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Abstract 
Many real world optimisation problems have goals that conflict, e.g.; cost vs performance. Finding 
the trade-off, is known as multi-objective optimisation (MOO). Public housing stock is a major con-
sumer of energy and is a Use Case for MOO where cost efficiency is required to optimally decide how 
and where to spend money on thermal efficiency upgrades, that involves making millions of decisions 
using cost benefit analyses to decide the mix of upgrades to sustainably deploy across thousands of 
housing units. This is a large scale global optimisation (LSGO), or large scale optimisation (LSO). Multi-
objective evolutionary algorithms (MOEA) are one the approaches of solving these LSGO problems; 
and is the one that this project used. 

Whilst metaheuristics-based MOEA efficacy inspires confidence in multi-variable automated decision 
making solutions to LSGO problems, it is often not possible to pin-point the specific factors in genetic 
hyperparameter configurations that are responsible for efficacy. Moreover, the effect of discrete com-
positions of multi-variable solutions resulting from MOEA, can serve to further cloud the picture. 

Therefore, for this research project, the primary goal was to develop software in jMetalPy with MOEA 
for multi-variable decision making. To best align with the public housing stock Use Case that is rooted 
in buildings engineering, Deb et.al’s [1] elitist non-sorting genetic algorithm (NSGA-II) was used be-
cause of its wide application in housing retrofit [2] and its ability to identify metaheuristic factors that 
influence MOEA efficacy vs objective functions, f(x), i.e.; cost and operational energy consumption, 
e.g.; genetic hyperparameter configurations, problem variables and quality of MOEA solutions. 

Alongside the literature review and investigating the jMetalPy framework, initial data exploration was 
done using data science techniques to fix any anomalies and get the data validated. Separability was 
used to form a 3-tier LSGO global-problem decomposition i.e.; single house problem (SHP), group of 
houses problem (GHP) and full housing stock (HSP). NSGA-II was run sequentially for each granular 
genome from the Cambridge Housing Model (CHM) data subset. Results were captured, collated and 
stored, including in CSV’s, at each step sub-process optimisation step. Pareto Front (PF) visualisations 
were prepared of the non-dominated solutions. 

Traditional software engineering augmented computational intelligence (CI) to develop the metaheu-
ristics-based MOEA. Mathematical techniques were used e.g.; MaxDiff to calculate the best point on 
the PF trade-off, also referred to as the pareto-optimal solution; ArgMax to find and match the last 
item in arrays, to its value in a corresponding array (x vs y arrays for plotting graphs); FindMax to find 
the reference point (RP) i.e.; maximum values for the MOEA objective functions. RP was in turn used 
in GHP Quality Indicator (QI) experiments to calculate efficacy of discrete MOEA genetic hyperparam-
eter configurations, helping to address causal inference in the explainability goal. Post MOEA, 
mathematical techniques were used to find the extrema solutions e.g.; minima, maxima and knee 
points; and statistical techniques to find means, distributions, error rates and standard deviations. 

Results were tabulated, visualisations created, observations made, analysed and findings interpreted 
and explained. For example, the key findings were that it is possible to develop MOEA for LSGO in 
jMetalPy and; the effectiveness of the constituent intervention options in GHP solutions had more 
significance on MOEA efficacy, than metaheuristics, in turn suggesting that non-metaheuristics fac-
tors e.g.; speed of convergence and encoding strategy have greater significance than metaheuristics. 

There were more interesting findings and suggestions for future work. 

 

Keywords: LSGO, MOEA, NSGA-II, separability, genetic hyperparameters, explainability, hypervolume. 
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1 Introduction 
1.1 Background 
This project extended an existing evolutionary algorithm (EA) of its genetic algorithm (GA) sub-class 
and of the multi-objective evolutionary algorithm (MOEA) variety was previously used by Brownlee 
et.al [3] to solve a large scale global optimisation (LSGO) problem. LSGO is also known as large scale 
optimisation (LSO). EA is a super-class of metaheuristics-based artificial intelligence (AI) methods [4], 
and GA are a sub-class of EA. 

In a real-world Use Case, a local authority in England posed a housing upgrades LSGO problem, to a 
multi-disciplinary team of housing improvement and LSGO researchers at Loughborough University. 

The original application (Use Case) was about finding the best home insulation option or combination 
of home insulations options to target to particular units, in the allocation of funds for improving the 
overall energy efficiency of several thousand units of public housing stock. The UK Department for 
Business, Energy and Industrial Strategy (BEIS) [5] describes the district heating scheme (DHS) inter-
vention option as a “distribution system of  insulated pipes that takes heat from a central source and delivers it to a 
number of  domestic or non-domestic buildings. The heat source might be a facility that provides a dedicated supply to the heat 
network, such as a combined heat and power plant; or heat recovered from industry and urban infrastructure, canals and 
rivers, or energy from waste plants.” DHS, therefore, is when a group of houses are connected to a shared 
heat source, which because of its scale, can be run more efficiently than many small-scale boilers. 
DHS improvements are not considered in isolation, so they greatly increase sub-problem complexity. 

The data used by the existing algorithm for the LSGO problem, developed in jMetal’s Java framework, 
did not include DHS. The algorithm used exhaustive search to solve sub-problems at the individual 
housing level before using a metaheuristic-based search optimisation to solve the global-problem at 
the stock level. Energy modelling and housing stock data was based on the Cambridge Housing Model 
(CHM), a free and open access UK government public housing stock dataset published by the BEIS. 

In this context, the academic interest for this project is two-fold; on one hand it is to help inform real-
world housing policy making, whilst on the other hand, to simultaneously develop metaheuristics-
based MOEA software, that is effective in solving LSGO problems. The latter is the main focus. 

1.2 Scope and Project Goals 
This project’s main purpose was to create software using Python to optimise the allocation of funds 
for improving thermal efficiency of public housing stock, extending an existing MOEA, using separability 
to sub-divide the global-problem into much larger sub-problems than those previously researched 
e.g., an additional group level intervention option named ‘district heating scheme’ (‘dhs’) led to the crea-
tion of an intermediate group level decomposition tier named the group of houses problem (GHP), 
enabling an upgrade to be applied to multiple houses in a group, rather than to single houses in isola-
tion, as previously been done by Brownlee et.al [3]. 

To systematically solve LSGO problems that satisfy the MOEA objectives; to (a) minimise energy con-
sumption and (b) minimise intervention costs, this project would use a subset of free and open 
access UK government public housing stock anonymised datasets. 

This project aimed to achieve its goals by the following means; 

1. Use a systematic approach to develop metaheuristics-based MOEA [6] for multi-variable au-
tomated decision making; covering algorithmic design, simulation, experimentation and 
drawing utilitarian causal inference from derived results, by utilising a combination of; 

a. Traditional software engineering techniques. 

b. Computational intelligence (CI) with metaheuristics. 
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2. Use MOEA against CHM based dataset, to find non-dominated solutions that satisfy the MOEA ob-
jectives and present the results as on Pareto Front’s (PF’s) for each sub-problem; i.e.; single 
house sub-problem (SHP) and GHP. 

3. Identify the non-dominated solutions with the best trade-off between the MOEA objectives for 
each SHP and GHP PF, i.e.; the pareto-optimal solution, also known as the knee-point. 

4. Explore metaheuristics impacts i.e.; of genetic hyperparameter configurations on MOEA, using Deb 
et.al’s [1] non-sorting genetic algorithm (NSGA-II), on PF points of interest i.e.; the extrema 
non-dominated solutions (minima, knee-point and maxima); 

a. For resultant thermal efficiency refurbishment GHP interventions. 

b. Of resultant non-functional performance e.g.; CPU time or runtime. 

5. Explore MOEA execution outcomes and efficacy results, to identify the factors e.g.; sensitivity or 
bias in genetic hyperparameter configurations, that are mainly responsible for; 

a. Stochastic search optimisation efficacy. 

b. Best point on the PF trade-off, between the conflictive MOEA objectives. 

c. Variability in MOEA utilisation of computational resources. 

6. Assess MOEA efficacy by extending and running jMetalPy’s Experiment (constructor super-class), 
then rank the genetic hyperparameter configurations performance by hypervolume (HV). 

1.3 Research Questions 
In the context above, the purpose of this project was to address the following research questions; 

1. RQ-1 – Can LSGO problems be solved with MOEA developed in jMetalPy? 
2. RQ-2 – Can MOEA be developed in jMetalPy to provide satisfactory efficacy and reliability in 

its outcomes for the housing stock problem? 
3. RQ-3 – Can MOEA be developed in jMetalPy, incorporating satisfactory explainability to offer 

confidence in MOEA integrity in solving the housing stock problem? 
4. RQ-4 – What factors influence the efficacy and reliability of MOEA developed with jMetalPy? 

1.4 Achievements 
Based on the background in Section 1.1 that was outlined in Chapter 2, to provide the context for this 
project’s original goals set out in Section 1.2, this project achieved its goals. 

Initial exploratory data analysis was performed using data science techniques in Python concurrently 
with conceptualisation of algorithmic design and the software development approach, as described 
in Section 5.4. This project shows that MOEA software multi-variable automated decision making for 
LSGO can be developed in jMetalPy, incorporating QI’s to assess MOEA and metaheuristics efficacy. 

Using repeatable steps and explainability, the MOEA software was developed as seven (7) Jupyter 
Notebooks, with each created to perform discrete tasks, addressing scope and various specified crite-
ria set out in Section 1.2, Section 1.3, Section 5.4 and Section 5.5, specifically; 

1. Ingest the data, perform exploratory data analysis, data validation checks and data cleansing. 

2. Develop and operate the MOEA software for SHP. 

3. Develop and operate the MOEA software for GHP and for QI’s experiments. 

4. Add runtime timings for discrete tasks to explain non-functional performance. 

5. Analyse individual and aggregated PF results at genetic hyperparameter configuration and GHP levels and 
create visualisations of the resultant analysis to simplify feedback to make causal inferences. 
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6. Analyse individual and aggregated QI’s results i.e.; HV at genetic hyperparameter configuration and GHP 
levels and create visualisations of the resultant analysis to simplify feedback to make causal 
inferences. 

7. Use explainability in analysis reviews, through addition of metadata to filenames, which can 
help drill-down by LSGO researchers and housing policy makers alike. 

A systematic approach was used in software development to create repeatable iterative steps to sat-
isfy the explainability goal, highlighting causal inference relative vs this project’s outcomes, by; 

1. Running all 7 Notebooks several times on two separate O/S, with; alternate dataset subsets, 
operating conditions, and genetic hyperparameter configurations, to study impacts. 

2. Automation of iterative NSGA-II function calls, to create SHP and GHP PF’s, as well as collation 
and collection of functional and non-functional results data at key stages across the MOEA 
lifecycle, from which on-demand analysis to obtain further resultant insights can be per-
formed to facilitate multi-variable automated decision making. 

3. Incrementing the number of variables i.e.; intervention options. ‘dhs’ was added as an inter-
vention option to each single house configuration in the initial dataset. 

4. Statistical significance testing to assess MOEA efficacy, using HV scores and runtime. 

5. Creating a jMetalPy based MOEA model from which future research into LSGO can be done. 

Further achievements from some interesting and noteworthy findings were derived, including; 

1. Enforced constraints unduly influenced the distributions of interventions applied in non-domi-
nated solutions, particularly at the GHP level. For example, due to a combination of factors, 
there were no ‘zero solutions’ on the PF’s, because every house had at least one intervention 
option applied, as described in Section 7.2. 

2. Composition of constituent interventions in GHP solutions had a much more significant im-
pact on MOEA efficacy than metaheuristics, as described in Section 7.2. 

My knowledge and skills in optimisation, LSGO and MOEA have significantly improved, as has my ap-
plied mathematical and statistical techniques in programming. Using QI to assess algorithm efficacy 
has enabled me to contribute to LSGO decomposition research, and emerging area of research with 
pertinence to housing stock optimisation. 

There were setbacks (see Section 8.3 and Section 8.4). However, identification of these issues were in 
themselves, important findings, as their resolution in future shall further this applied research work. 

 

On reflection, overall, this project’s achievements have far exceeded the goals set out at the outset; 
as it includes many suggestions for future work beyond the project brief. 

 

1.5 Code Repository 
The project artefacts have been archived in the university’s digital project repository. 

Details of these artefacts are listed in Appendix 1. 
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1.6 Overview of Dissertation 
This project’s work has been organized into eight chapters as follows: 

Chapter 1: Introduction sets out the problem statement, project motivations, and explains 
why this was worthwhile work to do. It also describes this project’s scope and goals, and then sum-
marises this project’s achievements. 

Chapter 2: Research Background and Situational Context describes this project’s motivation 
from the perspectives of both LSGO with MOEA as well as housing improvement, and then introduces 
relevant State-of-the-Art in this regard, that are then critically examined in the next chapter. 

Chapter 3: State-of-the-Art discuses domain research in the development and use of MOEA 
for LSGO and elucidates upon recent developments in this area of research, and in its application to 
LSGO for housing improvements involving large scale housing stock. 

Chapter 4: LSGO Problem Decomposition describes the theoretical concepts behind the ap-
proach to solving LSGO problems. It includes the comparative conceptualisation of separability 
techniques used in comparable work that were built upon and used by this project vs prior orthodox 
exhaustive search optimisation techniques and addresses explainability of the theoretical concepts. 

Chapter 5: Methodology describes the tools, methodologies used and this project’s approach 
to research and investigation for both LSGO and MOEA. It also covers exploratory data analysis and 
data preparation. It highlights how the methodologies were used in conjunction during the iterative 
investigative work of this project and making rationale for choices made with both methodology and 
subsequent software development. 

Chapter 6: Software Development using MOEA in jMetalPy describes how the software was 
designed and built using computational intelligence (CI) augmented by traditional software engineer-
ing techniques. It further describes how statistical techniques were used for the analysis of results. 

Chapter 7: Results and Discussion describes the results obtained from various investigations 
and explains the observations made from the results and insights derived from analysis of the results 
vis-a-vis this project’s goals set out in Section 1.2, and discusses the significance of notable observa-
tions and insights derived on MOEA use for LSGO automated multi-variable decision making. 

