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Abstract 

The application of Machine Learning (ML) and Artificial Intelligence (AI) in a broader sense has 
seen tremendous acceptance and increase in recent times. The development of autonomous 
vehicles, contact tracing apps, diagnosis of diseases based on symptoms, detection of fraudulent 
transactions among a host of other applications are just a few of the remarkable feats of AI/ML. 
However, much emphasis on various AI/ML projects is placed on building models with higher 
predictive accuracies, ignoring the associated environmental cost. As AI/ML thrives on data 
stored in data centres with ever-increasing electricity usage, coupled with the battery-power 
constraint of the smart devices used by end-users which require frequent charging, the huge 
quantities of electricity usage leading to the emission of Greenhouse Gases (GHG) with its sub-
sequent effects of climate change and global warming cannot be overlooked. With the fight 
towards net-zero emissions prominently featuring in global policies, the need to build AI/ML 
models which are eco-friendly while seeking to maintain predictive accuracy is therefore non-
negotiable.  

This dissertation explored hyperparameter optimisation and feature optimisation as techniques 
to employ in building faster and greener AI models while keeping predictive accuracy at bay. 
GridSearchCV and RFECV as provided by scikit-learn were used for the hyperparameter optimi-
sation and feature optimisation respectively in this research by applying the eXtreme Gradient 
Boosting (XGB) classification algorithm on the Smart Grid Stability (SGS) dataset to assist in 
achieving the set objectives. It was found that it required 393times the inference runtime and 
701times the inference energy for a model to be trained. Following this finding, it was also re-
vealed that the runtime and energy consumption at the training phase of the ML cycle could be 
cut down by 30.88% and 35.07% respectively with a minimal loss of 1.93% in predictive accuracy 
from 97.8% to 95.91% when hyperparameter optimisation is applied on selected features of rel-
evance. The findings of the research, therefore, confirm the need to employ hyperparameter 
optimisation and feature optimisation targeting energy as well as accuracy, as valuable tools to-
wards faster and greener AI. 
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1 Introduction 

This first section of the dissertation sets out the background and context based on which this 
research was carried out. Following the background and context, the scope and objectives of the 
research are defined. A summary of achievements stemming from the research comes next and 
finally, a general overview of how the whole dissertation is organised is made known to assist 
with easy navigation of this dissertation. 

1.1 Background and Context 

Modern Artificial Intelligence (AI) and the narrow field of Machine Learning (ML) has been with 
us for over 60 years now but in recent times, its application in industry and acceptance by the 
masses has increased tremendously [2]. In present-days, many devices have been developed and 
others are still being developed to exploit machine learning in the healthcare industry, agricul-
tural industry, financial industry, manufacturing industry, logistics industry and several other 
industries [3]. For instance, in the wake of the Covid-19 pandemic, AI and ML were considered 
one of the key tools to be used in battling the disease; devices that are capable of detecting who 
has the disease based on symptoms and other contact tracing applications rely on AI and ML 
algorithms [4]. As intelligent devices rely on data, which is one of the essential components in 
their design and ability to operate, it is of great importance that vast server centres are devel-
oped to house these large-scale datasets. The ever-increasing quantities of energy consumed by 
these large-scale data centres, coupled with the need to frequently charge the designed intelli-
gent devices used in accessing resources from the data centres due to the energy taken up by 
their Central Processing Units (CPUs) in carrying out their intelligent tasks, are known to contrib-
ute significantly to the soaring rates in Carbon Dioxide (CO2) emissions leading to the greenhouse 
effect which is detrimental to our planet [5], [6]. 

Expanded concentration of CO2 in the atmosphere is generally being considered as the primary 
driving component that causes global warming and the climate change phenomena [7]. Alt-
hough, global warming and climate change are inevitable, environmental pollutions originating 
in human activities contribute approximately 1.0 degree Celsius to this global canker as reported 
in 2018 by the Intergovernmental Panel on Climate Change (IPCC) [8]. Some of the numerous 
consequences of this global warming and climate change menace include; higher temperatures 
leading to many disasters such as storms, hurricanes, cyclones, Arctic ice coverage reduction and 
prolonged droughts leading to fire outbreaks such as the one evidenced in Australia recently. 
The fight towards net-zero emissions continues to feature prominently among government poli-
cies the world over. The United Kingdom (UK) government in 2019 for instance, amended its 
Climate Change Act of 2008 [9] with a legislation [10] to fuse a net-zero emissions goal for 2050, 
as opposed to the 80% reduction target benchmarked to the 1990 emissions previously set.  

Undoubtedly, electricity demand for computations in data centres and the use of electricity to 
frequently get batteries of devices relying on AI technologies charged, due to the higher energies 
taken up by CPUs of such devices, cannot be ignored. This ever-increasing electricity demand all 
around the world and its accompanying upsurge in CO2 emissions has an environmental impact 
that is becoming increasingly harder to overlook. As data centres are anticipated to devour 8% 
to 21% of worldwide power by the year 2025, it is predicted that training of a large-scale deep-
learning model would emit 284,000kgs of the green-house CO2, identical to the combined life-
time emissions of 5 automobiles [11]. On the other part, the smart devices which in most cases 
are mobile in nature and used in interacting with the data centres are built with batteries which 
have the capacity to hold more power. Despite these smart devices’ battery power-holding ca-
pacities, while features such as screen display, GPS, Wi-Fi consume large portions of power, the 
standalone battery power consumption of these devices CPUs utilisation eats up between 27% 
and 35% of a fully charged device’s battery [12]. 
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Currently, the move to build AI and for that matter ML systems with faster compute and which 
are less costly to planet earth, have aroused the interests of many researchers in the AI commu-
nity. Researchers have tried to explore techniques capable of making AI systems perform 
intelligent tasks accurately and faster in order to reduce the overall energy consumption and its 
alarming effects on the environment. In light of this, optimisation techniques readily come to 
mind. However, as to which aspect of the machine learning process to modify in the quest of 
building faster, accurate and energy efficient AI systems at both extremes of training and infer-
ence are being explored by researchers. 

The application of optimisation techniques to configure hyperparameters has been used exten-
sively in almost every AI/ML project to build models which are more accurate and, in some cases, 
reduced the computational time. It is worrying to note however, that only a handful of research-
ers have investigated the extent to which hyperparameter optimisation can be used as an 
approach in constructing models that are computationally fast and energy efficient by measuring 
the runtime and energy consumptions to ascertain the energy efficiencies of the application of 
hyperparameter optimisation. Some of these works include [1], [13]–[16] . Another aspect of the 
machine learning process, where the use of optimisation techniques has been indispensable is 
Feature selection. Feature selection besides its ability to increase model performance is widely 
appraised also to be helpful in building simpler and faster machine learning models. This it 
achieves by using a subset of the dataset’s features instead of the entire features [17]. However, 
preliminary research of literature indicated that much study has not been done by measuring 
the runtime and energy consumption to establish the true impact of feature optimisation on 
runtime and energy consumption with its subsequent effect in reducing the GHG. One key re-
search that employed feature optimisation as a tool to reduce energy consumption in wearable 
devices is the work of Ghasemzadeh et al.  [18].  

In the most related preceding work by Brownlee et al.[1] which forms the basis of this disserta-
tion, the researchers explored the energy consumption using search-based approach for  
hyperparameter tuning of MLP on five classification datasets. The research motive was clearly 
stated as they focused on the investigation of the trade-offs between training or inference en-
ergy and classification accuracy. The researchers were able to demonstrate based on one of their 
datasets that 77% of inference energy consumption could be saved with a minimal reduction in 
prediction accuracy from 94.3% to 93.2%. The authors further noted that, training energy con-
sumption could be lessened by 30% to 50% with a slight loss in model accuracy. However, the 
researchers focused on hyperparameter optimisation technique only. Again, their research was 
based on multilayer perceptron (MLP) machine learning algorithm, five specific datasets and 
with the experimentation being performed on a specific hardware system to make generalisa-
tions [1].  

To further confirm the generalisations of the researchers and add on to the existing knowledge 
of literature, it is essential that research be carried out utilising a different dataset and different 
ML algorithm on a different hardware architecture. Extending the work of Brownlee et al. [1] 
further, investigating the runtime and energy consumptions stemming from a combination of 
hyperparameter optimisation and feature optimisation techniques in the development of envi-
ronmentally friendly models while keeping accuracy at bay, cannot be overemphasised. In the 
light of this, the following research questions are formulated: 

1. What is the runtime and energy consumption associated with building an accurate ma-
chine learning model, using the default hyperparameter configuration of the ML 
algorithm on the entire features of the dataset under consideration, at both extremes 
of training and inference? 
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2. To what extent, can hyperparameter optimisation be used to reduce runtime and energy 
consumption of ML algorithm while preserving accuracy at both extremes of training 
and inference? 

3. Is feature optimisation useful in trying to build machine learning model that is energy 
efficient and computes faster during training and inference with little or no disruption in 
accuracy? 

4. How fast, and how much energy can be saved when hyperparameter optimisation is ap-
plied on selected features of a dataset in building machine learning models while 
preserving accuracy during training and also at inference? 

1.2 Scope and Objectives 

Whilst hyperparameter optimisation and feature selection techniques have been used exten-
sively in machine learning projects, research on their contribution to building eco-friendly AI 
systems is still green. The primary focus of this work is set to investigate hyperparameter opti-
misation and feature optimisation as techniques capable of making machine learning algorithms 
environmentally friendly by cutting down on runtime and energy consumption at both ends of 
training and inference without necessarily causing harm to the predictive accuracy of the model 
being constructed. 

The scope of this research is limited to the supervised machine learning task of classification. 
Focus will be on the eXtreme Gradient Boosting (XGB) classifier, due to its performance and pop-
ularity on classification problems. More so, focus will be on the Smart Grid Stability (SGS) dataset 
[19]. These limitations in part, are as a result of the limited timeframe and computational re-
source within which this research is to be carried out considering the computational cost (both 
environmentally and economically) associated with AI projects. Moreover, the energy implica-
tions of this research are geographically limited in scope to the UK as other countries may have 
a mix of electricity generating sources other than that of the UK. Quantification of the environ-
mental cost may be different if this research is carried out in a different geographical location. 

In an attempt to answer the research questions formulated and also to achieve the overall aim 
of making AI faster and greener, the following specific objectives were set: 

1. To investigate runtime and energy consumption of XGB classification algorithm on the 
SGS dataset at both extremes of training and inference. 

2. To explore the impact of hyperparameter optimisation on the runtime and energy con-
sumption of XGB classification algorithm on the SGS dataset during training and 
inference. 

3. To examine the effects of feature optimisation on runtime and energy consumption of 
XGB classification algorithm on the SGS dataset at both ends of training and inference. 

4. To explore the combined effect of hyperparameter optimisation and feature optimisa-
tion on the runtime and energy consumption of XGB classification algorithm on the SGS 
dataset at both extremes of training and inference. 

1.3 Achievements 

It is worth assessing to what extent the series of experimentations in this dissertation has helped 
in achieving the set objectives, answered the formulated research questions and also, contribute 
to existing knowledge on the broader aim of exploring techniques appropriate in the quest of 
making AI faster and environmentally friendly. 

With regards to objective 1, runtime and energy consumption at both extremes of training and 
inference were reliably measured, serving as a benchmark for comparison and also revealing at 
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which extreme much energy is used. In the case of objective 2, hyperparameter optimisation 
drastically cut down the runtime and energy consumed on training the model, however, the cut 
observed for inference was seen to be very small but tested to be statistically significant. Unlike 
objective 2, the experimental results for objective 3 only showed a marginal drop in runtime and 
energy consumption, however, the drop was tested to be statistically significant. The final objec-
tive, objective 4 was achieved as savings in runtime and energy consumption for both training 
and inference were recorded but observed to be very substantial at the training extreme. It is 
worth noting that minimal losses in predictive accuracy for all the series of experimentations 
conducted were observed.  

The findings confirm that although hyperparameter optimisation on its own is a great technique 
to apply in building faster and environmentally friendly AI systems, however, the combined effect 
of hyperparameter optimisation and feature optimisation is superb to aid in constructing ML 
models that are accurate, environmentally friendly and also computationally faster. 

This dissertation has helped with the understanding and knowledge of the pyRAPL software 
toolkit. I am now able to confidently use it in projects to measure the energy footprint of a host 
machine together with the execution of a piece of python code. 

1.4 Overview of Dissertation 

The dissertation is organised into five main sections. Below is an overview of how this disserta-
tion has been structed: 

Section 1 – Introduction: This section of the dissertation presents the general background and 
the need for the research. The scope and objectives of the study are clearly stated in this section 
of the dissertation. The section concludes with a brief and clear summary of the achievements 
of this dissertation.   

