general-topics/understanding-

ethereum/what-is-ethereum/

[20] Li, X., Jiang, P., Chen, T., Luo, X., & Wen, Q. (2017). A survey on the security of blockchain

systems. Future Generation Computer Systems. https://doi.org/10.1016/j.future.2017.08.020

[21] Swan, M. (2015). Blockchain: Blueprint for a New Economy. O’Reilly Media, Inc. Retrieved

from https://www.oreilly.com/library/view/blockchain/9781491920480/ch01.html

[22] Etherscan. (n.d.). Ethereum Block Time History-Ethereum Avarage Block Time chart.

Etherscan. Retrieved from https://etherscan.io/chart/blocktime

[23] Buterin, V., & Griffith, V. (2017). Casper the Friendly Finality Gadget. Retrieved from

https://arxiv.org/pdf/1710.09437.pdf

[24] Ethereum Research. (2017). Future-compatibility for sharding [Blog]. Retrieved from

https://ethresear.ch/t/future-compatibility-for-sharding/386

[25] Tsao, P. (2018, July 31). Blockchain 2.0 and Ethereum [Blockchain Basics Part 3]. Medium.

Retrieved from https://medium.com/xpa-2-0/blockchain-2-0-and-ethereum-blockchain-basics-

part-3-362eb3561b4e

https://dx.doi.org/10.2139/ssrn.3183935
https://cryptorating.eu/whitepapers/Ethereum/Ethereum_white_paper.pdf
https://education.district0x.io/general-topics/understanding-ethereum/what-is-ethereum/
https://education.district0x.io/general-topics/understanding-ethereum/what-is-ethereum/
https://doi.org/10.1016/j.future.2017.08.020
https://www.oreilly.com/library/view/blockchain/9781491920480/ch01.html
https://etherscan.io/chart/blocktime
https://arxiv.org/pdf/1710.09437.pdf
https://ethresear.ch/t/future-compatibility-for-sharding/386
https://medium.com/xpa-2-0/blockchain-2-0-and-ethereum-blockchain-basics-part-3-362eb3561b4e
https://medium.com/xpa-2-0/blockchain-2-0-and-ethereum-blockchain-basics-part-3-362eb3561b4e

- 68 -

[26] Delmolino, K., Arnett, M., Kosba, A., Miller, A., & Shi, E. (2016). Step by Step Towards

Creating a Safe Smart Contract: Lessons and Insights from a Cryptocurrency Lab. International

Conference on Financial Cryptography and Data Security. https://doi.org/10.1007/978-3-662-

53357-4_6

[27] Grech, N., Kong, M., Jurisevic, A., Brent, L., Scholz, B., & Smaragdakis, Y. (2018). MadMax:

Surviving Out-of-Gas Conditions in Ethereum Smart Contracts. Proc. ACM Program. Lang. 2,

OOPSLA, 2(16), 116-143. https://doi.org/10.1145/3276486

[28] Iyer, A., & Dannen, C. (2018). Conceptual Introduction. Building Games with Ethereum

Smart contracts, 1-17. https://doi.org/10.1007/978-1-4842-3492-1_1

[29] Ethos. What is Ethereum Gas?. Retrieved from https://www.ethos.io/what-is-ethereum-

gas/

[30] Boily, F. (2018, May 14). Explaining Ethereum test networks and all their

differences. Medium. Retrieved from https://medium.com/coinmonks/ethereum-test-

networks-69a5463789be

[31] Dinçer, H., & Yüksel, S. (2019). Handbook of Research on Managerial Thinking in Global