Chapter 8: Conclusions summarises the overall findings and recommendations from this project, 
and then describes what was achieved vis-à-vis not achieved, and then makes suggestions for Future 
Work in terms of academic scientific research and further investigations. It further describes the chal-
lenges faced during this project. 
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2 Research Background and Situational Context 
This chapter describes the background, perspective and context from which this project evolved, 
starting with the branch of mathematics that is optimisation and addresses the circumstances that 
have given inspiration for this research project. 

2.1 Multi-Objective Optimisation (MOO) 
Resources are finite in the real world. Optimisation is the multi-disciplinary practise of finding the 
most effective way to utilise finite resources [7], using mathematical procedures to maximise or mini-
mise the objective functions [8]. Many scholars have used optimisation to sustainably utilise 
resources, e.g.; Michailos et.al [9], for energy utilisation in ethanol production. 

Eiben et.al [10], [11] and Gad [12] describe the four main categories of optimisation as; 

1. Constrained Optimisation. 

2. Multi-Modal Optimisation. 

3. Multi-Objective Optimisation (MOO). 

4. Combinatorial Optimisation. 

MOO is a sub-field of optimisation that identifies viable solutions that best satisfy a multiple number 
of conflictive objective functions f(x) for a problem amongst a pool of possible solutions [8]. Chang 
[13] described alternative ways that MOO is referred to including; (a) multi-objective programming 
(MOP), (b) vector optimisation, (c) multi-criteria optimisation (MCO), (d) multi-attribute optimisation 
(MAO), and (e) pareto optimisation. 

Manson et.al [14] describe variables in MOO as discrete features (columns) in data that are used to op-
timise MOEA objectives. In the context of separability for MOEA, Ma et.al [15] describe decision-
variables as multitudes of several low-dimensional sub-components (akin to elements in solutions) and fur-
ther describe variables as independent of other variables, contradicting Yu et.al’s [16] earlier research 
that describes variables as inter-dependent for difficult optimisation problems e.g.; LSGO and by ex-
tension, MOEA, suggesting that separability changes how LSGO treats variables and decision-variables. 

As shown in Figure 2, dominance in MOO solutions is when no other solution is better than the speci-
fied solution for all MOO objectives. When joined together on the PF, non-dominated solutions [17] form a 
line that referred to as the pareto curve (PC). It is from non-dominated solutions that choices are made for 
solutions to proceed with, depending on prevailing priorities. The non-dominated solution on the PC that 
offers the best trade-off between the conflictive MOO objectives, is the pareto-optimal solution [17] 
and is usually referred to as the knee-point, as shown in Figure 1 and Figure 2 below. 

 
Figure 1. Conceptual PF with Knee Point [18]. 
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Figure 2. Conceptual PF showing Optimal Solution [17]. 

This project’s focus is about MOO, as applied to LSGO. In particular, to MOEA, which is a way to solve 
MOO using EA, with problem decomposition. Due to its wide application in housing retrofits [2] and 
ability to identify metaheuristic factors that influence MOEA efficacy e.g.; genetic hyperparameter 
configurations, problem variables and quality of solutions, NSGA-II was used as the MOEA of choice. 

The MOEA framework in Python that was used was jMetalPy v1.5.5. 

2.2 Project Background 
Inspiration for this research project is rooted in prior building physics research by a multi-disciplinary 
team from Loughborough University’s School of Architecture and Civil Engineering, and the Division 
of Computing Science and Mathematics at the University of Stirling, who developed a novel approach 
to LSGO problem formulation [19] and MOO models/simulations with jMetal’s Java framework [20]. 
Using English Housing Survey (EHS) data; the researchers solved LSGO to find cost-effective combina-
tions of thermal efficiency refurbishment options for local government housing retrofit programmes. 

This project used CI to develop MOEA software to solve LSGO for a public housing stock Use Case, 
that incorporated metaheuristics-based optimisation [6]. This built upon prior research [19], [20] and 
complimentary building stock optimisation research by Wright et.al [21] and Brownlee et.al [3] who 
proposed a novel approach to LSGO that uses combinatorial separability to MOO problems with several 
vast search spaces such as the ones dealt with by this project in the magnitude of 5.00e+31 for just 
one of thousands of NSGA-II runs. The Use Case was public housing stock optimisation in England. 

This project exploited prior LSGO knowledge to introduce combinatorial separability to solve LSGO, with a 
3-tier approach to problem decomposition, i.e.; SHP, GHP and full housing stock (HSP). Both SHP and 
GHP are sub-problems, with HSP as the global-problem. 

Prior knowledge of the problem is exploited to extend the use of separability [3] and CI to develop 
self-adaptive GA [22] in jMetalPy, that learn and adjust by themselves in a manner akin to unsuper-
vised learning in machine learning (ML), to reconfigure control parameters in the MOEA genetic 
hyperparameters (i.e.; population, mutation, crossover, selection and termination). As a result, the MOEA intro-
duces process and computational efficiency by reducing the need to duplicate tasks by solving 
simpler problem before subsequently tackling the more complex problems. As with Brownlee et.al. 
[3], this project used separability to formulate the problem by diving it into the aforementioned SHP 
and GHP, thus dividing the search spaces into still vast but smaller and more manageable pieces. 

Whilst there has been extensive research into MOEA to solve LSGO, the use of combinatorial separability 
to LSGO of large housing stock has not been reported outside the aforementioned Loughborough 
based research group, making this a relatively new area research into LSGO. 

Zille et.al [23] used dimensionality reduction techniques to the search space to simplify computation 
and reduce computational effort for numerical benchmark functions, whilst Cabrera’s [24] large over-
arching study concluded that memetic algorithms dealt best with LSGO after reviewing research 
papers to identify trends in LSGO where vast search space sizes and a variety of decomposition tech-
niques in co-evolutionary algorithms with several decision-variables. Notably, however, none of these 
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efforts in use separability to simplify computation by creating discrete sub-problems as Brownlee 
et.al [3] and this project have done. 

Unlike prior research, this project incorporates explainability in the code and in the results produced, 
to provide the foundation to deduce insights to addresses the research questions posed, e.g.; using a 
dictionary of lists of multiple genetic operator values used to automate the selection of genetic hy-
perparameter configurations, enabling the identification of the best MOEA convergence [25] and in 
turn the GHP solutions that have the highest HV scores. 

This project’s artefacts are adding to the growing LSGO body of research, particularly with regards to 
(a) LSGO problem formulation or decomposition through separability, (b) determining MOEA efficacy 
through QI’s and solution composition, (c) and the use of jMetalPy as a platform for research that is 
dependent on metaheuristics-based MOEA. 

2.3 Housing Improvement Motivations 
Housing improvement motivations for this project were; 

1. To simplify the identification of thermal efficiency refurbishment options for thousands of 
units of aging and thermally inefficient public housing stock, including providing ability to 
maximise prioritisation by identifying trade-off between viable solutions. 

2. To use LSGO to support public housing policy decision making and optimise the utilisation 
public funds for refit, refurbishments or new build designs. 

3. To facilitate effective targeting of public funds to prevailing priorities e.g.; design of future 
buildings to reduce non-renewable energy consumption or to achieving climate and low car-
bon targets e.g.; low emissions, net zero, or investing in renewable energy. 

2.4 Genetic Improvement Motivations 
The genetic improvement motivations for this project were; 

1. To incorporate problem decomposition and separability in MOEA algorithmic design. 

2. To use CI including metaheuristics to optimise search space and improve MOEA efficacy 
through computational resource optimisation. 

3. To study functional and non-functional factors that influence MOEA sensitivity and bias e.g.; 

a. Stochastic search optimisation efficacy. 

b. Trade-off between multiple competing MOEA objectives. 

c. Variability in MOEA utilisation of computational resources. 

4. To use data science techniques for exploratory data analysis in order to identify and address 
anomalies in the data and update the dataset from a building physics model to MOEA ready 
datasets for the separate sub-problems. 

5. To use statistical causal inference to explain the key factors that determine MOEA outcomes. 
For example, to understand how these factors affect the extrema solutions on the PF e.g.; 

a. Minima: the 'lowest energy used' but highest cost. 

b. Knee point: the best trade-off between 'energy used' and 'cost'. 

c. Maxima: the 'highest energy used' but lowest cost. 

6. To use explainability in the inferences that determine of this project’s findings, conclusions 
and subsequent recommendations. 
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3 State-of-The-Art 
This chapter reviews state-of-the-art research into MOEA for LSGO housing stock optimisation. 

3.1 Chronological Background to NSGA-II, MOEA 
Evolutionary Multi-Criteria Optimisation (EMO) first proposed in 1985 by Schaffer, and then MOEA 
was proposed in 1989 by Goldberg, then various revisions followed until 2002, when Deb et.al [1] 
proposed the elitist NSGA-II, as illustrated in Figure 3 below. 

 
Figure 3. Key developments in MOEA history [26] 

The background to NSGA-II illustrated in Figure 3 above, is advanced by this project and the research 
work that inspired it that is outlined in Section 2.2 and Section 2.3 above, through the incorporation 
of separability in the way that NSGA-II work as part of LSGO problem decomposition. 

3.2 Computational Intelligence (CI) 
Rather than solely use conventional linearity based search optimisation, CI draws from AI to addition-
ally use randomness in processes and often on nature inspired approaches to learning, including 
metaheuristics, artificial neural networks and fuzzy systems, in combination with traditional rules-
based computation. This trend has recently gained pace in the desire to solve complex problems that 
require either significant computational effort or more efficient stochastic search optimisation to 
propagate through vast search spaces, as evidenced by Venture Capital interests funding the adoption 
of an new approach by Google’s DeepMind, that ‘reconciles Deep Learning and classical computer science algo-
rithms with Neural Algorithmic Reasoning’ i.e.; combining traditional software engineering with ML and 
deep learning (DL), with the ultimate aim to help increase the uptake of Neural Networks in many 
more commercial Use Cases, as reported by Anadiotis [27]. As in the DeepMind example [27], this 
project combines traditional rules-based computation with nature inspired metaheuristics to solve 
and LSGO problem as espoused by the illustrations in Figure 4 and Figure 5 below. 
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Figure 4. Computation with Search – Grid vs Random 

 
Figure 5. Computation with EA/GA [6] 

The family of algorithms that use metaheuristics are known as EA as categorised by Azad et.al [28] 
from work done by earlier researchers, in Figure 6 below. 

 
Figure 6. Categorisation of Metaheuristic Algorithms [28] 

This project’s research focus is using metaheuristics-based MOEA to develop software to solve LSGO, 
with public housing improvements as the Use Case, as outlined by Azad et.al [28] in Figure 7 below. 
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Figure 7. Flowchart of a Metaheuristics-based MOEA [28] 

The NSGA-II variant of MOEA used by this project is consistent with both the illustration by Azad et.al 
[28] in Figure 7 above, with the recent CI approach used by DeepMind [27]. 

An advantage of MOEA is that there are reduced mathematical coding requirements than tradition 
software engineering would otherwise require [29], which is in turn further advantageous as it simpli-
fies the coding for mathematically complex problems that can be solved efficiently with less 
computational effort to achieve the same level of efficacy as maximum linear computational effort 
would, e.g.; runtime vs search space size. Another advantage/benefit is that unlike traditional soft-
ware engineering, MOEA can achieve parallelism in its implementation without significant 
programming effort. 

A notable disadvantage is MOEA efficacy is typically dependent on local knowledge of the Use Case. 

3.3 Literature Review 
Researchers have studied many EA/GA to solve LSGO problems, including simulated annealing, NSGA-
II, NSGA-III, SMPSO, OMOPSO, MOEA/D, MOEA/D-DRA, εMOEA, GDE3, SPEA2, HYPE, IBEA which are 
implemented in jMetalPy. 

This project only considered MOEA/D and NSGA-II, eventually choosing to only use NSGA-II. 

Problem decomposition has become a central feature of LSGO computational simulation. In their 
LSGO decision variable research, Ma et.al [15] decompose complicated multi-objective problems 
(MOP) into simpler sub-MOP’s as long as each variable is independent and can be optimised sepa-
rately, in a manner that has similarities to Brownlee et.al’s [3] approach to separability for LSGO. Ma 
et.al [15] further describe the objective function f(x) as a separable function, in such circumstances, 
or as a non-separable function where the independence of variables is not possible. 

Brownlee et.al’s [3] novel encoding approach uses two stages; 

• Stage-2: LSGO global-problem (entire housing stock) resulting in 1 LSGO PF. 
• Stage-1: SHP sub-problem (single houses) resulting in 935 SHP PF’s. 

The viable SHP solutions (on PF’s) to the sub-problems at Stage-1 are used to find a solution more ef-
ficiently at Stage-2. Without Stage-1, Stage-2 is intractable. 
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For this project on the other hand, an intermediate stage (GHP) was necessary because of  the addition of  the ‘dhs’ 
intervention option, enforced a constraint that can only be implemented at GHP level. Therefore, a third stage (Stage-
3) would be required to optimise the entire housing stock as illustrated by the steps below; 

• Stage-3: LSGO global-problem, HSP (entire housing stock) not done because it was intractable 
• Stage-2: GHP sub-problem (groups of  houses) resulting in 31 GHP PF’s. 
• Stage-1: SHP sub-problem (single houses) resulting in 935 SHP PF’s. 

SHP solutions (PF’s) to the Stage-1 sub-problems, are used to find GHP solutions more efficiently at 
Stage-2, sequentially for each of the 31 sub-problems at Stage-2. Without Stage-1, Stage-2 is intracta-
ble, and without Stage-2, Stage-3 is intractable. 

Therefore, to solve the LSGO global-problem using Stage-3 (ascribed by this project to Future Work) would 
involve using GHP solutions (GHP PF’s) to find the global-solution more efficiently at Stage-3, and in 
the process solve the LSGO even more efficiently than Brownlee et.al [3], who didn’t benefit from the 
intermediate stage. 