Subsequent sections of the dissertation are organised as below; 

Section 2 – State-of-the-Art: The state-of-the-Art section of the dissertation is thematic in nature. 
It tries to bring to light, some of the current developments on key topics relating to this disser-
tation. Faster AI and the environmental cost, Optimisation techniques for faster and energy 
efficient AI, Hyperparameter optimisation for faster and energy efficient AI, Feature optimisation 
for faster and energy efficient AI and a blend of hyperparameter optimisation and feature opti-
misation for faster and energy efficient AI, are the thematic topics reviewed in this section. A 
critical literature review of the most related work by Brownlee et al. [1] concludes the section. 

Section 3 – Methodology: The method and materials used for the experimentation is made 
known in this part of the dissertation in order to assist others who may like to replicate the pro-
cesses involved, to seamlessly do so. The section is further expanded into the following 
subsections; Research design, Dataset, General approach, Measurements and Technology and 
systems used. 

Section 4 – Results and Discussion: The results of the entire experimentations embodying this 
dissertation are presented in this section.  Results of the individual experimentations are pre-
sented, followed by the general results with a thorough discussion of the findings of this 
dissertation. 

Section 5, Conclusion: This section of the dissertation presents a snapshot and evaluation of the 
entire dissertation and also recommendations for further research on the topic. 
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2 State-of-The-Art 

This section summarises state-of-the-art on the thematic topics of this dissertation. More so, it 
presents a critical literature review of the most related research preceding this dissertation. The 
section is expanded under the following thematic topics; Faster AI and the environmental cost, 
Optimisation techniques for faster and energy efficient AI, Hyperparameter optimisation for 
faster and energy efficient AI, Feature optimisation for faster and energy efficient AI and A blend 
of hyperparameter optimisation and feature optimisation for faster and energy efficient AI. The 
section concludes with a critical review of the most related research by Brownlee et al. [1] pre-
ceding this dissertation. 

2.1 Faster AI and The Environmental Cost 

In order to appreciate the concept of faster and greener AI, this subsection seeks to briefly delve 
into the underlying concepts of Artificial Intelligence/Machine Learning as well as Climate 
Change/Global warming. Past and present studies with focus on AI’s contribution to global warm-
ing and its ensuing effects on our planet are also discussed. 

2.1.1 Artificial Intelligence/Machine Learning 

Numerous activities requiring the use of the human mind such as understanding language, driv-
ing a car, developing a computer game and the ability to apply common-sense in decision-making 
among others require the application of “intelligence”. Over the past few years, computer sys-
tems have been developed to act intelligently like the human mind, capable of performing these 
tasks. Self-driving vehicles, devices capable of diagnosing diseases, systems that are able to un-
derstand portions of natural language text and human speech, are just a few specific instances 
of systems built primarily to possess some degree of artificial intelligence [20]. 

Attempts to define AI robustly or in its simplest terms continues to be a challenge as there seem 
not to be a one fits all definition. One of the pioneers in AI, John McCarthy in 1995 made the first 
attempt in defining AI as: 

“The goal of AI is to develop machines that behave as though they are intelligent” 

However, the above definition seems not to be sufficient as proven by other researchers over 
the years. Several other researchers have tried to define AI but one that stands the test of time 
is the concise and terse definition by Elaine Rich and Kevin Knight. They defined AI as follows: 

“Artificial Intelligence is the study of how to make computers do things at which, at the moment 
people are better.” 

Their definition of AI is apt and for years to come will still be relevant. What this definition reveals 
is that, the development of AI systems generally thrive on sound knowledge of human intelli-
gence and reasoning [21]. 

Although, Artificial Intelligence as practiced today has existed over 6 decades, its application in 
industry and acceptance by the masses has increased tremendously in the recent past decade 
and now [1]. In present-days, many intelligent devices have been developed with others still be-
ing developed to assist in completing tasks in the healthcare industry, agricultural industry, 
financial industry, manufacturing industry, logistics industry and several other industries [2]. 

Artificial intelligence in the broader sense may be classed into three main types;  

1. Artificial narrow intelligence (ANI) – AI systems with narrow range of abilities. 

2. Artificial general intelligence (AGI) – AI systems at par with human capabilities. 

3. Artificial super intelligence (ASI) – AI systems with capabilities beyond that of human. 
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It is generally known and accepted by the above definitions of the three broader types that, only 
ANI is currently being explored both in academia and industry. There are many subfields of AI 
under the ANI class but the following in no particular order constitute the six major subfields; 
Machine learning, Neural networks, Robotics, Expert systems, Fuzzy logic and Natural language 
processing. 

Machine learning undoubtedly is one of the most popular and important branches of AI espe-
cially with its deep learning approach which started in the early parts of the immediate past 
decade. It addresses the issue of building computer systems that base on experience to auto-
matically improve. Machine learning is one of the technical fields that has seen rapid growth in 
present times. It is at the core of AI and data science, interfacing statistics and computer science. 
The acceptance of data-intensive ML approaches is evident in technology, science and com-
merce, resulting in improved decision-making as observed across many spheres of life, including 
financial modelling, healthcare, policing, manufacturing, marketing, education and other sectors 
[22]. Figure 1 below, gives a pictorial overview of the distinction between Artificial Intelligence 
and one of its branches, Machine Learning. 

 

 

Figure 1. The Broader Picture of AI and Machine Learning 
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2.1.2 Climate Change and Global Warming 

Climate change in its simplest terms as defined by National Geographic Society (NGS) is the per-
sistent alteration in regional or global patterns [23] whereas Global warming has been phrased 
to mean, human activities impact on the climate. Some of the human activities leading to global 
warming encompass large scale deforestation and the excessive burning of fossil fuels which 
emit GHGs. Key among the GHGs emitted and worthy of note is CO2. Climate change stems from 
global warming as the emission of GHGs into the atmosphere soak up emitted earth’s surface 
infrared radiations, acting as a heavy surface covering to keep planet earth warmer than it should 
have naturally been. Most observable consequences of climate change on the environment in-
clude shrunken glaciers, premature flowering of trees, extinction of some plant and animal 
species, early break up of ice on lakes and rivers, and the list is unexhaustive. It is projected that, 
the effects of climate change will be with us into the foreseeable future; Artic becoming ice-free, 
rising sea levels of between 1ft to 8ft by 2100, Hurricanes becoming more intense and stronger, 
heat waves and droughts are cited as some of the expected consequences of climate change 
[24]. Global warming is a critical environmental issue whose consequences affect all and sundry 
and for this, there is a clarion call the world over to reduce the emissions of human-caused GHGs. 
One of such key calls worthy of note at the international levels is “The Paris Agreement” in 2015 
by the UN. This international treaty which is legally binding on climate change was embraced in 
2015 and enforced in 2016 by 196 parties. The main goal of the treaty is to restrict the global 
warming to below 2.0 degrees Celsius, preferably to 1.5 degrees Celsius relative to the levels that 
existed during the pre-industrial ages. It enforces partners to aim at reaching global peaking of 
GHGs emissions as soon as practicable so as to reach a climate-neutral world by 2050 and in 
effect contribute to achieving the overall goal [25]. The concept of global warming is illustrated 
in Figure 2 below. 

 

 

Figure 2. The Green-house effect and Global Warming 
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2.1.3 Faster AI and the Environmental Cost 

The desire to build AI systems with near perfect predictive accuracies has been increasing rapidly 
in recent times especially with the introduction of deep-learning algorithms. Even though, 
awareness of energy consumption is gaining popularity in the AI community, almost every AI 
project still seem to be geared towards higher predictive accuracy as the prime performance 
metric reported in the end, ignoring the computational resources required, the environmental 
cost and with absolute disregard for sustainability [15]. It was estimated in 2010 that, out of the 
total electricity produced globally, data centres consume between 1.1% and 1.5% [26]. To give 
credence to the energy consumption levels at both extremes of data centres and smart devices 
used in accessing resources from these datacentres, global electricity consumption of between 
8% to 21% by 2025 was predicted for datacentres. Again, an estimated 284,000kgs of CO2, a GHG 
which is costly to our environment is emitted and this is only attributable to training of larger 
deep-learning algorithms. This emission compares to the combined lifespan emissions of 5 au-
tomobiles [11]. On the other extreme, which is in respect of smart devices, especially mobile 
phones used in accessing resources from datacentres, while user experience remains as a prior-
ity with regards to the factors that drain battery power [27], the CPU of these devices used in 
internal computations cannot be ignored as this feature prominently in higher batter usage [28]. 
For instance, in 2013 Carroll and Heiser [29] observed that, the highest CPU energy consumption 
of Samsung Galaxy S3 was 2,845mW. What this means is that, the peak energy consumption of 
the CPU exceeded that which was used by the screen and 3G hardware by 2.53times and 
2.5times respectively. 

Modern-day researchers in the AI community, while trying to achieve higher predictive accura-
cies are now aware of the associated computational and environmental costs. Although the level 
of awareness is questionable or at best research focus on the issue of building eco-friendly AI 
models could best be considered as very green as there seem to be limited literature on the 
topic. Some level of work has been done to bring the issue of AI related energy consumption and 
explored mechanisms for cutting down this worrying concern to the fore. Notable among such 
works include; [1], [5], [11], [13]–[16], [18], [26], [30]–[42]. In spite of the great works done by 
these researchers in attempting to explore how AI systems could be made to run faster and be 
made more energy efficient, it was noted during the literature review however, that the direct 
consequence on the environment as could have been measured by the level of actual GHGs 
emitted during their experimentations were ignored.  This could be a problem attributable to a 
wanting of a standardised measuring technique or the different platforms on which these exper-
imentations were set up. For example, whereas Brownlee et al. [13] estimated energy 
consumption on a Java-based platform using WEKA, Brownlee et al.’s [1] experimentation was 
done with python’s RAPL provided by Intel. Further to this, whilst others were exploring energy 
consumption cut at both extremes of training and inference, other researchers too only focused 
on one side of the two larger but interlocking ends. It is worth noting that of the attempts made 
in exploring energy consumption measurements, most studies used the CPU time as a proxy for 
energy consumed for which other researchers have proven as an inappropriate measuring ap-
proach. Patterson et al. [37], in a most recent work formulated the energy consumption and its 
related carbon footprint of training a large Natural Language Processing (NLP) model. They ar-
gued that, the electricity demanded to allow a machine learning model to run is a function of 
the number of processors on the machine setup for the experimentation, the algorithm, the 
programming language that executes the task, the power and speed of the processors on the 
machine setup for the task and the datacentres energy sources mix (fossil, renewable energy, 
etc.)  They then formulated simply, the effect of AI model on the environment as; 

Footprint = (electrical energy train + queries x electrical energy inference) x CO2 datacentre /KWh 

Albeit, this equation seems insightful, its validity is yet to be established by other researchers. 
Moreover, its application to other ML subfields other than the NLP is currently not known. 
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Optimisation techniques have been the main tool that has been employed on various aspects of 
AI and for that matter ML projects to construct optimal models that compute faster while pre-
serving their accuracy in this era of power-aware AI. The ensuing subsection takes an empirical 
look at the application of optimisation techniques on the move towards faster and greener AI. 

2.2 Optimisation Techniques for Faster and Energy Efficient AI  

In every aspect of our daily lives, we are faced with the task of making the most effective or best 
use of resources or of a situation; this is what is referred to as optimisation. In present times, 
computing and mathematics have been connected in attempts to solve optimisation problems. 
Optimisation techniques have seen major applications in practice especially in commerce, indus-
try, government and science to help in solving network problems, scare resources allocation 
problems, maximisation or minimisation of functions among others. Optimisation is at the heart 
of computer science. In software development for instance, optimisation techniques are em-
ployed so as to be able to build systems that are efficient, that is with faster runtime considering 
the limited computational resources available. It is significant to note that, optimisation is a fun-
damental block to artificial intelligence and for that matter machine learning. For example, 
optimisation techniques have made it possible to design artificial intelligence or machine learn-
ing algorithms that have been used to build self-repairing software, computers that interact with 
humans and also for data predictions and analysis among other applications [43], [44]. 

It is therefore of great essence that optimisation techniques are the go-to approaches in building 
artificial intelligence and machine learning algorithms which are computationally faster, energy 
efficient and in effect eco-friendly which achieves almost same or a minimal loss in accuracy as 
would have been achieved by a computationally expensive system. Several researchers in the 
Artificial Intelligence community have begun to explore search-based optimisation techniques 
to help in building systems that are energy efficient [1]. Notably, Brownlee et al. [1] applied grid-
search optimisation technique  to explore the hyperparameter settings for a MLP machine learn-
ing algorithm on 5 classification datasets with the main focus of minimising training or inference 
energy consumption at the expense of accuracy. More so, search-based software engineering 
(SBSE) optimisation technique was applied to reduce the energy consumed by programs written 
for Java virtual machines Brownlee et al. [13]. In all of these two instances where optimisation 
techniques were used, the set objectives of achieving energy efficient systems were achieved. In 
the case of [1], one of their experimentations resulted in an energy efficient system with a re-
duced 77% inference energy consumption whiles the reduction in accuracy was minimal, 
reduced to 93.2% from 94.3%. This same work also demonstrated the power of optimisation 
techniques’ ability to cut down on energy consumption by a margin of between 30% and 50% 
when fitting a model to a training data with marginal loss in model accuracy as observed by the 
researchers. As also noted in the research work of [45], search-based optimisation technique 
was used to fix energy leakages in mobile devices and the researchers observed that the repair 
expressions generated by their system could save 60% of the energy consumption on tested 
apps. 