Business Economics. Hershey, PA: IGI Global. DOI:10.4018/978-1-5225-7180-3

[32] Siegel, D. (2016). Understanding the DAO Attack. Coindesk. Retrieved

from https://www.coindesk.com/understanding-dao-hack-journalists

[33] Akentiev, A. (2017, November 8). Parity Multisig Hacked. Again. Medium. Retrieved

from https://medium.com/chain-cloud-company-blog/parity-multisig-hack-again-

b46771eaa838

https://doi.org/10.1007/978-3-662-53357-4_6
https://doi.org/10.1007/978-3-662-53357-4_6
https://doi.org/10.1145/3276486
https://doi.org/10.1007/978-1-4842-3492-1_1
https://www.ethos.io/what-is-ethereum-gas/
https://www.ethos.io/what-is-ethereum-gas/
https://medium.com/coinmonks/ethereum-test-networks-69a5463789be
https://medium.com/coinmonks/ethereum-test-networks-69a5463789be
https://www.coindesk.com/understanding-dao-hack-journalists
https://medium.com/chain-cloud-company-blog/parity-multisig-hack-again-b46771eaa838
https://medium.com/chain-cloud-company-blog/parity-multisig-hack-again-b46771eaa838

- 69 -

[34] Jules, A., Kosba, A., & Shi, E. (2016). The ring of Gyges: Using smart contracts for crime. In:

SIGSAC conference on computer and communications security, 283–295. Retrieved from

http://www.arijuels.com/wp-content/uploads/2013/09/Gyges.pdf

[35] Atzei, N., Bartoletti, M., & Cimoli, T. (2017). A survey of attacks on Ethereum Smart

Contracts (SoK). Principles of Security and Trust, 164-186. DOI: 10.1007/978-3-662-54455-6 8

[36] Zyskind, G., Nathan, O., & Pentland, A. (2015). Decentralizing Privacy: Using Blockchain to

Protect Personal Data. IEEE Security and Privacy Workshops, 180-184. DOI:

10.1109/SPW.2015.27

[37] Paul, G., Sarkar, P., & Mukherjee. S. (2014). Towards a More Democratin Mining in Bitcoins.

International Conference on Information Systems Security, 185-203.

https://doi.org/10.1007/978-3-319-13841-1_11

[38] Dagher, G. G., Marella, P. B., Milojkovic, M., & Mohler, J. (2018). BroncoVote: Secure

Voting System using Ethereum’s Blockchain. International Conference on Information Systems

Security and Privacy, (4), 96-107. DOI: 10.5220/0006609700960107

[39] Artlyst. (2015, January 20). Spanish forgery ring creating Picasso, Miró, and Matisse fakes

arrested. Retrieved from https://www.artlyst.com/news/spanish-forgery-ring-creating-picasso-

miro-and-matisse-fakes-arrested/

[40] Lawrence, F. (2013 February 15). Horsemeat scandal: the essential guide. The guardian.

Retrieved from https://www.theguardian.com/uk/2013/feb/15/horsemeat-scandal-the-

essential-guide

http://www.arijuels.com/wp-content/uploads/2013/09/Gyges.pdf
https://doi.org/10.1007/978-3-319-13841-1_11
https://www.artlyst.com/news/spanish-forgery-ring-creating-picasso-miro-and-matisse-fakes-arrested/
https://www.artlyst.com/news/spanish-forgery-ring-creating-picasso-miro-and-matisse-fakes-arrested/
https://www.theguardian.com/uk/2013/feb/15/horsemeat-scandal-the-essential-guide
https://www.theguardian.com/uk/2013/feb/15/horsemeat-scandal-the-essential-guide

- 70 -

[41] Roberts, J.J. (2017, September 12). The Diamond Industry Is Obsessed with the Blockchain.

Fortune. Retrieved from http://fortune.com/2017/09/12/diamond-blockchain-everledger/

[42] Baker, J. (2017, May 15). The story of Provenance: The blockchain startup revolutionising

supply chains. Project Breakthrough. Retrieved from

http://breakthrough.unglobalcompact.org/briefs/jessi-baker-provenance-the-blockchain-

startup-revolution/

 [43] Project Provenance Ltd. (2015, November 21). Blockchain: the solution for transparency in

product supply chains. Provenance. Retrieved from https://www.provenance.org/whitepaper

[44] Toyoda, K., Mathiopoulos, P. T., Sasase, I., & Ohtsuki, T. (2017). A Novel Blockchain-Based

Product Ownership Management System (POMS) for Anti-Counterfeits in the Post Supply Chain.