Stage-3 implementation shall involve creating a new jMetalPy constructor super-class (HSP) with sup-
porting abstract sub-classes in jMetalPy, decomposed with a value encoding (IntegerProblem) strategy. 
The 31 GHP PF’s data (from PF Index column in the GHP Results) would be used as inputs to the NSGA-II 
problem parameter, to sequentially run the 31 NSGA-II iterations of the HSP Stage-3 problem to create 
a single resultant PF for the LSGO global-problem (HSP). 

Brownlee et.al [30] argue the prevailing deficiency in explainability for metaheuristics-based EA and 
offer an approach to explain MOEA efficacy by identifying the genetic hyperparameter configuration 
performance. This project offers a similar but different approach that additionally considers the con-
stituents makeup of the non-dominated solutions. Indeed, this project found that the makeup of solutions 
had a greater impact on MOEA efficacy than genetic hyperparameter configurations. 

With the exception of Brownlee et.al’s [3] research, the typical scale of building optimisation prob-
lems has tended to be in the magnitude of hundreds of decision-variables and not in the millions of 
decision-variables that this project has dealt with, as shown in Figure 34 and in Figure 35 in Sub-sec-
tion 7.1.6. In their extensive building energy optimisation research, Waibel et.al [31] indeed found 
fewer examples of combinatorial optimisation problems as Brownlee et.al [3] and this project dealt 
with, further pointing to significantly smaller magnitude of decision-variables in most studies. Waibel 
et.al [31] likewise found the same to be true in buildings form optimisation research. 

Whilst there aren’t any other works in building energy optimisation that go to the scale of Brownlee 
et.al’s [3] novel approach that uses separability, there’s nonetheless a mathematically efficient ap-
proach by Westermann et.al [32] that uses statistical modelling as an alternative to computational 
simulations to solve LSGO housing problems. However, this is not a like-for-like comparison as 
Westermann et.al [32] whose approach does not use computational effort in the same way. 

On another hand, in their investigation into the performance of black-box optimisers, Waibel et.al 
[31] identify the need to tune the parameters for black-box optimisers to elicit faster convergence 
which is a comparable approach to the genetic hyperparameter tuning of 64 configurations done by 
this project. Black box optimisers is a general term that means metaheuristics-driven optimisers. 

This project used NSGA-II in jMetalPy whereas Brownlee et.al’s [3] much larger study used jMetal’s 
Java framework, and various encodings for multiple MOEA including MOEA/D, SPO and NSGA-II. 
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4 LSGO Problem Decomposition 
In this chapter, the functional considerations in MOEA algorithm complexity are addressed. 

As introduced in Section 1.1, Section 2.1 and Section 2.3, LSGO is the branch of optimisation that 
deals with computationally complex vast problem search spaces from which to make a vast number 
of decisions, in the thousands or even millions. LSGO is an appropriate solution for the public housing 
thermal optimisation Use Case that was introduced in Section 1.1, because it is capable of automated 
multi-variable decision making as is required by the Use Case. 

According to Zhang et.al [29], decomposition was largely omitted from MOEA until the advent of 
MOEA based on decomposition (MOEA/D) that he first proposed in 2007. As observed by Li [33] 
whose analysis infers LSGO as a motivation for the adoption of scalar optimisation techniques to ad-
dress sub-problems rather than try to solve often intractable LSGO problems. 

The advent of MOEA/D parallels improvements in explainability which is crucial to assessments of (a) 
integrity in MOEA decomposition and construction; and (b) integrity in MOEA outcomes, i.e.; the non-
dominated solutions. But why is explainability typically not done to the satisfaction of LSGO end-users 
whose understanding of MOEA is often limited by the inherent black-box characteristics [30] in me-
taheuristics? Li [33] argues that it could be because decomposition was not well studied MOO until 
the advent of MOEA based on decomposition (MOEA/D) in 2007. 

This project seeks to address explainability through LSGO problem decomposition. 

4.1 Problem Outline 
As described in Section 5.2, the initial dataset dimensions for this project’s LSGO problem comprised 
27,150 rows and 37 columns, for 935 single houses in 30 separate groups of houses. Of the 37 col-
umns, the 10 intervention options and their 10 corresponding cost columns were target variables for 
the MOEA objectives, for multi-variable decision making for any format of LSGO problem decomposi-
tion. Each single house was represented by a variable number of rows, each representing a unique 
configuration i.e.; different combination of thermal intervention options applied to that house. 

After data cleansing the data dimensions of the modified dataset increased to 54,300 rows and 38 
columns, for 935 single houses in 30 separate groups of houses. Of the 38 columns in the modified 
dataset, the 11 intervention options and their 11 corresponding cost columns were target variables 
for the MOEA objectives, for multi-variable decision making for any format of LSGO problem decom-
position. As with the original dataset, each house in the modified dataset was represented by a 
variable number of rows each representing a unique configuration for that house. 

This dataset creates a computational challenge due the vast search spaces created and the resultant 
vast number of decision-variables, in the thousands, as described in Sub-section 4.1.1 and Sub-sec-
tion 4.1.2 below. 

4.1.1 Naïve Approach to Search Space Optimisation 
Given that the typical search space for LSGO problems that Kulkarni et.al [34] describe as ‘often algorith-
mically solvable but computationally intractable’, this project used the novel approach to search space 
optimisation proposed by Brownlee et.al [3]. 

Following the orthodox exhaustive search approach, this project’s LSGO global-problem selects an 
optimal combination of configurations for each house in a group of houses. A solution to the group 
problem is a combination of chosen configurations for each house in a particular group of houses. In 
this ‘naïve approach’ [3], all possible LSGO solutions are considered, i.e.; all possible combinations of 
configurations for each house, thereby, making the search space the number of possible solutions, 
which is also the number of possible solution combinations. This is calculated by multiplying together 
the number of possible configurations for each house in the group i.e.; their product. 
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For this project, using the naïve approach, the LSGO problem search space size using the exemplar 
formula in Figure 8 below was; 9.99e+53 = 9.99 * 10^53, compared to Brownlee et.al’s novel approach 
where the search space size for the LSGO problem was the much smaller; 5.43e+04 = 5.43 * 10^4. 

The naïve approach yields an extremely large search space size that renders GHP an intractable prob-
lem that cannot be solved within a reasonable (a) amount of time and (a) cost, due to the required 
computational effort, compared to Brownlee et.al’s [3] novel approach which makes it solvable. 

 
Figure 8. Orthodox exhaustive LSGO Search Space calculation using the ‘naïve approach’ [3] 

In Figure 8 above, bits represent the intervention options applied in a particular solution. 

4.1.2 Novel Approach to Search Space Optimisation 
It was necessary to use an alternate approach to search space optimisation, given the intractability of 
the naïve approach described in Sub-section 4.1.1. To this end, Brownlee et.al’s [3] metaheuristics 
friendly novel approach to breakdown the global LSGO problem into two sub-problems was adopted, 
as it directly addressed the project goals set out in Section 1.2 and Section 1.3. 

As used by Brownlee et.al [3], the LSGO problem was broken down in two-stages; 

1. Stage-1 – SHP sub-problem. 

2. Stage-2 – GHP sub-problem. 

In a clear distinction from the naïve approach, the search space size using Brownlee et.al’s novel ap-
proach [3], is the sum of each of the search space sizes of the individual sub-problems, rather than 
their product, as applied by the exhaustive naïve approach. 

4.1.2.1 Stage-1 – SHP Decomposition 
In Stage-1, SHP sub-problem optimises individual sub-problems sequentially in a manner reminiscent 
of the Sequential Pareto Optimisation (SPO), i.e.; by solving each single SHP sub-problem separately. 
Each SHP sub-problem is solved with an SHP PF for that particular house. The search space size of the 
SHP sub-problem is the sum of each of the individual search spaces of the separate SHP sub-prob-
lems. In other words, the SHP search space size is the sum of the number of separate non-dominated house 
configurations/solutions that appear on the SHP PF, and specifically excludes dominated configurations/solutions, 
as illustrated by Brownlee et.al [3] in Figure 9 below. 

 
Figure 9. Stage-1 – SHP Search Space Size using ‘Novel Approach’ by Brownlee et.al [3] 

In Figure 9 above, bits represent the intervention options applied in a particular SHP solution. 
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4.1.2.2 Stage-2 – GHP Decomposition 
In Stage-2, GHP sub-problem builds upon SHP sub-problem results to optimise individual sub-prob-
lems sequentially, i.e.; by solving each single GHP sub-problem separately. Each GHP sub-problem is 
solved with a GHP PF for that particular group of houses. The search space size of the LSGO GHP sub-
problem is the sum of each of the individual search spaces of the separate GHP sub-problems. In 
other words, the GHP search space size is the sum of the number of separate non-dominated group of  houses 
configurations that appear on the GHP PF, specifically excluding dominated configurations/solutions, as illus-
trated by Brownlee et.al [3] in Figure 10 below. 

 
Figure 10. Stage-2 – GHP Search Space Size using ‘Novel Approach’ by Brownlee et.al [3] 

In Figure 10 above, bits represent the intervention options applied in a particular GHP solution. 

4.2 Applying Separability to LSGO 
It is widely acknowledged that monolithic optimisation algorithms are deficient for LSGO, and Li [35] 
argued that divide and conquer algorithmic strategies that decompose problems into smaller more man-
ageable pieces as the co-operative co-evolutionary (CC) first proposed by Potter and De Jong [36], or 
more recently implemented by Brownlee et.al [3] and also implemented by this project, are more 
suitable for LSGO. Li [35] further described decomposition as; ‘where a problem is decomposed into several sub-
components of  smaller sizes, and then each subcomponent is "cooperatively coevolved" with other subcomponents’ i.e.; multi-
stage processing that solve different problems of a much larger problems in a co-operative manner. 

Simply, separability is implemented by breaking down LSGO into smaller sub-problems and solving 
them separately to the overall benefit of solving the overarching LSGO. This perhaps inadvertently, 
additionally introduces simplicity and better maintainability of software. 

This project setup SHP as a Binary Encoding Problem because the non-dominated solutions have a set of 
elements that can either be applied or not, hence are Truth values aligned to Binary Encoding, whilst 
GHP was setup as a Value (Integer) Encoding Problem because the non-dominated solutions are a set of 
embedded sets of SHP solutions and could therefore not be setup as a Binary Encoding Problem. 

For both encoding strategies, the non-dominated solution’s viability quality score is a unique integer 
starting from 1 for the best solution; and changing in increments of 1 for the next best solution and 
so on. The PF solutions scores are stored in the Group PF Index column against the corresponding solu-
tion configuration row; and are ranked according to their proximity to a MOEA objective function, i.e.; 
either to energy consumption or to the cost of thermal efficiency interventions. 

4.3 LSGO Problem Configuration 
The LSGO problem was configured for SHP and GHP in NSGA-II in a manner consistent with the me-
taheuristics principles that were described in Section 5.3 and Section 5.4. 

This project chose to use the jMetalPy framework [37] for this research. To determine an appropriate 
high-level outline for this LSGO problem decomposition, this project used a combination of; (a) local 
knowledge, (b) a data model produced from prior research by Brownlee et.al [3], (c) ideas from the 
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Benitez-Hidalgo et.al’s introductory paper on jMetalPy [38] and (d) some further guidance from the 
jMetalPy framework documentation on GitHub [37] and online [39] . 

The separability approach similar to Brownlee et.al [3] was used to divide the LSGO problem into two 
sub-problems, each using a different encoding strategy, as follows; 

• SHP, using the Binary Encoding strategy. 
• GHP, using the Values (Integer) Encoding strategy. 

For each of the two sub-problems, the configuration then took the following repeatable steps using 
the JMetalPy source code and Application Programming Interface (API) as integrated templates for 
MOEA software being developed in jMetalPy; 

1. Create a new constructor super-class i.e.; BinaryProblem for SHP or IntegerProblem for GHP. 

a. Modify/Add abstract sub-classes, as required. 

b. Modify/Add abstract functions, required. 

2. Test the new SHP and GHP constructor super-class with a limited dataset. 

3. Add code to iteratively; 

a. Calculate runtime for each discrete NSGA-II function call. 

b. Identify the beginning and start positions of new houses in the data. 

c. Pick dictionary values to use to evaluate new populations. 

d. Create a dictionary of genetic hyperparameter values to be used by NSGA-II. 

e. Create new data structures to hold the results data from NSGA-II function calls. 

f. Create new data structures to hold QI jobs for subsequent QI experiments. 

g. Write PF results, and other housing stock metadata to CSV. 

h. Visualise PF results and save visual results to PNG. 

The additional code for data exploration and for post optimisation results analysis are described and 
discussed in Section 6.2 and Section 6.3. 

4.3.1 NSGA-II Sub-Problem Configuration 
In a manner consistent with Figure 5 and Figure 7, and as shown in Figure 11 below, NSGA-II algo-
rithm function calls were setup for both SHP and GHP using the following steps; 

1. In the sub-problems super-class initialisation abstract class __init__, set up the following; 

• Formula for sub-problem decomposition. 
• Formula to create initial solution, with random non-zero values. 
• Number of objective functions. 
• Directions for the objective functions e.g.; maximise or minimise, as required. 
• Labels for the objective functions e.g.; Energy Used or Costs, as required. 
• Formula for number of units in the sub-problem decomposition. 
• Formula for number of variables in the sub-problem decomposition. 
• Number of constraints in the sub-problem decomposition. 
• Formula for lower bound in the sub-problem decomposition. 
• Formula for upper bound in the sub-problem decomposition. 

2. In the sub-problems super-class evaluation abstract class evaluate, set up the following; 
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• Formula for the solutions to include in the sub-problems decomposition. 
• Formula to enforce constraints in the sub-problems decomposition. Bias can be enforced via 

constraints e.g.; lowering renewable energy costs to prioritise renewable thermal efficiency intervention options. 

3. Create additional bespoke abstract classes in the sub-problems super-class as required. 

4. In NSGA-II function call, set the population size and offspring population size as the same variable 
population. They must match, hence using a single variable for both. A generation is double the 
population value i.e.; if 100, then 1 generation is 200. 

5. In NSGA-II function call, set the mutation operator as; BitFlipMutation for SHP, and IntegerPolyno-
mialMutation for GHP, followed by the mutation probability value, using the variable 
mutation_hyperparam. 