Unfortunately, only few literatures exist on the application of search-based optimisation tech-
niques for faster and energy efficient AI. These researchers  [14], [16] also applied search-based 
optimisation techniques to reduce model complexity so as to be able to cut down the runtime 
and energy consumption. In the case of [14], the researchers proposed an energy efficient neural 
network structural design, Chameleon. According to their results, altering computational re-
sources to building blocks is crucial to the performance of the model. Accuracy of 73.8% and 
75.3% top-1 accuracy were achieved on ImageNet with reduced latency of 8.2% and 6.7%. On 
the other hand, [16]  proposed HyperPower to tackle the issue of complex NN architectures as a 
solution to building energy efficient models by applying a Bayesian optimisation and random 
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search approaches. The researchers demonstrated that, the number of evaluation function and 
the best test error could be at a faster rate of 30.12times. 

Machine learning is a process encompassing many stages such as data preparation, choosing the 
model, training the model, evaluating the model, hyperparameter tuning and finally making pre-
dictions. Which aspect of the machine learning process to be optimised for energy efficient and 
faster AI is being explored by various researchers. In most of the literatures preceding this dis-
sertation, hyperparameter optimisation has been used to find optimal model hyperparameter 
configurations in an attempt to build faster and energy efficient AI. It is therefore of great es-
sence that other aspects of the ML process other than tuning the hyperparameters be 
investigated as well to see how best they can be optimised in building energy efficient ML models 
with overall reduced harm to planet earth. Hyperparameter optimisation and feature optimisa-
tion are used in almost every AI/ML project. As earlier mentioned, researchers interested in 
measuring the energy consumption mostly focus on investigating the effects of hyperparameter 
optimisation only but this dissertation tries to investigate the stand-alone contributions of hy-
perparameter optimisation, feature optimisation and their combined effects as applicable 
techniques towards a faster and greener AI.  

2.3 Hyperparameter Optimisation for Faster and Energy Efficient AI 

State-of-the-art machine learning algorithms most especially supervised ML algorithms come 
with hyperparameters that can be tuned for optimal predictive performance. These hyperpa-
rameters can be applied in three approaches in ML projects; using default values as set by the 
developers of the algorithm, manually configuration the values and finally by using optimisation 
techniques to carry out the tuning procedure [46]. The later approach, is commonly referred to 
as hyperparameter optimisation. This dissertation makes use of the later approach, that is using 
optimisation techniques to carry out the configuration of the hyperparameters. This approach 
albeit is computationally expensive, remains the approach of choice in the quest for optimal 
predictive models. With this approach, it is possible to trade-off portion of accuracy so as to 
reduce the computational and environmental costs. It is therefore not strange that almost every 
researcher in the AI community interested in the area of faster and energy efficient models re-
sort to hyperparameter optimisation. Although, hyperparameter optimisation is an everyday 
task in machine learning as it is primarily used for achieving higher predictive accuracies, inves-
tigations of its contribution to building energy efficient models at both extremes of model 
training and inference are now gaining prominence. 

It is however worth noting, that not much has been done to fully help understand the impact of 
hyperparameter optimisation as a technique for building faster and energy efficient AI. This is 
backed by the fact that, there only exist a limited number of literatures on this all-important 
topic.  In one of these few studies, the researchers explored the hyperparameter configurations 
for MLP algorithm by using grid search optimisation technique on five classification datasets. The 
research focused on establishing trade-off between classification accuracy and the level of en-
ergy consumed on training the model or on inference. They showed that 77% inference energy 
could be saved as evidenced in one of their datasets with a marginal loss of 1.1% in model accu-
racy. They also indicated that training energy could be saved by a margin of between 30% and 
50%. 

2.4 Feature Optimisation for Faster and Energy Efficient AI 

Aside hyperparameter tuning, one of the aspects of the machine learning process which is widely 
known to reduce computational time and also believed to be helpful in building predictive mod-
els that achieve same or even better accuracy with reduced features of the dataset is feature 
selection. However, in machine learning projects, researchers have actually not tried to explore 
this technique as one of the means of cutting down the energy consumption used up by ML 
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algorithms at both ends of training and inference. This is backed also by the insufficient literature 
on estimation of the energy consumption levels to ascertain the extent to which feature selec-
tion makes AI/ML faster and environmentally friendly, albeit researchers believe FS has the 
capability. 

Feature optimisation is the method of diminishing the number of input factors when creating a 
predictive model. It is alluring to decrease the number of input factors to both decrease the 
computational cost of modelling, in a few cases, to speed up the experimentation as well [47]. 
There are numerous distinctive feature optimisation algorithms, in spite of the fact that they can 
broadly be gathered into two primary categories: filter and wrapper methods. Filter feature op-
timisation approaches utilize statistical methods to assess the relationship between each input 
attribute and the target attribute, and these scores are utilized as the premise to select which 
features are appropriate to include in building the predictive model. Wrapper feature optimisa-
tion on the other hand, make numerous models with diverse subsets of input attributes and 
select those features that result within the best performing predictive model agreeing to an ex-
ecution metric. These approaches do not rely on the type of variables, although they can seem 
to be computationally costly [48]. Recursive Feature Elimination with Cross Validation (RFECV) 
[49] may be a good case of a wrapper feature optimisation approach and this is what has been 
used in this dissertation. 

These days, being in computerized time the information produced by different applications are 
expanding definitely both column-wise and row-wise; this makes a bottleneck for analytics con-
jointly increments the burden of machine learning computations that work to detect patterns. 
This cause of dimensionality can be dealt by employing techniques that reduce the dimensions. 
According to Venkatesh and Anuradha [50], who reviewed feature optimisation approaches, the 
authors concluded from their extensive study that most of the feature selection (FS) strategies 
utilize static data. In any case, after the rise of IoT and web-based applications, the information 
are produced powerfully and develop in a quick rate, so it is likely to have noisy data, which also 
can ruin the algorithm’s performance. The use of feature optimisation methods not only reduce 
the dimensions of the dataset but also helps in avoiding overfitting the model as well. 

One area where FS has featured prominently is its ability to cut down on the energy consumption 
of wearable sensory devices. Sensory devices which are wearable are getting to be the empow-
ering innovation for numerous applications in well-being and healthcare, where computational 
components are firmly coupled with the human body to screen particular developments to the 
wearer. Algorithms mainly used for classification problems are the foremost commonly utilized 
ML algorithms that are capable of detecting which aspects of the system are of interest. The 
utilization of exact and resource-efficient classification algorithms is of key significance since 
wearable nodes work on restricted resources on one hand and proposed to recognize basic de-
velopments (e.g., falls) on the other hand. These calculations are utilized to outline factual 
highlights extricated from physiological signals onto diverse states such as wellbeing status of or 
to understand the movement performed by a subject. Ordinarily chosen highlights may lead to 
quick battery consumption, basically due to the nonattendance of computing complexity meas-
ure whereas selecting noticeable highlights. The researchers in [18] presented the idea of power-
aware feature selection, which sought to reduce the energy taken up by these wearable sensory 
devices during processing of data for classification applications such as in recognition of actions. 
The authors approach takes into account the stand-alone computational cost of the features, 
computed in real time. The researchers introduced a graph model which is representative of the 
computing complexity and the correlation of the features. They used applied greedy search and 
integer programming approaches in deciding which features to include in a power efficient way. 
The researchers indicated upon experimentation over 30 channels task-based data collected 
that, their methodology is appropriate and very significant in its capacity to reduce energy con-
sumption by 30%. 
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More so, one notable feat in the application of feature selection as a tool for reducing energy 
consumption and making the environment green is the work by Ding et al. [34]. The researchers 
were motivated by the limited literature on approaches towards reducing computational and 
power consumption while building wearable devices that are able to recognise human activities, 
commonly known as Human Activity Recognition (HAR) devices. The authors proposed and im-
proved HAR system which is based on random forest to assist in caring for the elderly. Their 
proposed framework extricates three sorts of pairwise relationship features in crossover sliding 
windows, and based on location data to improve the performance in recognition. A shared data 
feature selection is received to optimize the recognition of confounded local set of tasks. The 
researcher’s system, made it possible for the number of trees to be reduced while maintaining 
the level of recognition accuracy. They found that, their approach could predict 10 classes of 
tasks with 93.01 percentage accuracy and 74.9 percentage savings in energy consumption. Alt-
hough the researchers contributed significantly to general knowledge of feature selection as a 
tool to cut down on energy consumption and even to improve accuracy, the study only used 
random forest algorithm. Using other algorithms would help to generalise this further. This dis-
sertation applies feature selection by using the XGB classification algorithm although in a 
different fashion to complement the findings of Ding et al. [34].  

2.5 A Blend of Hyperparameter Optimisation and Feature Optimisation for 
Faster and Greener AI 

Following from sections 2.3 and 2.4, the significance of both hyperparameter optimisation and 
feature optimisation as techniques to help reduce the ever-increasing energy consumption of 
ML algorithms cannot be relegated. Hyperparameter optimisation on its own has been useful in 
building energy efficient AI/ML models as shown by Brownlee et al. [1] among few other re-
searchers. On the other part, feature optimisation on its own has been illustrated by few 
researchers such as [18], [34] to be an effective approach in reducing energy consumption. While 
feature optimisation may lead to a little drop in model’s predictive accuracy, a substantial reduc-
tion in the energy taken up by the algorithm is preferred for a faster and greener AI. The search 
for literature indicated that an attempt to measure the combined impact of hyperparameter op-
timisation and feature optimisation on energy consumption has not been fully explored. 
Although the authors of [51] treated feature optimisation and hyperparameter optimisation in a 
multi-objective task, their focus was on how simultaneously tuning the hyperparameters and 
performing feature selection may impact on predictive performance. The researchers made no 
attempts to estimate how fast the model runs or energy is saved by the approaches they used. 
An attempt to explore faster and energy efficient AI/ML algorithms by using hyperparameter 
optimisation as applied on selected features while maintaining the predictive accuracy of the 
model is therefore very significant. 

2.6 Critical Review of Directly Related Work 

In this subsection of the dissertation, a critical review is expressed on the work of Brownlee et 
al. [1] titled “Exploring the Accuracy – Energy Trade-off in Machine Learning” and published in 
2021.  

Not much has been done by researchers to help the AI community on approaches to faster and 
energy efficient AI while maintaining accuracy, although power-awareness has been created in 
the AI community in recent times. The work by Brownlee et al. [1], follows from the research 
work of  Brownlee et al. [13]. Whereas [13]’s experimental works were done on a Java environ-
ment, [1] carried out the experimentations on a python environment which is a very significant 
contribution to the AI community as the shift towards the python programming environment is 
increasingly gaining popularity in AI. 
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The topic chosen for the paper is very clear and appropriate based on the content. One of the 
key strengths of the research under review is the purpose for which the research was under-
taken. The authors stated that, their main motive of the research undertaken was to investigate 
further the chances of hyperparameter optimisation technique on the need for developing en-
ergy efficient models. The authors formulated their research questions excellently as this helped 
them to breakdown the broader topic into smaller and specific objectives which were realistic 
and achievable. One strength of their research has to do with the methodology and tools used. 
The authors outlined them in such a way that it is easier for one to replicate their study. However, 
with the exception of the mortgage lending dataset, the number of instances in the other da-
tasets following from which generalisations were made do not actually mimic the number of 
real-life dataset instances. The need for additional or new datasets to complement their experi-
mentation and findings would therefore help in the generalisation further. Another major 
strength of [1] worth mentioning is the measurement of the energy consumption. Unlike other 
researchers such as Noureddine et al. [52], who used CPU time which has been proven to be 
inaccurate by Zhang et al. [27] for the fact that it ignores CPU idle time as proxy to measure 
energy consumption, Brownlee et al. [1]  used Intel’s CPU based RAPL to measure the energy 
consumption. 

One main criticism of the research also has to do with the train-test split proportion used. Would 
their results have been same if another train-test split ratio was used? Also, with regards to the 
MLP machine learning algorithm used, would they have achieved same results in case they used 
a different machine learning algorithm other than the MLP? One of the issues of concern with 
the research is that, the authors were silent on the runtime of the models they built although 
just a little was mentioned in their reporting of the results. Much emphasis was placed on accu-
racy and energy efficiency. It could be inferred however, that an energy-efficient model would 
certainly use less computational runtime, but using the experimental results to confirm and bring 
that knowledge to the fore would have helped the AI community. Although the study by Brown-
lee et al. [1] is excellent, the researchers failed to let readers know what the actual energy 
consumptions were before they applied the optimisation techniques. This could have been im-
proved in a consistent series of experimentations. 