IEEE Access. DOI: 10.1109/ACCESS.2017.2720760

[45] Iyer, K., & Dannen, C. (2018). Crypto-economics and Game Theory. Building Games with

Ethereum Smart Contracts, 129-141. https://doi.org/10.1007/978-1-4842-3492-1_6

[46] Digital Ocean (n.d.). Remix-IDE Layout. Ethereum Revision. Retrieved from https://remix-

ide.readthedocs.io/en/latest/layout.html

[47] Hirai, Y. (2017). Defining the Ethereum Virtual Machine for Interactive Theorem Provers.

International Conference on Financial Cryptography and Data Security, 520-535.

DOI: 10.1007/978-3-319-70278-0_33

[48] Digital Ocean (n.d.). Introduction to Smart Contracts. Ethereum Revision. Retrieved from

https://solidity.readthedocs.io/en/v0.5.11/introduction-to-smart-contracts.html#index-6

http://fortune.com/2017/09/12/diamond-blockchain-everledger/
http://breakthrough.unglobalcompact.org/briefs/jessi-baker-provenance-the-blockchain-startup-revolution/
http://breakthrough.unglobalcompact.org/briefs/jessi-baker-provenance-the-blockchain-startup-revolution/
https://www.provenance.org/whitepaper
https://doi.org/10.1007/978-1-4842-3492-1_6
https://remix-ide.readthedocs.io/en/latest/layout.html
https://remix-ide.readthedocs.io/en/latest/layout.html
https://link.springer.com/conference/fc
http://dx.doi.org/10.1007/978-3-319-70278-0_33
https://solidity.readthedocs.io/en/v0.5.11/introduction-to-smart-contracts.html#index-6

- 71 -

[49] Zheng, Z., Xie, S., Dai, H., Chen, X., & Want, H. (2017). An Overview of Blockchain

Technology: Architecture, Consensus, and Future Trend. IEEE International Congress on Big

Data (BigData Congress), 557-564. DOI: 10.1109/BigDataCongress.2017.85

[50] Digital Ocean (n.d.). Solidity. Ethereum Revision. Retrieved from

https://solidity.readthedocs.io/en/v0.5.11/

[51] MetaMask. (2019, August 21). Getting Started. MetaMask. Retrieved from
https://metamask.github.io/metamask-docs/Main_Concepts/Getting_Started

[52] Curran, B. (2019, February 6). What is Ethereum’s Infura? Scalable Access to Ethereum and

IPFS. Blockonomi. Retrieved from https://blockonomi.com/ethereum-infura/

[53] Web3. Getting Started. Ethereum Revision. Retrieved from

https://web3js.readthedocs.io/en/v1.2.1/getting-started.html

[54] Truffle Suite (n.d.). Drizzle-Fresh chaing-data for front-ends. Truffle Blockchaing Group.
Retrieved from https://www.trufflesuite.com/drizzle

[55] Truffle Suite (n.d.). Ganache-One Click Blockchain. Truffle Blockchaing Group. Retrieved
from https://www.trufflesuite.com/ganache

[56] Truffle Suite (n.d.). Truffle-Smart contracts made sweeter. Truffle Blockchaing Group.
Retrieved from https://www.trufflesuite.com/truffle

[57] Zhu, N. (2018, August 25). 5 minute guide to deploying smart contracts with Trufle and

Ropsten. Medium. Retrieved from https://medium.com/coinmonks/5-minute-guide-to-

deploying-smart-contracts-with-truffle-and-ropsten-b3e30d5ee1e

https://solidity.readthedocs.io/en/v0.5.11/
https://metamask.github.io/metamask-docs/Main_Concepts/Getting_Started
https://blockonomi.com/ethereum-infura/
https://web3js.readthedocs.io/en/v1.2.1/getting-started.html
https://www.trufflesuite.com/drizzle
https://www.trufflesuite.com/ganache
https://www.trufflesuite.com/truffle
https://medium.com/coinmonks/5-minute-guide-to-deploying-smart-contracts-with-truffle-and-ropsten-b3e30d5ee1e
https://medium.com/coinmonks/5-minute-guide-to-deploying-smart-contracts-with-truffle-and-ropsten-b3e30d5ee1e

- 72 -

[58] Wood, G. (2014). Ethereum: A secure decentralized generalized transaction ledger.