6. In NSGA-II function call, set the crossover operator as; SPXCrossover for SHP and IntegerSBX-
Crossover for GHP, followed by the crossover probability value, using the variable crossover_proba. 

7. In NSGA-II function call, set the termination criteria as; StoppingByEvaluations, and the set the 
termination criteria value the constant variable max_evals. 

8. The unspecified selection genetic operator is automatically set to the default value BinaryTourna-
mentSelection(comparator=RankingAndCrowdingDistanceComparator(). 

For illustrative purposes, Figure 11 below shows setup of the NSGA-II function call for GHP. 

 
Figure 11. Code snippet of NSGA-II Algorithm Function Call in jMetalPy 

 

All the variables used in the NSGA-II function call, are picked iteratively from the dictionary of genetic 
hyperparameter values. 
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5 Methodology 
The choice of methodologies was driven by this project’s goals and research approach set out in Sec-
tion 1.2, Section 1.4 and Chapter 2. 

5.1 Project Methodology 
Taking cognisance of the introductory considerations set out in Chapter 1 and, of the situational and 
contextual considerations set out in Chapter 2, a bespoke project methodology was adopted, which 
was applied iteratively, as outlined in Figure 12 below. 

 
Figure 12. Outline of Bespoke Project Methodology 

5.1.1 Tooling – Software 
Jupyter Notebooks were used for their capability to simultaneously (a) support testing whilst devel-
oping, (b) facilitate the creation and integration of Python code with equations, computational 
output and visualisations, interlaced with explanatory text within a single in a single document [40], 
which can be shared with interested parties e.g.; other researchers. Jupyter Notebooks were run on 
the Anaconda platform because it is the recommended distribution [40] for both Python and Jupyter 
Notebooks and is easy to maintain. 

Google Colab Pro was chosen for online demonstrations for its on-demand capability. However, due 
to limitations in tenanted computational capability , including for Google Colab Pro+ (whose runtime 
performance threshold is limited to 11 hours), its use was restricted to being a repository to share 
project artefacts and outputs with the academic supervisors. 

The following Python libraries, toolkits and frameworks were used; 

• OS – To perform operating system tasks. 
• Sys – To interact directly with command line arguments. 
• Time – To represent and use time functions. 
• Pandas – To use dataframes for variable data structures, data manipulation and analysis. 
• NumPy – To use arrays for variable data structures, data manipulation and analysis. 
• Intertools – To use the mathematical function, product. 
• Matplotlib – To plot graphs and support data visualisation for feedback simplification. 
• jMetalPy – To develop metaheuristics-based MOEA software for LSGO. 

This project additionally used the following supplementary software; 

1. MS Excel – To perform exploratory data analysis and data visualisation. 

2. MS Word and Adobe Acrobat – To document the dissertation write-up. 
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5.1.2 Tooling – Hardware 
An Apple iMac running MacOS Big Sur 11.6 O/S with the following specifications was used; 

• Single 8-core, Intel i9 processor, running at 3.6GHz (Turbo Boost to 5.0GHz). 
• Radeon Pro 575X 4GB GPU. 
• 32GB (2x16GB) 2666MHz DDR4 memory. 

5.2 Initial Data Exploration and Data Preparation 
The initial data dimensions was 27,150 rows and 37 columns, for 935 single houses in 30 separate 
groups of houses. Of the 37 columns, 10 were target variables for the MOEA objectives, for multi-var-
iable decision making for both SHP and GHP. The dataset had a variable number of rows per single 
house, with each separate row representing a unique configuration i.e.; different combination of in-
tervention options applied to that house. 

It was not possible to ascertain that the data was correctly presented by hand, thereby necessitating 
the use of data science techniques to check the validity of the dataset and correct any anomalous 
data prior to execution of the metaheuristics-based MOEA. 

The largely superficial anomalies corrected or improved included; 

1. New ‘dhs’ intervention option and its corresponding ‘cost_dhs’ column added. 

2. Duplicating each of the 27,150 configurations, so that the new ‘dhs’ column could present ‘dhs’ 
intervention as True in one configuration and False in the additional duplicate configuration. 

3. Changed £ sign to GBP because Python treated the £ sign as an operator rather than as text. 

4. Changed column names of the decision-variables for consistency in naming convention; i.e.; 
change (a) ‘biomass heat’ column to ‘biom’ and (b) ‘Cost_biomass’ column to ‘Cost_biom’. 

Post-data cleansing dimensions of the modified data was; 54,300 rows and 38 columns, for 935 single 
houses in 30 separate groups of houses. Of these 38 columns, 11 were target features for the MOEA 
objectives supporting multi-variable decision making for both SHP and GHP. 

This modified dataset retained the convention of having a unique house configuration per row, each 
representing a unique combination of intervention options applied to that house. 

5.3 Metaheuristics-based Optimisation 
The grouping of algorithms that use randomness to find optimal solutions for ‘hard problems’ is 
known as stochastic optimisation. In turn, metaheuristics is the primary sub-field in stochastic optimisation 
[41]. Metaheuristics are sometimes referred to as ‘black box optimisation’ because they generally find 
solutions with little help from the initiator of the problem simulation. 

The LSGO global-problem housing improvements Use Case involves multiple decision-variables, thus 
creating vast search spaces, which is challenging for many EA’s. Therefore, for MOEA software to be 
developed to satisfactorily make millions of multi-variable decisions, the chosen MOEA would have to 
satisfy all three characteristics of metaheuristic characteristics [10], [11] i.e.; 

1. Population-Based – Able to generate better new solutions from current deficient solutions. 

2. Fitness-Oriented – Able to rank quality of solutions by a fitness value. 

3. Variation-Driven – Able to vary composition of solutions, to generate better new solutions. 

NSGA-II satisfied these characteristics, was chosen and configured in jMetalPy to address the pro-
ject’s goals specified in Section 1.2 and the research questions specified in Section 1.3. 
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5.3.1 Metaheuristics Principles 
Unlike traditional rules-based computation, metaheuristics takes inspiration from nature [6] and the 
biological principles of evolution by natural selection [42] to solve optimisation problems using EA, as 
asserted by Zolpakar et.al [43]. Manoharan [44] found that EA that additionally use population-based 
‘feed forward’ metaheuristics to hasten convergence to obtain more accurate solutions. Hao et.al [45] 
found that MOEA solve discrete or continuous optimisation problems such as the knapsack problem, 
using the reference point (RP) as the utopian point. 

MOEA use partial search techniques to reduce computational effort but yield good approximations of 
the results by dynamic application of metaheuristics principles and stochastic methods [46] and as 
Zhao et.al [25] argued, minimise the potential for getting stuck in local minima or local maxima. 

Chromosomes are solutions [47] and the genes in chromosomes are elements in a solution [47] that are en-
coded in a specific way, using specific patterns aligned to types of  solutions e.g.; binary encoding, value 
(integer) encoding, permutation encoding or tree encoding. Each gene can mutate i.e.; to randomly se-
lect chromosomes from which to create new offspring i.e.; children who make up the next generation of 
chromosomes, purposely to diversify the population. Each gene can crossover i.e.; some parts of 
chromosomes [47] and converge into new chromosomes. Each gene has a locus i.e.; position in chro-
mosome; that can alter its non-dominance status. 

Drezner & Drezner [4] refer to crossover effects as recombination, as do Wu et.al [48] who described 
the effects of mutation and crossover as genetic shuffling, with frog leaping effect on gene pools. 

The MOEA software developed by this project incorporated all concepts outlined in Sub-section 5.3.1. 

5.3.2 Encoding/Decoding 
To apply MOEA to optimisation problems, an encoding method is required to provide the framework 
or template for solutions to be organised and computationally processed consistently. Malik [49] out-
lined these encoding methods as follows; 

1. Binary Encoding is commonly used due of its simplicity. Each chromosome is a string of True 
or False values i.e.; either 0 or 1. SHP used binary to show whether any one of the 11 target 
variables was included in an SHP solution. 

2. Value Encoding (or Integer Encoding) uses real numbers to describe transition state of each gene 
in a chromosome. Each chromosome is a sequence of values, usually real numbers (integers) or 
objects. GHP used integer values to show state transition status of one of  four types of  decisions 
associated with any of the 11 target variables in GHP solutions. 

3. Permutation Encoding is used for ordering problems that have a meaningful sequence e.g.; 
the travelling salesman problem (TSP), in which each chromosome is a number string repre-
senting a specific position in a sequence. 

4. Tree Encoding is used for evolving programs, in which every chromosome is a tree of objects 
e.g.; commands or functions. It is similar to decision trees in ML. 

5.3.3 Steps for Implementation of Metaheuristics Principles in EA 
Figure 5 and Figure 7 show the four key steps [6] of EA metaheuristics, and by extension, MOEA; 

1. Initialisation – Creation of an initial population of solutions to evaluate. 

2. Selection – Picking the fitness function to evaluate solutions. 

3. Genetic Operators – Metaheuristics techniques that strengthen the gene pool i.e.; resultant 
solutions and subsequent future solutions. 

4. Termination – Criteria to stop execution of the EA. 
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5.3.4 Genetic Operators 
As described in Sub-section 5.3.1 and in Sub-section 5.3.3, MOEA use genetic operators to create and 
maintain genetic diversity in the same way as happens in nature, outlined as follows; 

5.3.4.1 Replication / Replication Probabilities 
Replication starts with randomised selection of the first chromosomes to evaluate within a pre-de-
fined encoding strategy, as espoused by Malik [49]. The chromosomes become parents of the 
population. For SHP, binary encoding was used, and parents were chosen using randomness inspired 
by Zhao et.al [25] and Stanhope et.al [50] as detailed in Section 5.4. For  GHP, value (integer) encoding 
was used, with the parents likewise chosen with similar randomness. 

Replication reconfigures chromosomes by manipulating parents genes via a combination of crossover 
and mutation. This creates stronger offspring with better growth rate than the parents i.e.; solutions 
with better QI’s. This is achieved by limiting replication to the best solutions to create stronger off-
spring, by excluding weaker offspring from new generations [6]. The full set of solutions is a genome, 
and in the context of this project, genome are the full set of SHP or GHP solutions. 

The replication process reflects the anatomy of GA’s like MOEA as outlined by Gad [12] in Figure 13. 

 
Figure 13. Genetic Algorithm Steps – Process of Population/Chromosome Replication [12] 

Evolution occurs after all the steps in the replication process above have been performed [41]. 

5.3.4.2 Populations 
Population is the full set of chromosomes that make up a chromosome [47]. Larger populations have 
more potential for diversity [51] in future populations. To leverage this, this project incrementally 
doubled the values for ‘population’ and ‘offspring population’ in the genetic hyperparameters dictionary for 
NSGA-II from the starting value of 50 up to 800. 

 
Figure 14. Population with Chromosome and Genes [12] 

5.3.4.3 Mutation 
Mutation is the process of randomly changing of parts of a solution to increase diversity of a popula-
tion [47], usually done with uniform mutation probability (rate), which sets likelihood that a gene 
(element) in the chromosomes (solutions) shall be randomly flipped with a gene from a different solution, 
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e.g.; if a chromosome is encoded as a binary string of length 100 if you have 1% mutation probability, 
then on average, 1 of 100 bits shall be randomly swapped [52]. 

 
Figure 15. Mutation by Randomly updating some Genes [12] 

The example above is bit-flip mutation and is just one of a number of different types of mutation. 

5.3.4.4 Crossover 
Crossover is the process of randomly swapping of part of solutions to introduce mixing within solutions 
in a particular subspace [47], using a uniform probability (rate), which sets likelihood that a gene (ele-
ments) in the chromosomes (solutions) shall be randomly swapped with a gene from a different solution, 
e.g.; if a chromosome is encoded as a binary string of length 100 if you have 90% crossover probabil-
ity, then on average, 90 of 100 bits shall be randomly swapped [52]. This exemplar for illustrative 
purposes only, represents just one of a number of different types of crossover, that is commonly re-
ferred to as uniform crossover. There are other types of crossover e.g.; 1-point crossover and 2-point crossover. 

Luke [41] noted that randomness in its selection criteria gives crossover in GA’s the ability to simulate 
genetic reconfiguration as in nature. Crossover can be applied in many ways [52], typically, either mod-
erately to minimise asymmetric replication; or maximised to create asymmetric replication. 

Crossover is typically set to high probability, in the (0.8..0.95) range, whereas the opposite is true for 
mutation which flips some digits of an encoded string to generate new solutions, and is typically set 
to low probability, in the (0.001 to 0.05) range [47]. 

 
Figure 16. Crossover and Mutation [12] 

Crossover and mutation are simply the genetic techniques that MOEA’s use to make new solutions. 

5.3.4.5 Selection 
Selection is the process of using the fitness function f(x) to pick and evaluate solutions [4], [6]. The 
elitist selection of the fittest criteria ensures that only the best solutions are propagated [47], by se-
lecting the best solutions. Crossover then combines the solutions e.g.; for this project, a thermal 
insulation intervention option from Parent-1, and a thermal glazing intervention from Parent-2. Mutation then 
makes a small change to the modified solution e.g.; to upgrade or downgrade the thermal insulation interven-
tion option. In this example, 2 solutions are picked at random, and the best of them is selected. This is 
one of a number of different selection methods, that is referred to as tournament selection, currently the 
only selection method implemented in jMetalPy for NSGA-II. 

Selection determines how MOEAs focus on exploitation i.e.; replicating known good solutions rather than 
exploring completely new unknown solutions. As with many hyperparameters, it's not clear ahead of 
time what their best setting is, hence experimentation to find out. 

5.3.4.6 Termination 
Maghawry et.al [53] describe termination as the set of defined conditions which when met, the EA 
stops running [6] and evaluation of new generations of chromosomes stops. jMetalPy uses its ‘max-
evaluations’ parameter as the termination variable. It represents the maximum number of generations 
to evaluate and was deployed as a constant for all NSGA-II runs. 
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Whilst possible, no performance threshold conditions e.g.; maximum runtime set for termination. 

5.3.5 NSGA-II Parameters 
NSGA-II also uses non-genetic operator parameters as computational parameters for traditional soft-
ware engineering purposes, that are described here in Sub-section 5.3.5. They set the operational 
parameters for automated NSGA-II function calls, and in so doing, enable MOEA software to operate 
LSGO simulations unmanned for long periods of time, uninterrupted. 