Although the need for a greener AI is gradually seeping into the interests of players in the AI 
community, much research has not been done about this all-important topic, as evidenced in 
the just a few availabilities of previous literature. This makes it a daunting task to research on 
the topic but motivated by the work of Brownlee et al. [1], this dissertation will investigate hy-
perparameter optimisation and further explore feature optimisation as techniques to employ in 
the quest of achieving a faster and greener AI with minimal or no adverse consequence on pre-
dictive accuracy. 
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3 Methodology 

This section of the research work outlines the approach used in achieving the set objectives. The 
section is presented in the following subsections; research design, dataset, the general approach, 
measurements and finally, technology and hardware systems used to carry out the experiments. 

3.1 Research Design 

The primary aim of this research is to make ML/AI modelled systems faster and greener. Based 
on existing literature, hyperparameter optimisation and feature optimisation were chosen as the 
techniques to investigate and gain understanding of how they contribute towards achieving the 
aim. In this regard, the computational runtime and energy consumption of XGB classification 
algorithm was applied on the SGS dataset in series of four experimentations, see Figure 3. The 
following subsections relate to the series of experimentations that were carried out to help in 
establishing the facts of the research objectives. 

 

 

Figure 3. The Experimental Series 
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3.1.1 Benchmark Model (Experiment 1) 

To appreciate the problem and also to have a standard of measure for the other series of exper-
imentations, a benchmark model (experiment 1) was designed. This model was constructed by 
using the default hyperparameters of the XGB classification algorithm on the entire features of 
the SGS dataset and measuring the runtime and energy consumption at both extremes of train-
ing and inference. This was very informative as it helped in directing focus on to the phase of the 
ML cycle that takes longer to compute and also takes up much energy and needed a remedy to 
keep the environment green. 

3.1.2 Stand-alone Hyperparameter Optimised Model (Experiment 2) 

Experiment 2 explored the stand-alone effect of using hyperparameter optimisation as a tech-
nique in making AI faster and greener. Grid search specifically GridSearchCV provided by scikit-
learn for python was used to optimise the hyperparameters of the XGB classification algorithm 
on an arbitrary search space as shown in Table 1 below. The choice of the values in the search 
space was motivated by the need to get a good spread around the default hyperparameters of 
the XGB classification algorithm as provided by scikit-learn.  It is significant to note that, all the 
entire features of the SGS dataset were used in this experimentation (experiment 2) to construct 
the model. 

 

XGB Hyperparameter Values used in the space Description 

colsample_bytree 0.1, 0.3, 0.5 Subsample ratio of columns when con-
structing each tree 

 

learning_rate 0.05, 0.1, 0.2 A tree booster step size shrinker used in 
contracting weights of the features just 
so the boosting process is made more 
conservative 

 

max_depth 2, 3, 5 The maximum depth of a tree 

 

min_child_weight 2, 3, 5 Minimum of instance weight needed in 
a child 

 

n_estimators 50, 80, 100 Number of gradient boosted trees 

 

subsample 0.3, 0.5, 1 Subsample ratio of the training instances 

 

Table 1. XGB Classifier Hyperparameters and the Search Space 
 

3.1.3 Stand-alone Selected Features Optimised Model (Experiment 3) 

In the quest of understanding the stand-alone impact of feature optimisation as a technique in 
making AI faster and greener, this experimentation was necessary. Recursive Feature Elimination 
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with cross Validation (RFECV) was employed to trim down the number of features that were used 
in building the model by ensuring that only features of importance are included in the model. It 
is worth mentioning that the default hyperparameters of the XGB classification algorithm were 
used on the selected features of relevance as revealed by the feature optimisation technique in 
experiment 3. 

3.1.4 Tuned Hyperparameters on Selected Features Optimised Model (Experiment 4) 

This experimentation is the core of the research as it seeks to investigate the connected effect 
of hyperparameter optimisation and feature optimisation as techniques in helping to make AI 
faster and greener. In this final part of the series of experimentations, the hyperparameters of 
the XGB classification algorithm were tuned on the selected features of the SGS dataset. What 
this means is that, RFECV was used to select the features of relevance that would yield optimum 
output after which GridSearchCV was used over the search space as in Table 1 above to get the 
best configuration of the hyperparameters that will make the model to run faster, consume less 
energy and with marginal or no loss in the predictive accuracy of the model being constructed. 

3.2 Dataset 

Five datasets were initially under consideration for this project work. Due to the limited 
timeframe, this research was conducted with one dataset which is of great importance in the 
application of AI/ML technology. The Smart Grid Stability [19], [53], [54] dataset was specifically 
chosen for this research. Smart grids have many energy-hungry interlocking features intelligently 
working together and key among them is the communication and control systems which have 
great impact on grid stability. The need to therefore cut down on the energy consumption that 
comes with monitoring the stability of the smart grid therefore served as a huge motivating fac-
tor for the choice of the SGS dataset in favour of the others which were under consideration.  

3.2.1 Dataset Source and Description 

The Smart Grid Stability dataset is freely available on Kaggle [19]. It is an augmented version of 
the "Electrical Grid Stability Simulated Dataset” hosted by the University of California (UCI) Ma-
chine Learning Repository. 

The SGS dataset is formatted as a comma separated value (csv) file and hosted on Kaggle with 
the name smart_grid_stability_augmented.csv. The dataset as used in this project is synthetic in 
nature and consists of results taken from grid stability simulations performed on a four-node 
network with star architecture Figure 4, and as explained in Table 2.  
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Figure 4. Four-Node Star Topology of Smart Grid 
 

The dataset comprises of 60,000 instances and 14 attributes (See Appendix 3 for the first five 
and last five instances of the data as originally made available on Kaggle). Out of the 14 attrib-
utes, 12 of them are predictive feature attributes and the remaining 2 are target attributes. Table 
2 shows and explains the 14 attributes of the SGS dataset used in this research. 

 

Feature Data Type Explanation 

1 tau1 Numeric – Continuous These attributes represent the reac-
tion time of each network participant 
with a real value range from 0.5 to 10. 
Whereas tau1 represents the energy 
generation node, tau2 – tau4 repre-
sent the consumption node 
participants in the architecture  

2 tau2 Numeric – Continuous 

3 tau3 Numeric – Continuous 

4 tau4 Numeric – Continuous 

5 p1 Numeric – Continuous p1 to p4 indicate the nominal power 
produced (positive) or consumed (neg-
ative) by each network participant, a 
real value within the range − 2.0 to − 
0.5 for consumers (p2 to p4). As the to-
tal power consumed equals the total 
power generated, p1 (supplier node) = 
(p2 + p3 + p4) 

6 p2 Numeric – Continuous 

7 p3 Numeric – Continuous 

8 p4 Numeric – Continuous 

Energy 
Generation 

Node

Consumption 
Node 1

Consumption 
Node 3

Consumption 
Node 2
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9 g1 Numeric – Continuous g1 to g4 indicate the price elasticity co-
efficient for each network participant, 
a real value within the range 0.05 to 
1.00 (g1 corresponds to the supplier 
node, g2 to g4 also correspond to the 
consumer nodes; g stands for ’gamma’) 

10 g2 Numeric – Continuous 

11 g3 Numeric – Continuous 

12 g4 Numeric – Continuous 

   

Target Data Type Explanation 

1 stab Numeric – Continuous stab represents the maximum real part 
of the characteristic differential equa-
tion root (if positive, the system is 
linearly unstable; if negative, the sys-
tem is linearly stable) 

2 stabf Nominal – Categorical 

 

Stabf is a categorical (binary) label 
(’stable’ or ’unstable’). This was reengi-
neered from the stab attribute 

Table 2. Description of Dataset 
 

3.3 General Approach 

This subsection outlines the general machine learning approach adopted in the series of experi-
mentations. 

3.3.1 Data Preparation and Pre-processing 

In most instances of machine learning projects, the datasets used do not come in a form appro-
priate enough to assist in building trustworthy models; in this regard, data preparation and pre-
processing are key as they allow us to get the data in a format suitable for building models that 
lead to accurate insights. 

The SGS dataset is generally clean in nature and does not require any further cleaning before 
usage in projects. Thus, the SGS dataset does not suffer from the problem of missing data, un-
wanted outliers, structural errors, irrelevant observations and other such issues associated with 
raw datasets. However, deeper understanding of the dataset led to the choice of which target 
attribute to use in this research. As explained in Table 2 above, the target attribute stabf was 
engineered from the stab attribute indicating a direct relationship between these two target 
attributes. The stab target attribute was therefore dropped leaving stabf as the only target at-
tribute for this study. The numerical nature of the dataset coupled with its clean nature informed 
the immediate start of modelling skipping the pre-processing step. 

In the preliminary stages of this research, correlation test was performed to ascertain the rela-
tionship between the target attribute and the feature attributes and also amongst the feature 
attributes. No correlation was observed between the feature attributes and the target attribute. 
Also, no correlation was found among the features. A strong correlation in excess of -0.80 was 
found between stab and stabf and this supports the decision made to drop stab in favour of stabf 
as the only target attribute for this research work. Figure 5 depicts the heatmap of the correla-
tion matrix of the SGS dataset attributes. 
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Figure 5. Heatmap of the Correlation matrix of SGS Dataset Attributes 
 

3.3.2 The General Train-Test Approach 

Unless otherwise stated in a specific experimental stage, the general approach below outlines 
the machine learning steps applied in all the 4 series of experimentations involved in this re-
search work. 

To begin with building machine learning models, it is of utmost importance that the dataset be 
split into 2; one part for training the model and the other for testing the model. Following from 
literature and as a good practice, the 80:20 split was adopted for this research. The 80%-part 
split of the SGS dataset was used in training and validation of the model whereas the remaining 
unseen and untouched 20% was used for inference purposes. 

Since the dataset is most appropriate for classification tasks, during the early stages of the pro-
ject, various classification machine learning algorithms such as MLP and Random Forest among 
other were tried on the SGS dataset. As the focus of this work is to make AI faster and greener 
and without necessarily causing much harm to the predictive accuracy of the model, the XGB 
classifier was selected as the algorithm for this study. It outperformed the other classifiers by 
achieving the highest accuracy in its default state. However, for the purpose of this research, 
hyperparameter optimisation was used to fine-tune the XGB classifier in experiments 2 and 4 as 
earlier described in the research design section.  

XGB classifier was fitted to the training dataset to train the model. For evaluation of the models 
performance, cross validation with k-fold was used. The model training was repeated 30 times  
and the medians of CPU duration, runtime duration, CPU energy consumption, DRAM energy 
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consumption and Cross validation accuracy were recorded. This generic process was performed 
in each of the 4 experiments of this research. 

The trained model was then tested on the 20% unseen and untouched test dataset to assess the 
constructed model’s predictive accuracy. Since inference in machine learning projects are 
extremely faster as compared to training, the testing process was repeated 1000 times at this 
stage instead of the 30 times performed for the training stage. The medians of CPU duration, 
runtime duration, CPU energy consumption, DRAM energy consumption and Test accuracy for 
the 1000 repeated runs were recorded. This generic approach was followed in each of the 4 
experimental series of this work.  Considering the non-parametric nature of the results, Mann–
Whitney U test was then performed to establish the statictical variations in the various results 
especially with focus on experiment 1, the benchmark results and experiment 4, the core 
objective results. 

3.4 Measurement of Performance 

With the research aim of making AI faster and greener and as a matter of standard practice, it 
was appropriate that some measurement metrics are put in place as a guide towards the attain-
ment of the specific objectives of this research. These metrics for the purpose of this research in 
no particular order are classed into three; Evaluation and test accuracy metrics, Time and energy 
consumption measurement and Statistical metrics. 

3.4.1 Evaluation and Test Accuracy Metrics 

It is important to ascertain how best or poorly a machine learning algorithm or system performs 
in real-life applications prior to deployment. In this respect, it is key that certain metrics are used 
to assess the performance of the model built and then tested on an unseen data as well as 
though it was being used to tackle real-life problems. For the purposes of this research work, the 
mean accuracy over 5-folds of cross validation as measured by k-fold Cross Validation scored with 
Accuracy is used to evaluate the performance of the fitted model on training, whereas Accuracy 
is used to measure how best the constructed model is able to predict on unseen and untouched 
data during inference. 