Retrieved from http://gavwood.com/paper.pdf

[59] Earth Overshoot Day (nd.d). Country Overshoot Days. Global Footprint Network. Retrieved

from https://www.overshootday.org/newsroom/country-overshoot-days/

[60] Atzori, L., Iera, A., & Morabito, G. (2016). Understanding the Internet of Things: definition,

potentials, and societal role of a fast evolving paradigm. Ad Hoc Networks. DOI:

10.1016/j.adhoc.2016.12.004

[61] Provenance. (n.d). Pioneering a new standard for trust in food retail. Project Provenance

Ltd. Retrieved from https://www.provenance.org/case-studies/co-op

[62] White, M. (2018, January 16). Digitizing Global Trade with Maersk and IBM. Blockchain

Pulse: IBM Blockchain Blog. Retrieved from

https://www.ibm.com/blogs/blockchain/2018/01/digitizing-global-trade-maersk-ibm/

http://gavwood.com/paper.pdf
https://www.overshootday.org/newsroom/country-overshoot-days/
https://www.provenance.org/case-studies/co-op
https://www.ibm.com/blogs/blockchain/2018/01/digitizing-global-trade-maersk-ibm/

- 73 -

Appendix: Contract Boilerplate

Variables

Name Type Description

admin address Address of the person managing the cultivation process

producers mapping List of addresses of registered producers

seeds mapping List of registered seeds mapped by ID

crops mapping List of registered crops mapped by ID

harv mapping List of registered harvests mapped by ID

track mapping List of registered products mapped by ID

shipments mapping List of shipments weight corresponding to a product

senders mapping List of addresses confirmed as registered producers

regProds mapping Match a value address from a boolean key

seed Seed [] An array of a Seed struct used to add entered values into a block

supplier Producer [] An array of a Producer struct used to add entered values into a block

cultivation Crop [] An array of a Crop struct used to add entered values into a block

batch Harvest [] An array of a Harvest struct used to add entered values into a block

shipment Tracking [] An array of a Tracking struct used to add entered values into a block

amount uint
Undefined integer used to monitor the weights of seeds, products and
shipments

producerAddress address []
Array of addresses that can be stored as memory values to retrieve a
list of registered producers

Seeds Struct

Name Type Description

grain uint Seed ID

farmer address Who is registering a seed

Amount uint Amount of seeds in kg.

Producer Struct

Name Type Description

name string Producer name

country string Country of origin

city string City of origin

prodType string Type of product

certified boolean Certified Producer?

- 74 -

Crop Struct

Name Type Description

farmer address Who is registering a crop

location string Where is the crop cultivated

quantity uint Amount of cropped seeds in kg

sowings boolean Certified Seed?

prevcrops uint Number of previous croppings

fertilizer string Agro-chemicals used

timestamp uint Block data

Harvest Struct

Name Type Description

harvest string Harvest ID

harvester address Who is registering the harvest?

field string Place of harvest

harvquant uint Amount of oats harvested in kg

Modifier

Name Description

restricted Modifier that enables the right to execute a certain function only to the admin

registered Modifier that requires an address to be already stored

- 75 -

Functions

Name Description

Constructor Constructor function to deploy an instance of the contract

registerProducer Called to register as a Producer

allSuppliers Called to retrieve a list of registered producers

findProducer Function to find a producer by its address

filterByProdType Called to retrieve a list of products by type

removeProducer Called to remove a registered producer from the database

certifyProducer Called to certify a producer if required

registerSeed Called to register a Seed

findSeed Function to find a seed by its ID

registerCrop Called to register a Crop

findCrop Function to find a Crop by its ID

removeCrop Called to remove a crop from database

registerHarvest Called to register a Harvest batch

registerShipment Called to register the shipment of a product

receiveShipment After a shipment is received, called to verify product and shipment data

trackShipment Function to find a shipment by ID