5.3.5.1 Generations (Maximum Evaluations) 
As described in Sub-section 5.3.4, jMetalPy’s NSGA-II implementation uses ‘max evaluations’ variable as 
the NSGA-II parameter to enforce the termination genetic operator. It is a constant that sets the upper 
threshold for generations to execute per NSGA-II function call, before picking the best solution. 

Given this project’s goal of finding factors that contribute to MOEA efficacy, this NSGA-II parameter 
was treated as a constant for all NSGA-II runs, so as to maintain consistent operating conditions 
across all NSGA-II runs, and thus helped assess genetic hyperparameters performance and impact. 

5.3.5.2 Constraints 
The constraints NSGA-II parameters set the boundaries in which the NSGA-II algorithm operates. 
Whist there can be many types of constraints, two are typically such parameters, namely (a) Lower 
Bound and (b) Upper Bound. 

The lower bound sets the lowest values for the choice of encoding must use for the fitness function f(x), 
and conversely, the upper bound sets the highest value that can be used. These values are used to calcu-
late the largest (i.e.; maximum possible) search space size. 

5.4 NSGA-II Computation with Genetic Hyperparameters 
Unlike conventional ML based hyperparameters that follow the conventional linear or random pat-
terns as illustrated by Stalfort [54], metaheuristics [42] take inspiration from natural evolution [6] to 
find good solutions and to subsequently propagate even better solutions in future generations. Addi-
tionally, metaheuristics are themselves algorithms with hyperparameters to control their behaviour. 

Given the limited research to benchmark on separability in LSGO, initial genetic hyperparameter val-
ues used were initially benchmarked from jMetalPy examples in the GitHub repository and online 
documentation. Genetic hyperparameter values were added using genetic hyperparametric rule of 
thumb principles by researchers [54], [51], [50] [10] and [11] that presented the consistent view that; 

1. Expect performance variations with identical genetic hyperparameter combinations operat-
ing with different encoding techniques e.g.; use smaller mutation/crossover probabilities for 
binary encoding. 

2. The smaller the population, the quicker the convergence, with a potential downside of being 
trapped in local minima. And conversely, the higher the population, the slower the conver-
gence, with the potential downside of being stuck in local maxima. 

As a result, some form of sensitivity analysis would be required, with genetic hyperparameters tuning 
implemented guided by the genetic hyperparametric inter-relationships principles presented by 
Wang et.al [51], and from which a dictionary of possible values was created for this purpose. 

NSGA-II MOEAs were tuned by running all variations of the maximum possible number of genetic hy-
perparameters configurations, as espoused in prior research initially by [50] and later by Eiben et.al. 
[10] and [11], enabling analysis of the performance of various NSGA-II configurations. 
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5.4.1 Genetic Hyperparameter Values Selection Strategy 
The selection of optimum genetic hyperparameter values was influenced by Stanhope & Daida [50]. 
For computational resource optimisation purposes, a maximum of 4 genetic hyperparameter values 
per genetic operator parameter was the limit chosen for inclusion in a Python dictionary structure. 

Selection of genetic hyperparameter values was based on targeted guidance inspired by Zhao et.al 
[25], necessitating the need minimise testing turnaround time. As a result, an initial populations size 
(including offspring populations) of 50 was chosen. Taking guidance from the findings from Wang 
et.al’s [51] research, subsequent values for population size would be doubled for up to 3 additional 
values, to a limit of 4 values per genetic hyperparameter. Due to the aforementioned limitations in 
computational power, this was therefore limited to 64 configurations of (a) proportionately spaced 
values specified in a dictionary, including with the (0.001, 0.05) range for Crossover and (0.8, 0.95) 
range for Mutation. 

The same principle was applied to the NSGA-II parameters specified in Section 5.3.5. 

5.5 Performance Metrics and Measurement 
In the Sub-sections below, the combination of non-functional and functional performance measures 
used to assess search space optimisation, NSGA-II efficacy and performance thresholds e.g.; maxi-
mum evaluations or runtime boundaries, are outlined. 

5.5.1 Fitness Scores 
Fitness functions f(x) also referred to as evaluation functions, iteratively take solutions being evalu-
ated as inputs, as outlined in multiple stages of optimisation in Figure 13; to produce fitness scores as 
output, that show good that solution is [55], relative to MOEA objectives. Fitness functions evaluate 
the proximity of a solution to the optimum solution [56]. For optimisation problems, it is usually the 
sum of calculated x-axis and y-axis parameters relative to the problem domain, which should provide 
predictable results i.e.; the best solutions should have the best fitness scores [56] and vice-versa. 

For this project, fitness functions f(x) assessed the quality of solutions against objective functions, 
i.e.; cost of thermal efficiency interventions vs reductions in energy consumption. In addition, they 
assessed MOEA efficacy. The fitness score outputs were stored in the respective ‘PF Index’ columns 
for both SHP and GHP, and HV fitness scores were stored in ‘IndicatorValue’ and ‘HV Ranking’ columns. 

Gad [12], found that higher fitness scores reflected higher quality solution, and the converse are cost 
function scores, also referred to as loss function scores. jMetalPy’s QI experiments typically use an 
indicator function, with normalised scores in the (0, 10) range, and which is why normalisation is sup-
posedly required for credible QI results, when non-normalised scores can also be obtained. 

This project used an incremental ranking series as an index of solution quality, stored in a ‘PF Index’ 
column of results data, which was used to store fitness score rankings of solutions, relative to their 
objective functions i.e.; by Cost vs Energy. A similar approach was used for MOEA efficacy, with 
ranked PF quality fitness scores stored in an ‘HV Ranking’ column for the QI experimentation results. 

All of this was in accordance with the goals set out in Section 1.2, Section 4.3 and Section 7.1. 

5.5.2 Search Space Metrics and Measurement 
Brownlee et.al’s [3] search space decomposition that was used by this project is conceptualised in 
Sub-section 4.1.2. Search space is traditionally the product of all possible solutions. MOEA efficacy 
can be measured in terms of the search space size vs a non-functional performance measure e.g.; 
runtime or HV, or computational resources utilisation vs search space size. 



- 32 - 

In linearity, the larger the search space, the more computational effort is required to solve problems, 
however, with metaheuristics, there is significant potential for this to be significantly reduced due to 
its inherent self-learning properties. 

For this project, search space size was calculated as product of all the upper bound limits for each 
GHP solutions constituent elements i.e.; one of 31 groups of houses a group of houses, calculated as 
shown in the code snippet in Figure 17 below. 

 
Figure 17. Stage-2 (GHP) Search Space Size Calculation Code Snippet 

Search space size values were shown in output cells in scientific notation alongside runtime. Both 
were then added to the GHP Results CSV output file, and also plotted in visualisations, a sample of 
which can be seen in Sub-section 7.2.8. 

Scientific notation was used because of the very large numbers involved, take for example; 

• 1.094e+02 = 1.094*10^2 = 1.094*100 = 109.4 
• Therefore, 5.00e+31 = 5.00*10^31 = A very big and long number ending with 31 zero’s. 

5.5.3 Runtime Metrics and Measurement 
MOEA efficacy can be measured in terms of runtime vs search space size for each individual NSGA-II 
function call. It can be a useful measure of computational resources utilisation, especially if done in a 
clean room environment using a fit for purpose tool e.g.; Intel’s pyRAPL that can measure; 

• CPU utilisation 
• DRAM utilisation 
• Runtime. 

For this project, runtime is an inverse relationship between search space size, algorithm complexity 
and computational power. It was calculated for each individual NSGA-II function call for the defined 
sub-problems i.e.; SHP or GHP, and was implemented as shown in code snippet in Figure 18 below. 

 
Figure 18. NSGA-II (GHP) Runtime Calculation Code Snippet 

Runtime results are displayed in output cells besides search space size, and both are added to the 
GHP Results CSV. A sample of visualisations are created can be seen in Sub-section 7.2.8. 

It is arguable that that runtime calculations are unlikely to be accurate because the computer was not 
used exclusively for NSGA-II function calls. So, runtime calculations used the time.process_time() Python 
method which measures processor utilisation, a more accurate measure. A recommendation for fu-
ture work was also added to revisit this using pyRAPL. 
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5.6 Quality Indicators Metrics and Measurement (jMetalPy) 
Quality indicators (QI) are statistical measures that were used for statistical significance testing. QI are 
similar to scoring metrics in ML. QI can be used for EA efficacy comparisons and were used by this 
project to assess NSGA-II efficacy, proving that this can be done within jMetalPy, to assess efficacy of 
discrete genetic hyperparameter configurations. 

jMetalPy has multiple QI, including; Hypervolume (HV) aka Lebesgue measure or S-metric [57], Gen-
erational Distance (GD) and Epsilon Indicators (EI). However, only used HV for GHP, because GD and EI 
are only used in NSGA-II for synthetic benchmarks, whereas this project deals with a real-world LSGO. 

Notwithstanding, the use of additional QI not used by this project has been ascribed to Future Work. 

5.6.1 Hypervolume 
Russo et.al [58] and Cao et.al [59] describe HV as the area (or volume) between solutions on the PF and 
the RP. It is normally the maximum known value for each MOEA objective i.e.; the global maxima. The 
converse of the RP is the Nadir Point, which is the global minima [60]. HV is also a polytope between the 
MOEAs PF and the Nadir Point [60]. These points are used to measure PF optimality [38] and EA effi-
cacy, by determining proportion of search space that the PF weakly dominates [60], to obtain HV score. 

 
Figure 19. HV Quality Indicator Illustration [61] 

For this project, the RP was the maximum possible value for the MOEA objective functions i.e.; 
max_energy and max_cost. HV values are normally normalised in the (0.0, 1.0) range, and the larger the 
HV value, the better the algorithm. Therefore, the closer GHP PF’s are to the GHP PF’s x and y axes, 
the better the MOEA (distinguished by its genetic hyperparameter configuration) that created the PF. That is the 
desired outcome. For MOEAs, the performance goal is always to maximize the HV [60]. When normal-
ised, the closer the HV is to 1.0 the better the that created the PF. 

Whilst there are a number of HV measures in the literature, it was not possible to find out the specific 
HV measure used by jMetalPy. Such more granular measures include; (a) Gradient of Hypervolume, 
(b) Hypervolume contribution, (c) S-metric-based Expected Improvement (SExI) and (d) Online Con-
vergence Detection (OCD-Classic and OCD-HV). jMetalPy’s HV calculation is black box, however, well 
known approaches includes While et.al’s [62] algorithm described in the Abstract of their paper as 
shown in Figure 20 below. 

 
Figure 20. Algorithm to Calculate HV [62] 
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HV results were obtained by running jMetalPy’s QI’s experiment, and the HV results were saved to 
the ‘Quality Indicators Results’ CSV output file, and were plotted in GHP PF visualisations with HV added 
as a shaded area above the curve, samples of which can be seen in Sub-section 7.1.10. 

5.6.2 Experimentation Methodology 
jMetalPy has in-built functionality to perform QI’s experiments, done using the following steps: 

1. What shall be compared? For this project it was NSGA-II configurations. to be compared and 
the benchmark problems to be used. 

2. What statistical tests shall be conducted? Apply HV QI’s statistical significance tests to each 
separate GHP PF. 

3. What shall be collated/stored? Collate and store the PF’s from each NSGA-II run per GHP 
evaluated, with each PF a separate job for the experiment. Also store the HV results. 

4. What shall the results be presented? Calculate MOEA (NSGA-II) efficacy by HV ranking; 

a. per unique configuration. 

b. per unique configuration for each individual GHP PF. 

c. Mean HV for unique configuration used for each of 30 separate extrema GHP PF’s. 

5.6.3 QI Experimentation in jMetalPy 
HV comparisons used principles espoused by Russo et.al [58] and Cao et.al [59] for choosing RP’s for 
two-dimensional PF’s to calculate the HV for NSGA-II. 

To give equal weight to all the MOEA objectives in assessments of MOEA efficacy, Benítez-Hidalgo 
et.al [38] recommended statistically significant tests for meaningful comparison of genetic hyperpa-
rameter configurations, and by extension, HV QI vis-à-vis MOEA objectives i.e.; min to max energy vs 
min to max cost. It is recommended that this range of values are normalised prior to QI experiment. 
Time constraints however, limited a full study of how to extend the QI experiment super-class and API 
and normalise the values i.e.; min to max energy vs min to max cost; prior to running QI experiment. 

So, to create HV results for simplified feedback, QI experiments were instead performed iteratively 
per NSGA-II function call, per GHP PF, using non-normalised MOEA objective functions real scores. 
Results were presented in tabular format and were used to create new GHP PF visualisations with HV 
as a shaded area above the curve of  the GHP PF line, relative to the RP. 

Subsequent to the QI experiments, the tabular PF values and HV results (real values) were appended to 
the QualityIndicators.csv output file as shown in Figure 21 below, and also as GHP PF visualisations with 
HV shown relative to the RP. 

 
Figure 21. Formula used to Normalise the Axes for HV purposes 

Normalising the HV scores and PF values was done after QI experiments, using the formula in Figure 
21 above. To test for normalisation process integrity, the before and after normalisation GHP PF’s HV val-
ues were compared (statistically and visually), for any skewedness in proportionality, but none was found. 

QI experiments were conducted according to steps proposed by Benítez-Hidalgo et.al [38]. Results 
were extracted into Python variables and then saved externally into CSV’s. 
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6 Software Development using MOEA 
As introduced in Section 1.1 and Section 1.2, this project’s purpose and goal was to extend an existing 
MOEA and create Python software using jMetalPy for LSGO global-problem to optimise thermal effi-
ciency retrofit of public housing stock. A key factor in this regard, was to incorporate separability and 
explainability, whilst simultaneously addressing the research questions posed in Section 1.3. 