3.4.2 Time and Energy Consumption Measurement 

Since the research in its entirety was inspired by the work of Brownlee et al [1], measurements 
of time and energy consumption followed the same approach. Python’s time library was used to 
measure the CPU time as well as the runtime in seconds. This only helps to acknowledge how 
fast the model runs and it is not in any way a measure of energy consumption as proxied in other 
works. Also with the energy consumption, pyRAPL library which is based on Intel’s "Running Av-
erage Power Limit" (RAPL) technology was used to estimate the energy consumption of the CPU 
when a piece of machine learning task is executed. The technology has been in existence since 
the Sandy Bridge generation. pyRAPL can more specifically measure the energy consumption of 
the CPU’s socket package domain, DRAM (server architectures) domain and GPU (client archi-
tecture) domain. The energy is measured in microjoule (μJ) equivalent to one millionth (10−6) of 
one joule. For the purposes of this work, the energy measured was converted to Joules (See 
sample code of pyRAPL usage in Appendix 3). Table 3. below gives a summary of the time and 
energy consumption metrics employed in this dissertation. 
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Metric Unit Description 

CPU Duration Seconds (S) with 
nanosecond res-
olution 

• The time taken by the CPU to fit 
the model to the training data if 
it relates to the training phase 
as reported by python’s 
time.process_time() library. In 
this research this is referred to 
as Training CPU Duration. 

• The time taken by the CPU as 
reported by python’s time.pro-
cess_time() method for the 
application of the model to test 
on unseen and untouched data, 
this is termed as Inference CPU 
Duration in this research. 

Runtime Duration Seconds (S) • The wall-clock time equivalent 
taken to fit the model to the 
training data, as reported by py-
thon’s time.time() library. In this 
case, this is referred to as Train-
ing Runtime Duration. 

• The wall-clock time equivalent 
taken to apply the model to test 
on unseen and untouched data 
as reported by python’s 
time.time() method. In this dis-
sertation this is referred to as 
Inference Runtime Duration. 

CPU Energy Consumption microjoule (μJ) x 
(10−6) = Joules (J) 

• Energy used by the CPU as re-
ported by pyRAPL for model 
fitting if it relates to training. For 
the purposes of this disserta-
tion, this is termed as Training 
CPU Energy Consumption. 

• Energy used by the CPU as re-
ported by pyRAPL for the 
application of the model to test 
on unseen and untouched data. 
For the purposes of this disser-
tation, this is termed as 
Inference CPU Energy Consump-
tion. 

DRAM Energy Consumption microjoule (μJ) x 
(10−6) = Joules (J) 

• Energy used by the DRAM as re-
ported by pyRAPL for model 
fitting if it relates to training. For 
the purposes of this 
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dissertation, this is termed as 
Training CPU Energy Consump-
tion. 

• Energy used by the DRAM as re-
ported by pyRAPL for the 
application of the model to test 
on unseen and untouched data. 
For the purposes of this disser-
tation, this is termed as 
Inference CPU Energy Consump-
tion 

Table 3. Description of the Time and Energy Consumption Measures 
 

3.4.3 Statistical Metrics 

The Mann-Whitney U test is used to compare whether there is a difference in the dependent 
variable for two independent groups. In this dissertation, the Mann-Whitney U test was used to 
ascertain if the distribution of the dependent variable is the same for the two groups and there-
fore from the same population. Each of the energy consumption results for the experiments 2,3 
and 4 were compared to experiment 1 (the benchmark model) for both training and inference 
(See sections 3.1.1 – 3.1.4). This was done to be sure of the statistical significance of the experi-
mental differences in the medians of results among the various experiments conducted. More 
so, the runtime scores of experiments 2,3 and 4 were compared to that of experiment 1 at both 
extremes of training and inference to ascertain, if the experimental differences in their medians 
were statistically significant. The use of the Mann-Whitney U test was appropriate for this pur-
pose since it makes no assumption of normality. In setting up the Mann-Whitney U test to 
investigate if the experimental medians were statistically significantly different, the following null 
(H0) and alternate (HA) hypotheses were formulated and made applicable for both energy con-
sumption and runtime at both ends of training and inference; 

H0: The distributions from Exp1 and Exp(n) are equal 

HA: The distributions from Exp1 and Exp(n) are not equal 

Where n denotes either of experiments 2, 3 or 4. 

In setting the rejection or acceptance criteria, an alpha (α) value of 0.05 which is representative 
of a 95% confidence interval was used. The rejection or acceptance criteria was then formulated 
for both energy consumption and runtime during training and inference as follows; 

If (ρ-value > α), Accept H0 and Reject HA   

Else if, (ρ-value < α), Reject H0 and Accept HA   

 What the above criteria means is that, the experimental medians are equal and therefore sta-
tistically insignificant when the ρ-value is greater than 0.05. the conclusion from this therefore 
is that, the null hypothesis is to be accepted. The other side of the criteria above also is an indi-
cation to mean that, when the ρ-value of the experimental results is less than 0.05, it is 
concluded that the differences in median of the two experiments compared are statistically sig-
nificantly different and therefore the alternate hypothesis is accepted.  

In addition to the use of the Mann-Whitney U test to determine the statistical significance of the 
medians of the series of experimentations conducted, violin plots were also employed to give 
visual representations of the distributions between the series of experimentations. Although, 
the median, interquartile range and other such measures are good statistical measures but using 
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them alone do not help to get enough understanding of the results as it fails to give the distribu-
tions. This is why distribution plots come in handy. The box plot could have been used but it is 
limited by its inability to in visualising variations in the dataset. This therefore informed the use 
of the violin plots. The violin plot is a blend of kernel density plot and box plot and it is able to 
indicate peaks in the dataset. 

3.5 Technology and Systems used 

The programming language and environment, main software packages used as well as the spec-
ifications of the system hardware used in carrying out the experiments are briefly described in 
this subsection. 

3.5.1 Software Used 

Python 3.8.8 programming language running in Jupyter Notebook 6.3.0 on Anaconda 2.0.3 was 
used to carry out the research. Python was specifically chosen for this project due to its high 
level of readability and maintenance which has made it a popular language among developers. 
Again, the choice of python over the other programming languages for this project was moti-
vated by its advantage being able to run on a wide variety of hardware platforms with almost 
the same interface and also its broad standard library compatibility on all of these different plat-
forms.  

Scikit-learn 0.24.1 was one of the key python libraries used to perform the series of experiments. 
It is a free to use machine learning library within the python programming language. It comes 
with several algorithms that are useful for classification, clustering and regression among many 
other machine learning purposes. The tools used in data preparation and pre-processing relied 
greatly on the scikit-learn library. Again, the GridSearchCV and RFECV optimisation techniques 
used for the hyperparameter configuration and feature selection respectively were all imple-
mented from the scikit library. More so, the metrics used in evaluating the model’s fit and also 
for testing accuracy relied on this library. The choice of scikit-learn over the other python libraries 
for this project work was informed by the spread of machine learning algorithms coupled with 
the tools that comes with it such as the cross-validation tool for evaluation of accuracy of models 
on unseen data which has made its usage popular among developers. It is important to note as 
early mentioned that most of the important tools required to carry out the project were already 
available in the scikit-learn library. 

The eXtreme Gradient Boosting (XGB) classification algorithm implemented in this experiment 
was provided by the XGBoost library in python. This is a prebuilt binary wheel available from 
Python Package Index (PyPI). The XGB is a tree boosting algorithm that acts on shallow and weak 
trees by converting them into strong learners using weighted averages. It is designed to compute 
faster and also for optimised performance as well. This is a key motivation for its implementation 
in this project work over the other machine learning algorithms. It is now popular in usage 
among various players in the AI community due to its ability to deal with sparse data and its 
ability to run in parallel as compared to other tree boosting machine learning algorithms. The 
choice of XGB over classification algorithm in this project was also in part motivated by its proven 
performance on classification tasks as used in both industry and winning competitions. Further-
more, its compatibility and portability permit usage on almost all the major platforms such as 
Linux, Windows and the OS X leading to its usage in this project over the other machine learning 
algorithms such as Random Forest, K-Nearest Neighbours and the likes.  

pyRAPL 0.2.3.1 was implemented to estimate the energy consumption. This library provides a 
python interface to Intel’s “Running Average Power Limit” (RAPL) technology. This technology 
provides energy consumption estimates of all CPU sockets as well as the DRAM sockets. pyRAPL 
has limited popularity in usage based on project statistics from the GitHub repository as well as 
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its maintenance being inactive since December 2019. In spite of this limitation, pyRAPL has 
proven to be better estimator of CPU energy consumption than the CPU time as used by other 
researchers (See section 2.6). This motivated the choice of pyRAPL as the tool to measure the 
energy consumption in this project. 

The time library was also used to estimate the wall clock time equivalent a process took to run. 
Other libraries such as pandas 1.2.4, numpy 1.19.5 and scipy were also used in the experimen-
tation based on their proven roles in data science projects. 

3.5.2 System Hardware Used 

The experiments embodied in this dissertation were performed on a workstation running Debian 
OS, with 12-core (24 with hyperthreading) Intel Xeon 2620 V3 with each running at 2.4GHz and 
15M cache Skt2011 processor. Also, the workstation used in this project had a total of 32GB (4 x 
8GB) DDR4 2133MHz ECC registered memory. Other components of the workstation include a 
250GB 6Gb/s 2.5” Solid State disk, 2 x Hitachi 2TB 7200rpm 6Gb/s Enterprise SATAIII disk drive 
and nVidia TitanX GPGPU. It is important to note that no other computationally intensive pro-
cesses were run concurrently and also the experiments were run sequentially. 
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4 Results and Discussion 

This section of the dissertation presents the findings made from the series of experimentations 
performed. It also seeks to discuss the findings based on other previous works in the literature. 
The order of the presentation is in line with the objectives set for this dissertation. What this 
means is that, the results is presented based on the four thematic topics of this dissertation 
which include; the benchmark model which estimates the time and energy consumption to ac-
tuate the environmental cost of AI, hyperparameter optimisation as a technique in building 
energy efficient AI models, feature optimisation as a technique in building energy efficient mod-
els and also a blend of hyperparameter optimisation and feature selection optimisation for  
building environmentally friendly AI models. The presentation follows with a general overall 
summary of the findings and a general discussion on the move towards a faster and greener AI. 

4.1 Results of the Benchmark Model 

The benchmark model was setup to be the baseline experiment. As earlier mentioned in the 
methodology (See section 3.1.1), the purpose of the benchmark model was to actually help in 
understanding the environmental cost that comes with AI/ML algorithms in their default states. 
Furthermore, these results will subsequently be the standard of measure of the effects of hy-
perparameter optimisation and feature optimisation as techniques to building faster and energy 
efficient models. The results in this sub-section relates to experiment 1 where the default hy-
perparameters of the XGB classification algorithm were used in building the model on the entire 
features of the SGS dataset. The results are expanded based on the phase of the machine learn-
ing process, that is, either at the training or inference stage. 

4.1.1 Training Results– Default hyperparameters on Entire Dataset Features 

Inspection of the runtime and energy consumed in fitting the XGB classification algorithm with 
its default hyperparameter configurations to the entire features of the SGS after 30 repeated 
runs, stemming from experiment 1 resulted in the medians of the 30 repeated runs reported as 
shown in Table 4 below. 

 

Metric Recorded 

Training CPU Duration (S) 252.21 

Training Runtime Duration (S) 11.78 

Training CPU Energy Consumption (J) 1170.73 

Training DRAM Energy Consumption (J) 57.71 

Mean of 5-fold CV Accuracy (%) 97.80 

Table 4. Experiment 1 – Training Results 
 

From Table 4 above, it is noted that, without hyperparameter tuning of the XGB classification 
algorithm and reduction in number of dataset features used, it took approximately 11.78 sec-
onds for the model to be fitted to the training dataset. On evaluation of the model, 97.8% 
accuracy was realised to indicate that the XGB classifier model has very high predictive power 
on the SGS dataset. However, the energy consumed by the CPU for the model fitting to the train-
ing dataset to be completed was recorded by pyRAPL as 1,170.73 Joules. Also, the CPU duration 
which in other research were used as proxy for energy consumption was recorded as 252.21 
seconds and the energy taken up by DRAM as 57.71 Joules. The CPU energy consumption is 
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proxied in the context of this dissertation to indicate the environmental cost associated with 
training the XGB classifier algorithm on the SGS dataset whereas the runtime is proxied for how 
fast the model takes to be fitted. The results above presented answers in part, research question 
1 and the attainment of objective 1.  

4.1.2 Inference Results – Default hyperparameters on Entire Dataset Features 

To fully answer research question 1 and completely achieve objective 1, the results of the infer-
ence stage of experiment 1 is presented in Table 5 below. 

Metric Recorded 

Inference CPU Duration (S) 0.24 

Inference Runtime Duration (S) 0.03 

Inference CPU Energy Consumption (J) 1.67 

Inference DRAM Energy Consumption (J) 0.10 

Test Accuracy (%) 97.99 

Table 5. Experiment 1 – Inference Results 
 

As shown in Table 5 above, it took 0.03 seconds which is the median of the 1000 repeated runs 
for the model to be applied to test on unseen data. The test accuracy recorded was 97.99% indi-
cating how robust the model is able to perform on unseen data. The CPU energy consumption 
which is indicative of the environmental cost in the context of this research was recorded by 
pyRAPL as 1.67 Joules. Other metrics such as the CPU duration and DRAM energy consumed on 
inference were also recorded as 0.24 and 0.10 respectively. 

The results in this subsection augment the results in subsection 4.11, to fully address research 
question 1. It is evident from the experimental results in Tables 4 and 5 that, training a model 
takes a longer time to complete whereas using the trained model to test on unseen data com-
pletes extremely in a shorter period of time. In this case, it took 393times and 701times of the 
inference runtime and inference CPU energy consumed to train the model. This observation can 
be explained by the size of the training data as a result of the test-split ratio. The ML algorithm 
will have to learn from every instance in the train set before it is able to make decisions. Also, 
the ML algorithm used could account for the longer time difference as well as the higher energy 
consumed. Whereas some algorithms such as the K-Nearest Neighbours is a lazy learner and 
capable of learning in a very short time but takes long to execute, same cannot be said for the 
XGB classification algorithm. Following from the results above in Tables 4 and 5, it is demon-
strated that it is environmentally costly to train a model than to use it in making inference. 

The results in Tables 4 and 5 were used as the basis of comparison at both extremes of training 
and inference in subsequent experimental results with focus on training runtime and special fo-
cus on training CPU energy consumption which is used as an estimate of the environmental cost 
associated with fitting a model to a training dataset which has been demonstrated to be compu-
tationally and environmentally costly in the context of this dissertation. 

4.2 Stand-alone Hyperparameter Optimised Model 

The results in this subsection address research question 2 as well as the attainment of objective 
2. Hyperparameter optimisation was explored to examine how it can be useful as a technique to 
reduce the runtime and energy consumption while trying to maintain accuracy at both ends of 
model training and inference. The results in this subsection relates to experiment 2 where 
GridSearchCV provided by scikit-learn was used to perform an exhaustive search on the finite 
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search space (as shown in Table 1), around the default hyperparameter configuration of the XGB 
classification algorithm. The results of the best hyperparameter configuration based on experi-
ment 2 that helps to achieve the broader aim of faster and greener AI while keeping accuracy at 
bay is presented in Table 6 below. 

 

XGB Hyperparameter Best Configuration Value 

Colsample_bytree 0.5 

Learning_rate 0.2 

Max_depth 5 

Min_child_weight 2 

N_estimators 100 

subsample 1 

Table 6. Experiment 2 – Best Hyperparameter Configuration 
 

The resulting runtime and energy consumption for both training and inference are presented in 
the following subsections. 

4.2.1 Training Results – Tuned hyperparameters on Entire Dataset Features 

The table below, Table 7 presents the results of using the optimised hyperparameter configura-
tion on the entire dataset. This table is helpful in answering the training and energy consumption 
bit of research question 2. It also has a relative change column which represents the extent of 
the impact of the application of hyperparameter optimisation as a technique in constructing 
models that are not only accurate but also faster and greener. 

 

Metric Recorded Relative Change 

Training CPU Duration (S) 179.29 -28.91% 

Training Runtime Duration (S) 8.67 -26.40% 

Training CPU Energy Consumption (J) 819.68 -29.99% 

Training DRAM Energy Consumption (J) 42.27 -26.75% 

Mean of 5-fold CV Accuracy (%) 96.10 -1.74% 

Table 7. Experiment 2 – Training Results 
 

As noted from Table 7 above, with a trade-off of 1.74% model accuracy, training runtime was 
expedited by 26.4% while CPU energy savings of approximately 30% was achieved on training. 
Also, other metrics recorded, such as CPU duration and DRAM energy consumption were all re-
duced by 28.91% and 26.75% respectively relative to experiment 1 where no hyperparameter 
optimisation was performed. What this result means is that hyperparameter optimisation is use-
ful as a technique to fall on in attempting to develop accurate, faster and most importantly eco-
friendly AI models. As energy consumption is of utmost concern and noting from above experi-
ment 1 that much energy is consumed during training, Figure 6 below will throw more light on 
the relative CPU energy consumption between experiment 1 and experiment 2. This figure below 
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is useful in understanding how the hyperparameter optimisation faired in all the 30 repeated 
runs as compared to experiment 1 where no hyperparameter configuration was performed. 

 

 

Figure 6. Training CPU Energy of Experiments 1 and 2 Compared for 30 Iterations 
 

It can be inferred from the above figure that none of the 30 repeated runs of the training CPU 
energy consumption in experiment 2 exceeded or had the gap closing up to that of experiment 
1, where no hyperparameter optimisation was performed. This is a strong indication that hy-
perparameter optimisation is a key technique to apply in attempting to build faster and greener 
AI models with minimal or no disturbance to predictive accuracy. This finding is a confirmation 
of the work of Brownlee et. al [1] who also found that training energy can be cut down by be-
tween 30% t0 50% with a minimal loss in predictive accuracy by applying hyperparameter 
optimisation. 

4.2.2 Inference Results – Tuned hyperparameters on Entire Dataset Features 

To complement subsection 4.2.1 in addressing research question 2 and for the complete achieve-
ment of objective 2, Table 8 below presents the findings of the impact of hyperparameter 
optimisation on the entire features of the dataset under consideration at the inference phase of 
experiment 2. 
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Metric Recorded Relative Change 

Inference CPU Duration (S) 0.22 -8.33% 

Inference Runtime Duration (S) 0.026 -13.33% 

Inference CPU Energy Consumption (J) 1.61 -3.59% 

Inference DRAM Energy Consumption (J) 0.097 -3.00% 

Test Accuracy (%) 96.27 -1.76% 

Table 8. Experiment 2 – Inference Results 
 

It was found as indicated from Table 8 above that, hyperparameter optimisation of the XGB clas-
sification algorithm on the SGS dataset led to a reduction in the runtime by some 13.33% and 
shortening the entire inference process. Albeit, the reduction in test accuracy was a bit marginal 
as reported at 1.76%, the hyperparameter optimisation at the inference stage only saved a mar-
ginal energy of 3.59% which on the surface may seem to be very insignificant and therefore 
negligible. Other metrics measured, that is CPU duration and DRAM energy consumed at the 
inference stage had fair drops as recorded at 8.33% and 3.0% respectively, relative to experiment 
1 where no hyperparameter optimisation was performed. The findings at the inference stage is 
inconsistent with that of Brownlee et al. [1] who found great energy savings of about 77% at the 
inference stage with one of the datasets used in their experimentation when hyperparameter 
optimisation was employed. This contradictory finding could possibly be explained by the differ-
ences in the ML algorithms used. Also, the different datasets among a host of other factors as 
used in this experiment and [1] could account for this inconsistency in findings.  

4.3 Stand-alone Selected Features Optimised Model 

As indicated in the research design, experiment 3 was conducted to answer research question 3 
and to achieve objective 3. The results presented in this section is helpful in understanding how 
feature selection is able to make machine learning algorithms run faster while cutting down on 
the energy consumption usage in the process and in effect reducing the environmental cost with 
little or no harm to predictive accuracy. Recursive Feature Elimination with Cross Validation 
(RFECV) library provided by scikit-learn was used to carry out the feature optimisation in this 
specific experiment. All the features were re-checked to deal with the problem of dependences 
but none was found. Figure 7 below illustrates the performance of the RFECV in selecting the 
features and the number of features which were selected to be relevant in predicting the target. 
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Figure 7. RFECV for Feature Optimisation 
 

The above figure indicates that, accuracy did not improve after 9 features were used. What this 
result demonstrates is that, it is equally good to use nine features instead of the entire features 
of the SGS dataset and still be able to get same or even improved predictive model accuracy. As 
observed in Figure 8 below, features with indexes 5,6 and 7 representing the features p2, p3 and 
p4 were dropped as they did not contribute much in predicting the stability of a smart grid. From 
the description of the dataset in Table 2, it is not surprising that these features were dropped 
when RFECV was applied. 

 

Figure 8. Snippet of Code illustrating Features that were Eliminated 
 

Following from the features that were eliminated by RFECV, it was appropriate that the relevance 
of the remaining features be known to fully appreciate RFECV’s drop of features. The now re-
duced features is shown in Figure 9 below with each feature’s relative importance in predicting 
the target, that is stability of smart grid as presented in the SGS dataset. 
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Figure 9. Relevance of the Selected Features  
 

It is indicative from the Figure 9 above that, the feature, tau2 is the major contributor as shown 
by its importance in excess of 14% in predicting stability of smart grid. Also, the features tau3, 
and tau4 and g2 are seen to be strong contributors as in percentage-wise, they are nearing the 
importance of tau2. However, it is worthy of mentioning that with the exception of the features 
p2 and g1, which recorded relatively low importance of approximately 2% and 9% respectively, 
all the other 7 features had importance in excess of 10% in predicting the smart grid stability 
target. 

The next subsections present the standalone effects of the reduced features on the model 
runtime and the associated environmental cost at both ends of training and inference. 

4.3.1 Training Results – Default hyperparameters on Selected Features of the Dataset 

With the elimination of features that do not contribute significantly in predicting the target, the 
number of features employed and reported on in this section as results of experiment 3 is 9 
instead of the original 12 features which were used in experiments 1 and 2. Table 9 below shows 
the training results of experiment 3 which in part addresses research question 3 and goes to 
achieve objective 3 in part, which is to examine the extent by which feature optimisation on its 
own is useful in building faster and environmentally friendly AI models with little or no harm to 
the predictive power of the model that is being built. 
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Metric Recorded Relative Change 

Training CPU Duration (S) 224.68 -10.92% 

Training Runtime Duration (S) 10.68 -9.34% 

Training CPU Energy Consumption (J) 1038.81 -11.27% 

Training DRAM Energy Consumption (J) 52.65 -8.77% 

Mean of 5-fold CV Accuracy (%) 97.77 -0.03% 

Table 9. Experiment 3 – Training Results 
 

The results found on experiment 3 and as presented in Table 9 above shows that, using relevant 
subset of the entire features of the dataset could be helpful as a technique to cut down on the 
environmental cost associated with training AI models. From Table 9 above, after a reduction in 
number of features from 12 to 9, the time it took for the model to be fitted to the training dataset 
was shortened by 9.34%, saving CPU energy consumption of 11.27% and subsequently reducing 
the emission of GHG to the environment The shortening of the runtime and reduction in the 
energy consumption can be explained by the fact that an increased interpretability has been 
achieved with the subset of the entire features which makes it easy for the ML algorithm to learn 
with an improved learner performance. It is worthy to note that while these savings were made, 
the predictive accuracy was not adversely affected as a near negligible loss of only 0.03% in the 
predictive accuracy of the model that was constructed was found. Although, feature optimisa-
tion was applied in different fashions, the drop in energy consumption conforms to that which 
was found by Ghasemzadeh et al. [18]. Also, the other metrics had a fair reduction relative to 
experiment 1. CPU duration was made faster by 10.92% whereas the energy taken up by the 
DRAM was reduced by 8.77%.  Figure 10 below is used to highlight how feature optimisation 
performed on 30 repeated runs of fitting the model to the training dataset in experiment 3 rela-
tive to experiment 1 where the model was fitted to the entire features of the training dataset. 

 

Figure 10. Training CPU Energy Consumption of Experiments 1 and 3 compared 
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It is shown in Figure 10 above that, albeit the gap between the energy taken up when the entire 
feature datasets are used as compared to that taken up when only features of importance are 
used is not that wide, however, none of the 30 repeated runs of fitting the model to the opti-
mised features took up more energy in excess of that which were consumed in experiment 1 and 
accuracy also only suffered a near negligible loss. This is a strong indication of the need to apply 
feature optimisation technique as a candidate tool on the move towards faster and greener AI. 

4.3.2 Inference Results – Default hyperparameters on Selected Features of the Dataset 

To fully address research question 3 and complete achieve objective 3, this subsection augments 
subsection 4.3.1 to help shed more light on how feature optimisation impact on runtime and 
energy consumption when the model is being used to test on unseen dataset. Table 10 below 
presents the findings of experiment 3 in regards to the inference stage of the machine learning 
process. 