Explainability was integral to software development, by integrating causal inference and mapping of 
algorithm steps (e.g.; genetic hyperparameter configurations and constitution of  GHP solutions), as inputs; to spe-
cific measurable outcomes (e.g.; PF’s, HV and runtime), as outputs, including assessing the significance 
of these discrete inputs in satisfying MOEA objectives including MOEA efficacy as measured by HV, 
and in the quality of automated multi-variable decision making as measured by LSGO targets to mini-
mise energy consumption and costs of interventions. 

Using causal inference was a foundation for results analysis, particularly in determining constituent ther-
mal efficiency intervention options in solutions, influenced the millions of decision-variables, i.e.; towards 
understanding which variables are important in driving the MOEA objectives. 

Considering non-functional performance, earlier researchers work was noted e.g.; Cohoon et.al [63] 
finding that EA’s introduce computational complexity, Ye et.al [64] and Maier et.al [65], finding that 
EA execution in turn requires significant computational resource utilisation due to EA processing to 
the last defined generation (max_evaluations operator for NSGA-II). Cohoon et.al [63] additionally found 
that when it comes to EA’s, “there may be no direct link between algorithm complexity and problem complexity”. 

Taking cognisance of these considerations extensive runtime requirements, this project modularised 
software development and created bite size components i.e.; seven (7) separate Notebooks that 
could be processed end to end on most researchers PC’s, each performing a discrete set of tasks. 

6.1 Development Environment 
Jupyter Notebooks running on Anaconda platform were used for the reasons [40] explained in Sub-
section 5.1.1, and the development environment was organised as outlined in Figure 22 below; 

 
Figure 22. e2e Project Computation (Jupyter Notebooks) and Data Flowchart 

The development environment took advantage of the multi-threading capability in the choice of 
hardware outlined in Sub-section 5.1.1 and software outlined in Sub-section 5.1.2. 
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6.2 Algorithmic Design 
Algorithmic design was crucial, as described in Section 1.2, Section 2.3 and Section 3.1, including; 

1. Using multiple design approaches to address different project considerations [63], [65], [66]. 

2. Optimising expected utilisation of considerable computational resources [63], [65]. 

3. Creating trust in the MOEA software developed, as espoused by Chawla [67], via combination 
of deploying (a) ‘divide and conquer’ [66] algorithm design techniques, (b) organisational compe-
tence and transparency in the code through (c) problem decomposition using separability, (d) 
causal inference for explainability and (e) maintainability. 

4. Using appropriate data structures to explore, manipulate, visualise, store data in-flight and 
externally; and retrieve data [66] in jMetalPy and Python, to optimise computational re-
sources, particularly memory, CPU utilisation and runtime. 

Figure 23 shows bespoke algorithm design pseudocode for the SHP sub-problem. 

 
Figure 23. ALG-1 – Single House Problem (SHP) Pseudocode 

Figure 24 shows bespoke algorithm design pseudocode for the GHP problem. 

 
Figure 24. ALG-2 – Group of Houses Problem (SHP) Pseudocode 

6.2.1 Algorithmic Design for Results Analysis 
The bespoke algorithm designs for causal inference purposes i.e.; results extraction, analysis and visu-
alisations preparation, follow the similar pattern of loops and code branches outlined in Section 6.2. 
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Algorithmic design for the steps after MOEA function calls, focused on deploying causal inference by 
continuous results extraction, analysis, visualisations preparation, deriving findings and insights to 
inform the conclusions; storing outputs in CSV’s and PNG’s, benchmarking extrema GHP solutions, 
use mathematical and statistical mining techniques to collate, analyse and save; 

1. Baseline intervention counts and their comparisons. 

2. Baseline genetic hyperparameter configurations performance and their comparisons. 

3. Aggregated intervention counts and their comparisons. 

4. MOEA efficacy through (a) HV comparisons and rankings, and (b) runtime comparisons. 

6.2.2 Future Proofing 
Best practises implemented to future proof and enable subsequent sub-problems and future re-
searchers to use them the MOEA and supplementary software were; 

1. Using PEP-8 Python coding standards to create readable code that is easy to maintain. 

2. Creating variables as computed values rather than static hard coded values. Changes in pre-
set operating dynamically affect or change the values for the variables. 

3. Creating additional columns and rows in SHP outputs for new intervention options i.e.; for 
‘dhs’ and ‘dhs cost’, so that 50% of SHP configurations had ‘dhs’ added to their SHP solutions 
whilst the other 50% did not, as well as ‘PF Index’ and ‘PF Solutions’ columns. 

4. Creating additional columns and rows in GHP outputs, so that subsequent sub-problems and 
future researchers can make use of them, e.g.; ‘PF Index’, ‘PF Solutions’, ‘house-id’ and an ‘Inter-
vention_count’ column for each of the 11 interventions. 

5. Automated preparation of results analysis visualisations that can expeditiously inform the 
findings or alert to the possible need to re-design aspects of the coding. 

6. Used relative path statements in Notebooks rather than local paths, so they could run anywhere 
e.g.; other integrated development environments (IDE), Google Colab and on multiple O/S 
without making changes to path statements, including addition of a root directory. 

7. Automated creation and storage of results, so that simulation can be done once and analysis 
subsequently performed on demand, using the save results data. 

6.3 MOEA Development in jMetalPy 
The systematic activities undertaken to get familiarised with jMetalPy were; 

1. Reading scholarly articles which reference jMetalPy including Nebro’s [37] benchmark paper 
that first introduced jMetalPy to the world, as the Python version of jMetal. 

2. Study the jMetalPy GitHub repository and online documentation to understand how they are 
organised so as to be able to make best of use them subsequently. This additionally included 
studying code examples and replicating the approaches with sample problems and test data. 

3. Consulting online communities e.g.; Stack Overflow to address issues encountered during the 
development of new jMetalPy abstract sub-class extensions to the jMetalPy source code. 

6.3.1 jMetalPy Class Inheritance and Abstract sub-classes 
Algorithmic design style used for jMetalPy source code and examples of code interactions with its ap-
plication programming interface (API) were adopted. They are available in jMetalPy GitHub repository 
and online documentation, and were used as templates for the MOEA software that was developed. 
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jMetalPy source course is written using extensible constructor super-classes with embedded abstract 
sub-classes that cannot be instantiated by themselves but are instantiated by the super-class to 
which they belong, as espoused by Krasnov [68]. The same convention was used to best align with 
jMetalPy and make it easier for future researchers to use the work created by this project. 

Code of extended constructor super-class for SHP BinaryProblem class is shown in Figure 25. 

 
Figure 25. jMetalPy code snippet for SHP Sub-Problem Decomposition 
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7 Results and Discussions 
The approach to the creation of all results output stored externally to the Notebooks, in order to help 
to address this project’s goals set out in Section 1.2 and the research questions in Section 1.3. 

Results in tabular format enabled subsequent review of any individual house or any group of houses 
on the PF’s, optimised with discrete MOEA genetic hyperparameters. 

PF visualisations enabled visual analysis of any individual house or any group of houses on the PF, op-
timised with discrete MOEA genetic hyperparameters. 

All of the tabular output files and visualisation output files were used by this project to derive insights, find-
ings, conclusions make recommendations, and can also be used by other researchers, e.g.; for 
housing policy making, statistical modelling or even for computational simulation purposes. 

With the exception of SHP PF’s, no visualisations were prepared for SHP, as they were of secondary 
interest. The principles for creation of visualisations described in Sub-subsection 7.1.5.1 were used. 

7.1 Results 

7.1.1 SHP Tabular Results 
From all SHP NSGA-II function calls, a single tabular file was created with modified data dimensions 
of; 54,300 rows and 40 columns, for 935 single houses in 30 separate groups of houses. 

Of the 40 columns in is output file, 11 were target variables for the MOEA objectives, used for multi-
variable decision making for both SHP and GHP. The modified dataset retained the same variable 
number of rows per single house, with each row representing a unique configuration i.e.; combina-
tion of intervention options for that house. Two columns were added to the output file namely; 

• PF Index – To hold the rankings of the solutions on the SHP PF. 
• PF Solutions – To hold the specific interventions applied to a single house. 

The results were extracted in the manner outlined in the pseudocode for bespoke algorithm-1 presented 
in Figure 23 in Section 6.2. The output file is named; Single House Results – Double Length.CSV, and a 
copy is available in this project’s artefacts in the project repository. 

This file was used as the input file for Notebook-3 (LSGO for GHP). 

7.1.2 GHP Tabular Results 
From all GHP NSGA-II function calls, a single tabular file was created with data dimensions of; 117,594 
rows and 40 columns, for 935 single houses in 30 separate groups of houses. 

Of the 40 columns in this output file, 11 were target variables for the MOEA objectives, used for 
multi-variable decision making for GHP only. This GHP modified dataset retained the same variable 
number of rows per single house, with each row representing a unique configuration i.e.; combina-
tion of intervention options for that house. Two columns were added to the output file namely; 

• Group PF Index – To hold the rankings of the solutions on the GHP PF. 
• Group PF Solutions – To hold the specific interventions applied to a single house. 

The results were extracted in the manner outlined in the pseudocode for bespoke algorithm-2 presented 
in Figure 24 in Section 6.2. The output file is named; Group of  Houses Results.CSV, and a copy is 
available in this project’s artefacts in the project repository. 

This file was used as the input file for Notebook-4A (Results Analysis – Intervention Counts), and Notebook-
5A (Results Analysis – Aggregated Intervention Counts). 
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7.1.3 Results Analysis – Intervention Counts Tabulation 
Subsequent to all SHP and GHP NSGA-II function calls, intervention counts were tabulated for the 
points of interest which are the extrema on the PF (i.e.; the minima, knee-point and maxima). 

In effect, this was tabulation of the lowest (minima); best trade-off ’s (knee point) and highest (maxima) 
number of interventions applied across all 935 single houses, for all 64 unique genetic hyperparame-
ter configurations; from which a single tabular output file was created with data dimensions of; 385 
rows and 29 columns, for 935 single houses in 30 separate groups of houses. 

Of the 40 columns in this output file, 1 was for the Run number, 1 was for the genetic hyperparameter configu-
ration ID, 1 was for the number of  groups, another 1 each for the non-constant genetic hyperparameters 
i.e.; population (which is also used for offspring population), Mutation and Crossover;11 were for aggregated interven-
tions values for each of the individual intervention options; and another 11 were for aggregated interventions 
squares for each of the individual intervention options. 

The results were extracted in the manner outlined in the pseudocode for bespoke algorithm-2 presented 
in Figure 24 in Section 6.2. The output file is named; Aggregated Interventions Counts.csv; and is avail-
able in this project’s artefacts in the project repository. It was used as the input file for Notebook-5A. 

7.1.4 QI Tabular Results 
jMetalPy’s QI Experiments functionality automatically creates a number of tabular results when the 
QI experiment is run, as described in Appendix 2. The most crucial of these output files is the output 
file is named; QualityIndicators.csv; because its contents are used to derive HV Rankings. All the files 
created by QI Experiments are available in this project’s artefacts in the project repository. 

7.1.5 SHP and GHP PF Visualisations 
For both SHP and GHP, a visualisation was prepared of each PF of the viable (non-dominated) solutions 
was prepared using both jMetalPy and bespoke Python code developed in conjunction with inbuilt 
Matplotlib functionality. 

A sample of each of the resultant SHP and GHP PF visualisations are shown below; 

 
Figure 26. PF for SHP 
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Figure 27. jMetalPy PF for SHP 

 

 
Figure 28. PF for GHP 

 

 
Figure 29. jMetalPy PF for GHP 

7.1.5.1 Algorithmic Principles for Creation of Visualisations 
To ensure that each PF visualisation could be subsequently reviewed, the number of graphs created 
in both jMetalPy using bespoke Python code was based on the number of configurations and runs 
performed, as per the illustration by the equations below; 

• Number of single house graphs = s x h, where = s is the number of valid solutions per house, 
and h is the number of houses. 

• Number of group of houses graphs = gs x g x c x r, where = gs is the number of valid solutions 
per group of houses, g is the number of groups of houses, c is the number of genetic hy-
perparameter configurations, and r is the number of runs. 

For SHP, given 935 houses in the dataset, a total of 935 SHP PF visualisations were created, by the 
jMetalPy and the bespoke Python code, giving a total of 1,870 SHP PF visualisations. 
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For GHP, given 31 groups of houses in the dataset, 64 MOEA genetic hyperparameter configurations 
and 2 runs executed, a total of 3,840 GHP PF visualisations were created, by the jMetalPy and the be-
spoke Python code, giving a total of 7,680 GHP PF visualisations. These numbers can be increased by 
increasing the number of  runs or the number of  genetic hyperparameter configurations. 

The creation of other types of visualisations follow the same principles, but the overall numbers vary 
according to the values in the variables in the equation. 

7.1.6 Intervention Counts Visualisations 
For each PF, visualisations were prepared of the counts of  interventions for the points of interest which 
are the extrema on the PF (i.e.; the minima, knee-point and maxima), using bespoke Python code de-
veloped in conjunction with inbuilt Matplotlib functionality. 

A sample of each of the resultant Intervention Counts visualisations are shown below; 

 
Figure 30. Intervention Count Minima Values for GHP PF 

 

 
Figure 31. Intervention Count Minima % Pie Chart for GHP PF 
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Figure 32. Intervention Count % for GHP PF 

 

 
Figure 33. ‘cwi’ Total Interventions applied vs Total Energy Consumption 

 

 
Figure 34. ‘ashp’ Total Interventions applied vs Total Energy Consumption 

 

 
Figure 35. ‘dhs’ Total Interventions applied vs Total Energy Consumption 
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Figure 36. ‘cond’ Total Interventions applied vs Total Cost 

 

 
Figure 37. ‘shw’ Total Interventions applied vs Total Cost 

 

 
Figure 38. ‘dhs’ Total Interventions applied vs Total Cost 

 

 
Figure 39. ‘dg’ Total Interventions applied vs Total Cost – Common y-axis 
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Figure 40. ‘gshp’ Total Interventions applied vs Total Cost – Common y-axis 

 

 
Figure 41. ‘dhs’ Total Interventions applied vs Total Cost – Common y-axis 

 

Ghani [69] describes the line of best fit (used in the visualisations above) as the statistical measure 
was used to show the trends in the data i.e.; trends that the naked human eye cannot easily see for 
the millions of decision-variables in this GHP results data. 