 

Metric Recorded Relative Change 

Inference CPU Duration (S) 0.235 -2.08% 

Inference Runtime Duration (S) 0.026 -12.97% 

Inference CPU Energy Consumption (J) 1.648 -1.30% 

Inference DRAM Energy Consumption (J) 0.098 -1.90% 

Test Accuracy (%) 98.11 0.12% 

Table 10. Experiment 3 – Inference Results 
 

As presented in table 10 above, it was found that, on the inference side of the machine learning 
process, feature optimisation helped in lessening the runtime in testing the constructed model 
on unseen dataset by 12.97%. However, the drop in energy consumption as presented by the 
inference CPU energy consumption in the forementioned table was not that substantial as re-
ported by pyRAPL as 1.3%. The other metrics also had a slight reduction as a 2.08% reduction 
was observed for the CPU duration and the energy consumption by the DRAM also was reduced 
by 1.90%. However, the predictive accuracy was found to have improved slightly by a margin of 
0.12% relative to experiment 1 when all the features in the dataset were used. Though signifi-
cant, this finding does not contribute much to confirming the use of feature optimisation alone 
as a technique for reducing the energy consumption at the inference side of the machine learn-
ing process. 

4.4 Tuned Hyperparameters on Selected Features Optimised Model 

This section presents the findings of the core objective of the dissertation. What this means is 
that, the findings on how the application of hyperparameter optimisation on selected features 
of the dataset help in reducing runtime and energy consumption which by and large, reduce the 
environmental cost in the quest of building highly accurate models is presented in this section. 
The GridSearchCV as provided by scikit-learn and the search space as used in experiment 1, as 
seen in Table 1, were also used for the hyperparameter optimisation in experiment 4 which ad-
dresses research question 4. Further to this, the 9 selected features of the dataset in experiment 
3, were repeated for experiment 4 instead of the entire 12 features of the original dataset. As 
seen in Table 11 below, the values returned as best estimators after the exhaustive search using 
the GridSearchCV on the 9 selected features were same as that returned for the entire 12 fea-
tures. 
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XGB Hyperparameter Best Configuration Value 

Colsample_bytree 0.5 

Learning_rate 0.2 

Max_depth 5 

Min_child_weight 2 

N_estimators 100 

subsample 1 

Table 11. Experiment 4 – Best Hyperparameter Configuration 
 

Following from the best hyperparameter configuration as presented in Table 11 above, the find-
ings in respect of hyperparameter optimisation on selected features’ impact on runtime and 
energy consumption at both extremes of training and inference is presented in subsections 4.4.1 
and 4.4.2 respectively 

4.4.1  Training Results – Tuned hyperparameters on Selected Features of the Dataset 

In an attempt to examine the combined effect of the application of hyperparameter optimisation 
and feature optimisation as possible tools to employ in building accurate, faster and energy effi-
cient AI models, the training results presented in Table 12 below shows how a blend of the two 
techniques performed in achieving the overall aim when XGB classification model was fitted to 
the training data of the selected features of the SGS dataset. 

 

Metric Recorded Relative Change 

Training CPU Duration (S) 171.27 -32.09% 

Training Runtime Duration (S) 8.14 -30.88% 

Training CPU Energy Consumption (J) 760.16 -35.07% 

Training DRAM Energy Consumption (J) 39.44 -31.67% 

Mean of 5-fold CV Accuracy (%) 95.91 -1.93% 

Table 12. Experiment 4 – Training Results 
 

As presented in Table 12 above, it was found that combining hyperparameter optimisation and 
feature optimisation to fit the model to the training dataset, runtime was reduced by 30.88%. 
Furthermore, the energy used in fitting the model to the training dataset as measured by pyRAPL 
was also cut down by 35.07%. With these impressive reduction in the training runtime and en-
ergy consumption which in effect lead to a substantial reduction in the environmental cost, a 
marginal loss of 1.93% in predictive accuracy was recorded. This impressive savings in the 
runtime and energy consumption which in effect cut down on the overall environmental cost 
could be explained by the XGB algorithm’s ability to complete the learning process faster due to 
the higher explainability achieved through the blend of the 2 techniques. It is worth mentioning 
also that, the CPU duration in the process was shortened by 32.09% whereas the energy usage 
by the DRAM as reported by pyRAPL also made a significant savings of 31.67%. Figure 11 below, 
illustrates the energy consumption of the 30 repeated runs performed in fitting the tuned hy-
perparameters model on the selected features as compared to experiment 1, where default 
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hyperparameters of the XGB classification algorithm were used on the entire features of the da-
taset. 

 

 

Figure 11. Training CPU Energy Consumption of Experiments 1 and 4 compared 
 

In comparing the results of experiment 4 against the benchmark model which is experiment 1 
after the 30 repeated fitting of the model to the training dataset, it was revealed as illustrated in 
Figure 11 above that, none of the 30 drops in the energy consumption happened by chance 
when hyperparameter optimisation was applied on the selected features. This makes combina-
tion of hyperparameter optimisation and feature optimisation strong candidate tools for use in 
achieving accurate, faster and eco-friendly AI. 

4.4.2 Inference Results – Tuned hyperparameters on Selected Features of the Dataset 

To be able to appreciate fully the effect of hyperparameter optimisation and feature optimisation 
on the other side of the ML process which is inference energy consumption and runtime, the 
findings of experiment 4 relating to testing the model constructed from the tuned hyperparam-
eters on the selected features on unseen data is presented in Table 13 below. 
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Metric Recorded Relative Change 

Inference CPU Duration (S) 0.22 -7.65% 

Inference Runtime Duration (S) 0.025 -15.38% 

Inference CPU Energy Consumption (J) 1.61 -3.80% 

Inference DRAM Energy Consumption (J) 0.097 -3.39% 

Test Accuracy (%) 95.84 -2.19% 

Table 13.. Experiment 4 – Inference Results 
 

From Table 13 above, it is shown that after tuning the hyperparameters on the selected features 
and using the trained model to test on unseen and untouched model, the runtime was shortened 
by 15.38% as compared to when the default model was used on the entire features of the da-
taset. More so, the energy taken up by the CPU which is indicative of the environmental cost had 
a small savings of 3.39%.  The other inference metrics measured also made fair savings as ob-
served in table 13 above where CPU duration dropped by 7.65% and the energy consumed by 
the DRAM also dropped by 3.39%. However, the inference accuracy was dropped relative to 
when no hyperparameter configuration was made and the entire features of the dataset were 
used in developing the model by 2.19%. Again, this finding does not seem to favour the general-
isation of a blend of hyperparameter optimisation and feature optimisation as strong techniques 
to employ in when matters of building testing ML models on unseen datasets with minimal ad-
verse effects on planet earth as the focus as though completion time dropped, energy 
consumption did not change that much and predictive accuracy was a bit distracted. 

4.5 General Results and Discussion 

This subsection of the dissertation focuses on the overall results following from the objective-
based results above presented. Also, a thorough discussion of the findings of the dissertation is 
made in this particular subsection as well. As the broader focus is to make AI faster and greener 
while trying to maintain predictive accuracy, hyperparameter optimisation technique as used by 
researchers such as Brownlee et al. [1] and feature optimisation technique as used by research-
ers such as Ghasemzadeh et al. [18]  were considered in series of four experimentations to 
explore how they can be used to achieve the broader aim. In this dissertation, the runtime as 
proxied by the wall-clock equivalent time in seconds and the energy consumption is proxied by 
the CPU energy consumption as measured in microjoules by pyRAPL and subsequently converted 
to Joules as well as the predictive accuracy will be the main focus of discussion in this section, 
although, other metrics such as CPU Duration, DRAM energy consumption were also measured. 

Experiment 1 was setup to address objective 1. What this means is that, the default hyperpa-
rameters of the XGB classification algorithm was used on the entire features of the SGS dataset 
to explore the actual runtime and the environmental cost involved during the training and infer-
ence stages of the machine learning process. Experiment 2 was setup to address objective 2. In 
this case, hyperparameter optimisation using GridSearchCV as provided by scikit-learn was ex-
plored on the entire features of the SGS dataset to examine how it can be used to cut down the 
energy consumed and the runtime at both extremes of training and inference with no or minimal 
harm to the predictive accuracy of the model being constructed. More so, experiment 3 was 
setup to address objective 3. In this setup, feature optimisation using RFECV as provided by scikit-
learn was used on the SGS dataset to cut down the number of features used in building the 
model. The XGB hyperparameters were kept at defaults and then the runtime and energy con-
sumption were measured at both ends of training and inference to investigate how feature 
optimisation can be helpful as a technique to employ towards a faster and greener AI. Finally, 
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experiment 4 was setup to address objective 4. In this setup, the combined effects of hyperpa-
rameter optimisation and feature optimisation were examined on runtime and energy 
consumption to appreciate how combining these 2 techniques could be helpful in achieving the 
broader aim. Tables 14 and 15 below represents a snapshot of the findings of the series of ex-
perimentations at both ends of training and inference respectively. 

 

Metric Exp. 1 Exp. 2 Exp. 3 Exp. 4 

Training CPU Duration (S) 252.21 179.29 224.68 171.27 

Training Runtime Duration (S) 11.78 8.67 10.68 8.14 

Training CPU Energy Consumption (J) 1170.73 819.68 1038.81 760.16 

Training DRAM Energy Consumption (J) 57.71 42.27 52.65 39.44 

Mean of 5-fold CV Accuracy (%) 97.80 96.10 97.77 95.91 

Table 14.. Experiment 1 to 4 – Training Results 
 

 

Metric Exp. 1 Exp. 2 Exp. 3 Exp. 4 

Inference CPU Duration (S) 0.240 0.220 0.235 0.222 

Inference Runtime Duration (S) 0.030 0.026 0.026 0.025 

Inference CPU Energy Consumption (J) 1.670 1.610 1.648 1.607 

Inference DRAM Energy Consumption 
(J) 

0.100 0.097 0.098 0.097 

Test Accuracy (%) 97.990 96.270 98.110 95.842 

Table 15. Experiment 1 to 4 – Inference Results 
 

It can be observed from Tables 14 and 15 above that the standalone effect of hyperparameter 
optimisation on runtime and energy consumption is substantial. This conforms to findings in 
other works such as the works by [1], [13]. Also, from the same tables, it can be noticed that, the 
standalone impact of feature optimisation although, improved predictive accuracy but was not 
much effective in reducing runtime and energy consumption at both ends of training and infer-
ence. The combination of the two techniques as noted in experiment 4 results for both training 
and inference is of great importance on the move towards energy efficient, faster and also accu-
rate models with minimal harm to planet earth. On examination of the runtime of the two 
extremes in the ML process, it was revealed that it required 393 times the duration it takes for a 
model to be tested on unseen data for a model to be fitted to the training data. Also, on exploring 
the energy consumption at both extremes, it was observed that, 701 times of the energy con-
sumed to test on unseen data was required to fit the model to the training dataset. The longer 
duration and relatively higher energy consumptions found at the training stage as compared to 
the testing stage is consistent with machine learning expectations. This could be explained by 
the processes that the algorithm has to go through to learn the features of the training dataset 
and possibly the size of the training dataset could account for the longer period and huge energy 
consumption. These findings indicate that training a model is very costly both computationally 
and environmentally as compared to testing the constructed model on the unseen dataset. This 
finding conforms to that of Brownlee et al [1]. To this end, it is essential that much focus is 
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channelled to reducing the computational and energy cost and for that matter the environmen-
tal cost attributable to model training than testing. 

Looking at the results in Tables 14 and 15 alone, it can be fully confirmed that hyperparameter 
optimisation and feature optimisation are vital tools to employ in building machine learning 
models that are not only accurate but also faster and greener. However, noise from several en-
vironmental factors can have great influence on a running system which in a way could be 
problematic to the validity of the research carried out. This necessitated the need for the 30 and 
1000 repeated runs for training and inference phases of the ML process respectively in order to 
be very certain of the findings of this research. For a thorough discussion therefore, the need to 
use statistical approaches in evaluating the results obtained was invaluable. Going forward, 
much emphasis is placed on runtime and the CPU energy consumption for both training and 
inference. However, greater portion of the discussion will be based on the training runtime and 
energy consumption since the ML training phase is the part that takes longer to complete and 
also very costly environmentally as proxied by its energy usage and found in this dissertation.  

Tables 16 and 17 indicate the results of the Mann-Whitney U test performed to check for statis-
tical significance of the reductions observed as reported above for runtime and energy 
consumption at both ends of training and inference respectively in order to be sure that, they 
were not recorded by chance. 