For GHP, given 30 groups of houses in the dataset, 4 points of interest, 64 MOEA genetic hyperparam-
eter configurations and 2 runs executed, a total of 11,520 GHP ‘intervention counts’ visualisations 
were created. These numbers can be increased by increasing the number of  runs or the number of  genetic 
hyperparameter configurations. 

7.1.7 Intervention Count Comparisons Visualisations 
For each PF, visualisations were prepared of the comparison of  intervention counts for the points of interest 
which are the extrema on the PF (i.e.; the minima, knee-point and maxima), using bespoke Python 
code developed in conjunction with inbuilt Matplotlib functionality. 

A sample of each of the resultant Intervention Count Comparisons visualisations are shown below; 

 
Figure 42. Extrema Intervention Count Values Comparisons 
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Figure 43. Extrema Intervention Count % Comparisons 

 

 
Figure 44. Number of Houses in Groups with Interventions applied vs Total Energy 

 

 
Figure 45. Number of Houses in Groups with Interventions applied vs Total Costs 

Ghani [69] describes the line of best fit (used in the visualisations above) as the statistical measure 
was used to show the trends in the data i.e.; trends that the naked human eye cannot easily see for 
the millions of decision-variables in this GHP results data. 

7.1.8 Aggregated Intervention Count Comparisons Visualisations 
For each PF, visualisations were prepared of the comparison of  aggregated intervention counts for the points of 
interest which are the extrema on the PF (i.e.; the minima, knee-point and maxima), using bespoke 
Python code developed in conjunction with inbuilt Matplotlib functionality. 

A sample of the resultant Aggregated Intervention Count Comparisons visualisations are shown below; 
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Figure 46. Extrema Aggregated Intervention Count Values Comparisons 

 

 
Figure 47. Extrema Aggregated Intervention Count % Comparisons 

7.1.9 Genetic Hyperparameter Comparison Visualisations 
Visualisations were prepared of the comparison between genetic hyperparameter configurations results for the 
points of interest which are the extrema on the PF (i.e.; the minima, knee-point and maxima), using 
bespoke Python code developed in conjunction with inbuilt Matplotlib functionality. 

A sample of resultant Genetic Hyperparameter Configurations Comparisons visualisations are shown below; 

 
Figure 48. GH Max Evaluations vs Energy Comparisons 
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Figure 49. GH Population vs Energy Comparisons 

 

 
Figure 50. GH Mutation vs Cost Comparisons 

 

 
Figure 51. GH Crossover vs Cost Comparisons 

7.1.10 Hypervolume Results Visualisations 
For each GHP PF, a new GHP PF visualisation was created with HV as a shaded area above the curve of  the 
GHP PF line relative to the RP, denoting MOEA efficacy. This was done with bespoke Python code with 
inbuilt Matplotlib functionality and HV scores as data inputs. A sample of the resultant GHP PF visual-
isations with HV are shown below; 
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Figure 52. PF with Normalised HV 

 

 
Figure 53. PF with Non-normalised HV 

In Figure 54 (non-normalised) and Figure 55 (normalised) below, are the tabular HV results subset from 
which the GHP PF’s above were created. 

 
Figure 54. QI (HV) Test Results – Non-Normalised 
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Figure 55. QI (HV) Test Results – Normalised 

 

7.1.11 Consolidated Comparisons View of PF’s 
Four consolidated views of PF comparisons by genetic hyperparameter configuration vs by groups of  houses were 
created, as shown below; 

 
Figure 56. Run-1 – Consolidated View of PF’s by Genetic Hyperparameter Configuration 

 

 
Figure 57. Run-1 – Consolidated View of PF’s by Groups of Houses 
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Figure 58. Run-2 – Consolidated View of PF’s by Genetic Hyperparameter Configuration 

 

 
Figure 59. Run-2 – Consolidated View of PF’s by Groups of Houses 

Whilst the visualisations from both runs consistently show no discernible patterns arising from the 
genetic hyperparameter configurations, they do show clear discernible patterns from the group of  houses view, 
that clearly show colour concentration density and a drift for the group of  houses view that suggests that 
the composition of  the constituent elements in GHP solutions are of more relevance to the GHP PF and by ex-
tension, to MOEA efficacy, than genetic hyperparameter configurations, for which there is no discernible 
pattern in either concentration or the drift. 

This determination arises because both runs were performed by; simulating identical non-uniform con-
stant probabilities for each of the genetic hyperparameter configurations, under an identical and modest 
constant maximum evaluations of 800 for each GHP NSGA-II function call, all as described in Section 5.3. 

7.1.12 Search Space Size vs Runtime Visualisations 
Two search space size vs runtime visualisations were created, as shown below; 

 
Figure 60. Run-1 – Runtime by Genetic Hyperparameter Configuration 
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Figure 61. Run-2 – Runtime by Genetic Hyperparameter Configuration 

Both visualisations show the self-learning properties of the NSGA-II function calls, across both runs, 
as their runtime efficacy (reducing from approx.. the 60 to 110 seconds range per NSGA-II function call, to approx. 
70 to 90 seconds range) shows near linear runtime improvement as the search space size increases from 0 
to 5.00e+31. In effect, counter intuitively, the runtime reduced as search space size increased, and the 
pattern is discernible for most of the genetic hyperparameter configurations. 

Due to time limitations, this project did not identify the genetic hyperparameter configurations that 
broke this trend. Nonetheless, in future work in this area should study the constituent intervention op-
tions in the GHP solutions in those genetic hyperparameter configurations, to find out whether the 
mix of interventions are responsible for this small variation to the otherwise dominant pattern of 
NSGA-II self-learning, as described in Section 5.5.2. 

7.2 Discussions 
The project started out as a software development project, limiting the scope of the literature review. 
In hindsight, it should have started as a research project, which would have resulted in less rework in 
the software development, albeit conscious inclusion was at the centre of its development practises. 

7.2.1 Accomplishments vs Expectations 

There was significant computation resource required to run the jMetalPy code, including extremely 
long runtime in excess of 12 hours for SHP, 5 days for GHP and 4 days for HV respectively. For LSGO 
research therefore, much more powerful computers are required, at least five times more powerful 
than the iMac used. Notwithstanding, the project was able to develop the software it set out to do 
and achieve all of the project goals. 

Due to the selection of only already fine-tuned genetic hyperparameter values [4], [49], [25], there 
was no discernible impact identified from the 64 genetic hyperparameter configurations used. In ef-
fect, their potential impact was negated because they were already setup for peak performance. 

With the exception of ‘biom’, all the other variables had at least <0.05 significance, as can be seen in 
the visualisations showing (a) Interventions Applied vs Total Energy Consumption and (b) Interventions Applied vs 
Total Cost, in Section 7.1.6. 

The line of best fit polynomial for ‘dhs’ shows viability for GHP solutions with >8 houses in a group 
having ‘dhs’ thermal efficiency interventions applied. However, this optimisation potential has been 
throttled by the ‘>50% i.e.; 15 of  houses in a group for a viable solution’ enforced constraint for ‘dhs’ to be a 
valid intervention in a GHP solution. As a result, fewer ‘dhs’ interventions have been being applied 
than would otherwise have been without the aforementioned enforced constraint. An initial assump-
tion was that ‘dhs’ could only be viable when applied to at least 50% of the houses in GHP, but the 
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computational simulation shows that ‘dhs’ is actually viable with a minimum of 8 out of 31 houses in a 
group, which is 25.8% of the houses in a group. 

Enforced constraints unduly influenced the distributions of interventions applied in non-dominated solu-
tions, particularly at the GHP level. For example, due to a combination of factors, there were no ‘zero 
solutions’ on the PF’s, because every house had at least one intervention option applied. The reasons 
for this are varied, but include; 

1. Initial solution used random values rather than zero’s, plus original dataset was seeded, and 
800 generations threshold per NSGA-II function call was sufficiently large to find better solu-
tions that dominate the zero solutions. 

2. The genetic hyperparameter configurations used were finely tuned from previous research. 

3. The specified constraints implemented meant that every house would have at least one ther-
mal efficiency intervention. These constraints include; 

a. Constraints in the data e.g.; negative cost values for renewables and ‘dhs’ meant that 
they were more optimal solutions to the objective functions than a ‘no cost’ option? 

b. Algorithmic constraints e.g.; > 15 houses in solution for ‘dhs’ meant that they were 
more optimal solutions to the objective functions than a ‘no cost’ solution? 

4. The solutions presented in the input data were already optimised by the previous computa-
tional simulation performed by Brownlee et.al [3]. 

Whilst the above considerations helped to affirmatively address the RQ’s on one hand, they took 
away the opportunity to study factors that may lead to no solutions being applied to SHP or GHP. 

This projects approach to LSGO problem decomposition differs slightly from Brownlee et.al’s [3] novel 
encoding approach, because of the inclusion of a GHP sub-problem intermediate tier, as discussed in 
the Literature Review in Section 3.3. In the process, this project further simplified computation and 
significantly reduced the minimum capacity of computation resources required to solve the LSGO 
global-problem. 

As the first step to explainability, this project used the PEP 8 Python coding standards [70] as the first 
step to ensure code transparency and readability as a foundational basis for tackling the opaqueness 
inherent in black-box metaheuristics-based MOEA. 

Whilst efficient algorithmic design led to efficient code, including efficient results data collation and 
saving for SHP, the same could not be said entirely for GHP, because of the need to iteratively save 
results after each separate GHP function call. 

This also applied to HV, for which it was not possible to save the HV jobs into an external data struc-
ture which would have simplified computation. This is because of reliance on streaming using Pickle 
which did not work. By then it was too late to switch to JSON. 

This paper highlights many notable observations. However, this project consciously chose to exclude 
deep dive analysis of the composition of intervention options in SHP and GHP solutions because due 
to time constraints, it is best left the next phase of this research i.e.; in future work. 
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8 Conclusions 
Finally, whilst further research and investigation is clearly required and is indeed necessary, this paper 
provides optimism of the viability of developing MOEA software for LSGO problems, particularly of 
housing stock optimisation use cases. 

8.1 Findings 
The findings include the summary of achievements presented in Section 1.4, and summarised insights 
discussed in Section 7.1, Section 7.2, using causal inferences drawn from across all the prior chapters. 

The findings this project demonstrates vs the research questions outlined in Section 1.3 were; 

1. RQ-1 – Yes, LSGO problems can be solved with MOEA developed in jMetalPy. 
2. RQ-2 – Yes, MOEA developed in jMetalPy can provide satisfactory efficacy measured by HV 

quality indicator and reliability as measured by >12 days uninterrupted runtime. 
3. RQ-3 – Yes, MOEA developed in jMetalPy, to incorporate satisfactory explainability through 

(a) causal inference, (b) readable code, (c) testing and (d) externally saving results for subse-
quent post-execution review and analysis. 

4. RQ-4 – The main factors that influence efficacy and reliability of MOEA are; (a) computational 
resources, (b) problem decomposition via separability in algorithmic design, (c) efficient sys-
tematic algorithmic implementation that optimises computational resources, especially 
memory release, (d) quality/composition of solutions, (e) efficiency in genetic hyperparame-
ter configuration, and (f) incorporation of unit testing in the code, to verify outcomes. 

The key findings in relation to factors affecting computational resource utilisation were; 

5. Processor/CPU Utilisation – (a) Data dimensions, especially number of rows and number of 
target variables; plus (b) Algorithmic complexity exemplified by (i) efficient coding e.g.; using 
loops and branches, and efficient (ii) genetic operator values selection e.g.; mutation and crosso-
ver, and (iii) non-genetic operators, especially NSGA-II’s ‘max_evaluations’ threshold variable. 

6. Memory/DRAM Utilisation – (a) Data dimensions, particularly number of rows and number 
of target variables; plus (b) Algorithmic complexity exemplified by (i) efficient coding e.g.; in-
corporating memory release, and (ii) reducing size of  data structures and programs e.g.; via splitting 
Notebooks to mitigate against memory saturation as data structures grow in memory. 

7. Memory Efficiency – RAM grab and release was fully implemented for SHP, but partially for 
GHP because QI jobs object could not be released into an alternate data structure using Pickle. 

8. Time Efficiency – Implemented for SHP (see above) with a single write to CSV statement . 

The key findings in relation to factors affecting MOEA efficacy were; 

1. Non-Genetic Operators Parameters in NSGA-II – Non-genetic operator parameters such as 
‘max_evaluations’ and bespoke constraints applied through supporting abstract sub-classes e.g.; 
reducing costs for thermal efficiency interventions that use renewable energy; affect the com-
position of  intervention options in the non-dominated solutions, which in turn affects MOEA efficacy. 

2. Algorithmic Design – Data dimensions including number of rows and target variables, algo-
rithmic complexity vs search space size that determines lower and upper bounds used in non-
dominated solutions, efficient coding e.g.; using loops and branches, and effective use of genetic 
operator values particularly, mutation and crossover, can all affect MOEA efficacy. 

3. Problem Decomposition – Adding a third tier to LSGO global-problem decomposition within a 
systematic approach proved that it is possible to affect MOEA efficacy global-problem decom-
position into smaller meaningful and much more manageable pieces rather than attempt to 
deal with much larger and usually intractable monoliths. 
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8.2 Evaluation 
Steeped in the causal inference ethos, the project methodology outlined in Figure 12 in Section 5.1 
was systematically followed iteratively, akin to how a programmer debugs code. 

Combining CI with traditional software engineering techniques, was particularly satisfying, because it 
makes use of earlier computer science learning with more recent data science learning. Whilst the 
baseline project goals stated in the original project proposal were achieved early on, the subsequent 
results analysis using causal inference was simultaneously much more challenging and satisfying. 

Studying MOEA as applied to LSGO and developing viable MOEA software for the housing stock opti-
misation Use Case were the two most satisfying aspects of this project. 

This is reflected achievements relative to project goals outlined in Section 1.4, the contextual per-
spectives provided in Chapter 2, the reflective discussions in Section 7.2, the findings outlined in 
Section 8.1. and the concluding lessons and remarks provided in the remainder of this Chapter 8. 