 

Training 

Experiments 

Metric Mann-Whitney U Test Remarks 

Hypothesis Results (ρ-value) 

 

Exp 1 vs Exp 2 

Runtime H0: From Same Dis-
tribution 

HA: From Different 
Distribution 

0.00 Reject H0 

Energy Consumption 0.00 Reject H0 

 

Exp 1 vs Exp 3 

Runtime H0: From Same Dis-
tribution 

HA: From Different 
Distribution 

0.00 Reject H0 

Energy Consumption 0.00 Reject H0 

 

Exp 1 vs Exp 4 

Runtime H0: From Same Dis-
tribution 

HA: From Different 
Distribution 

0.00 Reject H0 

Energy Consumption 0.00 Reject H0 

Table 16. Mann-Whitney U Test of Significance – Training Results 
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Inference 

Experiments 

Metric Mann-Whitney U Test Remarks 

Hypothesis Results (ρ-value) 

 

Exp 1 vs Exp 2 

Runtime H0: From Same Dis-
tribution 

HA: From Different 
Distribution 

0.00 Reject H0 

Energy Consumption 0.00 Reject H0 

 

Exp 1 vs Exp 3 

Runtime H0: From Same Dis-
tribution 

HA: From Different 
Distribution 

0.00 Reject H0 

Energy Consumption 0.00 Reject H0 

 

Exp 1 vs Exp 4 

Runtime H0: From Same Dis-
tribution 

HA: From Different 
Distribution 

0.00 Reject H0 

Energy Consumption 0.00 Reject H0 

Table 17. Mann-Whitney U Test of Significance – Inference Results 
 

From the Mann-Whitney U test conducted the results of which are as shown in Tables 16 and 17 
for both training and inference respectively, there is sufficient evidence to reject the null hypoth-
esis (H0) in favour of the alternate hypothesis (HA) in all of the experiments compared. What this 
means is that, the differences in the medians of the runtime between experiments 1 and 2 is 
significant at the training phase of the experimentation. Also, the difference in the medians of 
the training CPU energy consumptions of experiments 1 and 2 is significant and did not happen 
by chance. This interpretation also applies to the inference stage as well. Again, the interpreta-
tion applies to the comparison of experiments 1 versus 3 and experiments 1 versus 4 at both 
ends of training and inference. The above results confirm that hyperparameter optimisation and 
feature optimisation are good candidate techniques to consider when building models with 
higher accuracy that takes into account speed and the need to reduce the emission of GHG and 
its devastating effects on the planet earth.  

The violin plots illustrated in Figures 12 - 15 below are visual representations of the energy con-
sumptions for the 30 and 1000 repeated runs at both ends of training and inference. Whereas, 
Figures 12 and 13 are for the energy consumptions at both extremes of training and inference 
respectively, Figures 14 and 15 are for the runtimes at both ends of training and inference re-
spectively as well. The violin plots are indicative of the relationship of each of the four 
experiments to energy consumption and runtime at both ends of training and inference as earlier 
mentioned. 
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Figure 12. Distribution of Experiments 1 – 4 Training Energy Consumption 
 

It is clear from the violin plot in Figure 12 that the median training energy consumption for ex-
periment 4 (see index 3 on the experiment axis) is lower than the other three experiments 
conducted. The experiment 4 is indicative of the effects of hyperparameter optimisation on se-
lected features. From the same figure 12, it is also clear that the median training energy 
consumption for experiment 1 as noted with index 0 on the experiment axis is the highest. Ex-
periment 1 is the case of default hyperparameters on the entire features of the dataset used. In 
the case of the shape of the distributions, it can be observed from Figure 12 above that the 
training energy consumptions of each of the 4 experiments are highly concentrated around the 
median as seen with the wide distributions in the middle of the violins in each of the experi-
ments. The observations in Figure 12 therefore add credence to the fact that the distributions of 
the experiments compared are not equal.  Similar interpretation applies to Figures 13, 14 and 15 
below. 
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Figure 13. Distributions of Experiments 1 – 4 Inference Energy Consumption 
 

 

 

Figure 14. Distribution of Experiments 1 – 4 Training Runtime 
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Figure 15. Distribution of Experiments 1 – 4 Inference Runtime 
 

Again, Figure 16 below sheds more light on the impact of hyperparameter optimisation and fea-
ture optimisation techniques to cutting down the energy consumption while keeping the 
predictive accuracy. It is an overall pictorial view of the 4 experiments performed. 

 

 

Figure 16. Training Energy Consumption Visualised (Experiment 1 – 4) 
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From the visual representation in Figure 16 above, it can be observed that combining hyperpa-
rameter optimisation and feature optimisation was able to reduce the energy consumed and its 
subsequent effect of emissions of GHGs to the environment better than the two individual tech-
niques on their own as earlier explained in this dissertation. 
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5 Conclusion 

This section is the concluding section of the dissertation. It presents the summary of the find-
ings, evaluation of the achievements and recommendations for future studies. 

5.1 Summary 

This dissertation aimed at approaches to faster and greener AI with no or minimal loss in predic-
tive accuracy. Hyperparameter optimisation and feature optimisation were explored as the 
techniques to achieving this aim. The XGB classification algorithm was used on the SGS dataset 
in four different experimental series.  

In experiment 1, it was found that it takes longer for a machine learning algorithm to be fitted to 
the training data than it takes for it to be tested on unseen data by 393times. Again experiment 
1 also indicated that the energy consumed in fitting a model to a dataset takes as much as 
701times the energy it takes the model to be tested on unseen data. Experiment 1 has helped 
to unravel which aspect of the machine learning process consumes more energy and subse-
quently contribute to emitting large quantities of GHG which has adverse effects on our planet. 

More so, experiment 2 also has shown that hyperparameter optimisation alone has the capacity 
to cut down on the runtime and energy consumption during the training phase of the machine 
learning process. In experiment 2, it was shown that hyperparameter optimisation can shorten 
the time it takes to fit a model to the training data by 26.4% whereas energy of 29.99% was saved 
in fitting the model to the training data with a minimal reduction of 1.74% in predictive accuracy. 
This experiment has shown that hyperparameter optimisation is an effective approach to employ 
on the move towards faster and environmentally friendly AI with just a little loss in predictive 
accuracy. 

Also, it was found from experiment 3 that, using relevant subset of the entire features of the 
dataset to fit the model to the training data by using feature optimisation can contribute slightly 
to reducing the runtime and energy consumption by 10.92% and 11.27% respectively with a near 
negligible loss in predictive accuracy from 97.8% to 97.77%. This experiment has demonstrated 
that feature optimisation can be a useful approach to apply in building AI models that compute 
faster and with an overall reduced harm to the environment. 

Again, it was found through experiment 4 that, combining hyperparameter optimisation and fea-
ture selection could make models run faster and with much more reduced harm to the 
environment than the individual techniques on their own (see Figure 16). It was revealed in ex-
periment 4 that, performing hyperparameter optimisation on the selected features made it 
possible for the model to be fitted to the training data with a shortened time of 30.88%. Further-
more, savings of 35.07% was made in the energy used in fitting the model to the training dataset 
which in effect leads to a reduction in the emission of GHG to planet earth in an approximated 
equal measure. It is worthy of mentioning that the predictive accuracy at the point only dropped 
marginally from 97.80% to 95.91% 

Finally, it was revealed through the 4 experimental series that, little could be achieved to make 
the model run faster and with much higher reduced energy consumption when the model is 
being used to test on unseen and untouched data although in all of the experiments, marginal 
reductions were recorded for both runtime and energy consumption except for experiment 4, 
that is the application of hyperparameter optimisation on the selected features, which had a 
significant reduction in the runtime by some 15.38% with energy savings made as only 3.39% 
whereas predictive accuracy suffered a loss by a margin of 2.19%. 
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5.2 Evaluation 

The broader aim of making AI faster and greener was approached on these original objectives 
which were set as follows: 

1. To investigate runtime and energy consumption of XGB classifier algorithm on the SGS 
dataset during training and inference. 

2. To explore the impact of hyperparameter optimisation on the runtime and energy con-
sumption of XGB classifier algorithm on the SGS dataset during training and inference. 

3. To examine the effects of feature optimisation on runtime and energy consumption of 
XGB classifier algorithm on the SGS dataset during training and inference. 

4. To explore the combined effect of hyperparameter optimisation and feature optimisa-
tion on the runtime and energy consumption of XGB classifier algorithm on SGS dataset 
at both extremes of training and inference. 

Objective 1 was met through experiment 1. The runtime and energy consumption of the XGB 
classification algorithm which was used to train and test on the SGS dataset were recorded with 
the time.time() library and pyRAPL software tool kit respectively. The investigation led to the 
revelation that, training a model takes much time and extremely higher energy to complete than 
testing the model on unseen data. What this means is that, the environmental cost associated 
with training a model is excessively huge and therefore calls for much attention than testing the 
model on unseen data. 

Also, objective 2 was well achieved through experiment 2. Hyperparameter optimisation was 
applied on the entire features of the dataset and the runtime and energy consumption were 
measured. It was observed that hyperparameter on its own was capable of cutting down drasti-
cally the runtime and energy taken up to fit the XGB classification algorithm to the entire features 
of the dataset while trading-off a little of predictive accuracy. However, the reduction for runtime 
and energy consumption on inference was minimal. This is an indication that, hyperparameter 
optimisation is a strong candidate technique to apply towards faster and greener AI.  

Again, objective 3 was also met through experiment 3. Although, the impact of feature optimi-
sation as a technique for the reduction in runtime and energy consumption was achieved at both 
extremes of fitting the model to the training data and testing the model on unseen data, the 
effects were not that much as compared to that which was achieved by the hyperparameter 
optimisation technique. It can be said however that, accuracy was almost maintained when fea-
ture optimisation was employed on the XGB classification algorithm on the SGS dataset. This 
demonstrates feature optimisation as a technique to apply in machine learning for developing 
accurate, faster and eco-friendly models although its impact is not that substantial relative to 
hyperparameter optimisation technique. 

Finally, objective 4 was also met through experiment 4. It was revealed that, the combination of 
hyperparameter optimisation and feature optimisation could have significant impact on runtime 
and energy consumption at both extremes of training and inference. Most especially the reduc-
tion in runtime and energy consumption as recorded when fitting the XGB classification 
algorithm to the training data was very substantial than the individual techniques on their own. 
This has shown that, combining hyperparameter optimisation and feature optimisation tech-
niques could help make models equally accurate, faster and with overall reduced harm to our 
planet especially when it comes to the training phase where much emissions of GHGs take place. 

5.3 Future Work 

This dissertation seems to be one of the first research works geared towards approaches to min-
imising the environmental cost associated with faster but also accurate AI. Although pyRAPL has 
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been used to conveniently measure the energy taken up by the CPU to run at both ends of train-
ing and inference, leading to excellent results which were used as proxy for the environmental 
cost, the direct quantity of GHGs emitted, indicating the actual environmental cost could not be 
measured reliably. Although some researchers have formulated procedures and other technolo-
gies for this measure, these has not been generalised yet. This situation could be improved if 
researchers would take delight in coming out with technologies that directly quantify the envi-
ronmental cost instead of using CPU time as done in other works and CPU energy consumption 
as used in this research as proxies. 

Although, impressive results were achieved to help in acknowledging the use of hyperparameter 
optimisation and feature optimisation as techniques to employ towards faster and greener AI 
with no or minimal harm to predictive accuracy, only one specific dataset, was used to carry out 
the experiment due to time constraints. To be able to generalise this dissertation further, the 
approach could be employed on other large and especially energy hungry datasets as well. 

Another threat to validity of this research is the specific system hardware used and the location 
of the system hardware. Other system hardware components may behave differently leading to 
different levels of energy usage. Also, different countries may have different sources and propor-
tions of energy generation other than the UK which in effect leads to differences in contributions 
to the harm caused to planet earth by different countries. Varying this research using different 
system hardware based in a different country would help in generalising the findings of this re-
search. 

The XGB classification algorithm was the only machine learning algorithm used in this experi-
mentation. Albeit, it is very popular in its usage among players in the AI community for various 
projects and gave excellent results in this dissertation as its hyperparameters could be tuned, 
exploring other machine learning algorithms such as logistic regression, random forest and the 
likes with the approaches in this research however, will help in establishing a formidable 
knowledge on the use of hyperparameter optimisation and feature optimisation as techniques 
to employ to build accurate, faster and environmentally-friendly AI. 

More so, the optimisation techniques and python libraries used for the hyperparameter config-
uration and feature selection have helped in achieving the objectives of this research. The 
limitation here however, has to do with the finite search space and the exhaustive search ap-
proach used by the GridSearchCV optimisation library for the hyperparameter tuning. It will be 
interesting to explore how other search optimisation techniques such as Bayesian search, ran-
dom search and even other genetic algorithms help in achieving the objectives and the overall 
aim of making AI faster and greener. In same vein, exploring other optimisation techniques and 
python libraries for the feature selection other than the RFECV provided by scikit-learn as used 
in this research will go a long way to generalise the findings of this dissertation. 

Finally, making explainability of the key drivers of runtime and energy consumption in building 
AI models an added objective to this dissertation, would help all players and even users of AI to 
understand, interpret and find best approaches to cutting down on such energy hotspots so as 
to make the dream of faster and greener AI a reality while maintaining predictive accuracy. 
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Appendix 1 – Sample pyRAPL Implementation Code 
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Appendix 2 – First 5 instances of the SGS Dataset 
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Appendix 3 – First 5 instances of the Prepared SGS Dataset 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