From the set of results visualisations depicted in Figure 56, Figure 57, Figure 58 and Figure 59, all in 
Section 7.1.11, it is clear that the constituent elements of GHP solutions were the most significant 
factor in MOEA efficacy as represented by PF proximity to the nadir point, suggesting that the choice 
of intervention options had more to do with MOEA efficacy than differences in genetic hyperparame-
ter configurations. The intervention options that had the least significance had the line of best fit 
trending negatively. 

8.3 Future Work 
Whilst this project successfully achieved all of its set out goals, the notable breakthrough is success-
fully using jMetalPy as the centrepiece for the MOEA software developed. This shall help bring this 
research area closer to other researchers in the Python programmer community. Given the significant 
computational resource utilisation, this project has identified potential further integration with 
pyRAPL to help research how to optimise computational resource utilisation and energy. 

Nonetheless, these complimentary considerations and additional research work that are worthy of 
further investigation, as they shall help advance the research already undertaken. They are; 

1. Implement the third tier i.e.; LSGO global-problem as a new super-class in jMetalPy. 

2. Satisfy MOEA objectives whilst minimising runtime e.g.; with more granular decomposition. 

3. Incorporate practitioner considerations into the analysis, e.g.; societal benefits, budgetary 
considerations (what do I get for my budget ?), etc… 

4. Incorporate all QI available in jMetalPy in future work e.g.; a re-run of this project with addi-
tional MOEA and all the aforementioned QI is desirable. 

5. Improve memory deactivation at all stages of MOEA implementation, especially for long 
runtime, including results analysis, so as to optimise computational resources. 

6. Avoid creating monolithic MOEA software for LSGO with long runtime, including for analysis 
of results,, and instead create smaller more optimal code blocks of Python programs, so as to 
operate runtime at optimum computation rather than at maxed computational capability. 

7. Further investigation of the self-learning properties of MOEA as described in Section 5.5.2 
and Sub-section 7.1.11, that resulted in less runtime to deal with larger search space sizes, 
which this project did not take to conclusion is warranted in future work. There is a sugges-
tion that this may be due to the constituent intervention options in GHP solutions rather than 
genetic hyperparameter configurations. However, this should be studied further i.e.; why did 
some NSGA-II genetic hyperparameter configurations not exhibit self-learning with respect to 
runtime improvement vs search space size? 
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8. Raise JMetalPy tickets, to request; 

a. jMetalPy Matplotlib object be made extensible, so that new visualisations can be de-
veloped within jMetalPy, rather out with jMetalPy, as was done by this project. 

b. Pickle, JSON encoder and HMAC integration with jMetalPy’s for QI Experiment. 

8.4 Lessons Learned 
Experience is a wonderful teacher, and helps to reflect on the many lessons learned; 

1. It is a steeper learning curve to master all the moving parts that made up this project, partic-
ularly using multiple sets of genetic hyperparameter configurations. As a result, there were 
many missed opportunities that have now been earmarked for future work. 

2. API’s are not perfect. For example; 

a. A basic project requirement to create additional visualisations could not be satisfied 
by jMetalPy, because its Matplotlib figure object could not be extended. 

b. It was discovered very late that the Python serialisation library Pickle doesn’t work 
with jMetalPy’s jobs object, which would have made it possible to reduce the size of 
the most resource intensive Notebook created by this project. By the time of this re-
alisation, it was too late to opt for the JSON encoder or even HMAC instead. 

Further lessons are described in Sub-section 8.4.1, Sub-section 8.4.2 and Sub-section 8.4.3 below. 

8.4.1 Personal Challenges 
Whilst this project give a lot of personal satisfaction due to successfully achieving all the goals set, 
there were some personal challenges which are summarised below; 

1. Mentally and emotionally challenging living and working in self-isolation as a vulnerable per-
son at high risk to COVID. 

2. Frustration of working in isolation without the natural collaboration with fellow postgraduate 
students and interaction with academic and teaching staff, due to COVID. 

3. Without access to powerful university computers, lack of computational effort was a big chal-
lenge because of substantial runtime requirements, particularly for of; 

• Notebook-2 – 1.6 days runtime for 3 runs. 
• Notebook-3 – GHP only – 7.75 days runtime for 3 runs. 
• Notebook-3 – QI Experiment only – 6.45 days runtime for 3 runs. 

4. Ankle reconstruction surgery on 6 August 2021 and the subsequent 6-weeks recovery whilst 
using crutches was not helped by getting an infection that necessitate 2-weeks of antibiotics 
treatment. Overall, this disrupted the momentum built up in this project. 

5. TexStudio (LaTeX) setup developed a bug, which delayed the write-up. Eventually, text editor 
choice was switched to MS Word which is less optimal for scientific dissertation write up. 

8.4.2 What Worked Well 
A lot was covered in this research project, and the following are notable; 

1. Data understanding and data preparation techniques from ML to identify anomalies in the 
data were used at the outset. Data cleansing was then performed to fix the anomalies found 
before computation of the LSGO problems. As a result, data validation checks were subse-
quently not be required for the remainder of the research project. 
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2. Created a high-level software design outline; and identified the data structures to use for 
data collation and results data storage, for further analysis outside Python and jMetalPy. This 
meant that subsequent refactoring was not required. 

3. Results data collation, collection and extraction in tabular format was incorporated at key 
stages in the computation, so as to enable analysis of the results post computation. 

4. From the results data collected, further statistical analysis of the results can be performed to 
further aid decision making. 

5. Prepared pseudocode and README files to explain the sequences and computational steps in 
bespoke software developed. 

6. Consciously focused on making sure that causal inference was at the centre of all the project 
work, and thus address the explainability goal, including by addition of metadata into all of 
the file outputs from the post-MOEA review and analysis of results, which can help other 
LSGO researchers and housing policy makers alike more easily drill-down into the results. 

8.4.3 What Should Have Been Done Differently 
A lot was covered in this research project, however there observations below are worth noting. 

To better conceptualise the research work, I should have at the outset, done the following; 

1. Resolved the issues I had with TexStudio, the LaTeX tool that I had intended to use. That 
would have enabled me to start the Dissertation write-up much earlier than I eventually did. 

2. Started with the literature review rather than straight into coding, as this would have mini-
mised the need for late re-runs using more appropriate genetic hyperparameter values. 

3. Started the Dissertation write up much earlier, rather than putting it aside until experimenta-
tion was nearly complete. However, this may have been moot, but for having to undergo 
ankle reconstruction surgery in August 2021. 

4. Used more than the single dataset. This would have better tested whether the quality of data 
has an impact on MOEA efficacy. 

5. Used more than the single MOEA used i.e.; NSGA-II. This would have better tested the effect 
of metaheuristics on MOEA efficacy. 

6. Attended some seminars/workshops on (a) LSGO, and; (b) developing with jMetal/jMetalPy. 

7. Considered the need for QI much earlier, to assess MOEA efficacy and robustness of their 
performance. The delay resulted in settling for only HV in the end. 

8. Used JSON rather than Pickle to save the QI jobs and in the process, split Notebook-3 into two 
with (a) the first part running GHP and (b) the second part running the QI Experiment. Pickle 
failed to work for the QI jobs and so Notebook-3 ended up with very long runtime. 

In order not to lose track of my thoughts on new thoughts from literature as I was coding, I should 
have at the outset, done the following; 

1. Incorporated academic theory in my Lab Book more rather focus I had solving problems with 
Python coding. 

2. Created flowcharts and with control flows and process flows to visually explain the various 
sequences in the bespoke Python code developed, particularly in results analysis. 

In order to get a better understanding of impacts on computational resource utilisation, I should have 
at the outset, done the following; 
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1. Requested access to a more powerful university computer than I had access to, perhaps mul-
tiple 12-core processors running at >5.0GHz processors with >128GB RAM. I omitted to do 
this because I mistakenly thought using Google Colab Pro would be sufficient. However, the 
maximum runtime for all tiers of Google Colab is 11 hours with their reasonably powerful 
GPUs. So, I was actually better off with my own iMac at home! 

2. Utilised pyRAPL toolkit to measure computation resource utilisation e.g.; runtime, memory 
and processor time; for each GHP NSGA-II run, so as to better understand the relationship 
between Search Space and genetic hyperparameter combinations. 

3. Incorporated computational resource utilisation results data collation, collection and extrac-
tion in tabular format, after computation, to facilitate subsequent analysis of the results. 

4. Incorporated memory deactivation in all aspects of MOEA software for LSGO with long 
runtime, including for analysis of results, so as to make better and more effective use of com-
putational resources. 

5. Created a Staging Area for Python scripts, so that I could get others to run the scripts and 
feedback on performance when run on computers with different configurations. 

8.5 Summary 
Notwithstanding the challenges, I was able to affirmatively answer all the research questions as de-
scribed in the findings in Section 8.1. 

Whenever the project touched upon something new, it seemed that there was still more to find. As 
an answer was found, so was a new question. 

There is still much to discover in this area of research. 
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Appendix 1 – Supplementary References 
Supplementary materials including the project artefacts have been archived in university’s digital pro-
ject repository. The details of these artefacts includes; 

• 7 Jupyter notebook files. 

• 1 input dataset in CSV format. 

• 1 Single House Results – Double Length.csv. 

• 1 Group of Houses Results.csv. 

• 1 Aggregated Intervention Counts.csv. 

• 1 QualityIndicatorSummary.csv. 

• Several QI Experiments output files. 
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Appendix 2 – MOEA Software User guide 
Pseudocode – Single House Sub-Problem (SHP) 

Python libraries, toolkits, methods and pseudocode used for the computation in SHP are; 

• Python Libraries Used: jMetalPy, Pandas, NumPy, Matplotlib, Sys, Time. 
• In-built Methods Used: Specified in the Import Statements cell of the Notebooks. 

Data Input: Updated CHM data sub-set with 935 houses. 
 
Algorithm-1 Single House Sub-Problem (SHP) Algorithm 
 1: INPUT updated CHM data sub-set à load into Pandas dataframe; 
 2: explore and validate the data à data validation; 
 3: calculate the number of houses in CHM dataset, by finding their start and end positions in the dataframe; 
 4: SHP decomposition, by extending jMetalPy Binary Problem super class, abstract classes, and abstract methods; 
 5: for i (number of Houses) ß 1 to 935 do 
 6:  define SHP for single house  
 7:  run NSGA-II algorithm with baseline metaheuristics configuration 
 8:  collate results (SHP Pareto Front of non-dominated solutions) 
 9:  create results visualisations (SHP Pareto Front of non-dominated solutions) 
10:  save results visualisations to PNG (SHP Pareto Front of non-dominated solutions) 
11:  calculate solution ranking (SHP PF Index) 
12:  update list of overall solution ranking (Overall SHP PF Index) and overall solutions (Overall SHP PF Solutions) 
13:  add populated SHP PF Index and SHP PF Solutions columns to the dataframe 
14: end for 
15: save results dataframe to CSV 

Readme for Single House Sub-Problem (SHP) 

Below is the Readme file for SHP (Notebook-2). 

README Readme File for Single House Problem (SHP), as part of M.Sc. AI Dissertation (ITNPBD5) 

AUTHORS Student ID: 2832057 (M.Sc. in Artificial Intelligence, 2020/21) 

THANKS To the authors and distributors of the Python Libraries, toolkits and methods outlined in the Pseudo-
code in the preceding sub-section, as well as the developers and providers of the Anaconda Platform. 

CHANGE LOG Please refer to the Pseudocode in preceding sub-section and in-flight comments within Notebook-2. 

INSTALL Upload the Jupyter Notebook titled “2-Dissertation 2021 - 15 Oct - SHP.ipynb” to the root directory 
folder of your choice. 

INPUT DATA CHM_RetrofitHouses_updated.csv 

TO RUN LO-
CALLY 

To run the full set of Jupyter Notebooks on a local PC; 
Choose a root directory on your local PC; 
Create sub-folders for organisational purposes, named as follows; 

• Data, and copy the CHM_RetrofitHouses_updated.csv file to this location 
• PF/Single, (2) PF/Group and (3) PF/Hypervolume 
• PF-jMetalPy/Single and (2) PF-jMetalPy/Group 
• Results CSVs 
• Intervention Counts, (2) Comparisons and (3) GH Comparisons 
• Intervention Counts Aggregated,(2) Comparisons Aggregated and (3) Comparison Means 

 
jMetalPy's 'Experiment' shall create the following outputs; 

• Sub-folder named (1) Experiment, for intermediate outputs (used later to calculate Hypervolume 
outputs) 

• Output file named QualityIndicators.csv in the root directory 
 
Comment out the cells in the Notebook for running on Google Colab. 
 
Choose “Restart & Run All” under the Kernel menu in Jupyter Notebook. 

TO RUN ON 
GOOGLE COLAB 

To run the Jupyter Notebook on Google Colab; 
Choose a root directory on your Google Drive; 
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Same as for running on local PC, above. 
Same as for running on local PC, above. 
Comment out the cells in the Notebook for running on a local PC. 
Choose “Restart & Run All” under the Kernel menu in Jupyter Notebook. 

COPYING / LI-
CENSE 

For educational use only in the Division of Computing Science and Mathematics at the University of 
Stirling. 

BUGS No known bugs. Please refer to comments in the Notebook. 

CONTRIBUTING Future Work has been added to a sub-section of the same name in the submitted Dissertation paper. 

 

Pseudocode – Group of House Global-Problem (GHP) 

Python libraries, toolkits, methods and pseudocode used for the computation in GHP are; 

• Python Libraries Used: jMetalPy, Pandas, NumPy, Matplotlib, Sys, Time. 
• In-built Methods Used: Specified in the Import Statements cell of the Notebooks. 

 
Data Input: SHP optimisation results, in a file named; Single House Results – Double Length.csv. 
 
Algorithm-2 Group of Houses Global-Problem (GHP) Algorithm 
 1: INPUT Single House Sub-Problem (SHP) Results data à load into Pandas dataframe; 
 2: calculate the number of groups in SHP Results data, by finding their start and end positions in the dataframe; 
 3: GHP decomposition, by extending jMetalPy Integer Problem super class, abstract classes, and abstract methods; 
 4: create dictionary of genetic hyperparameters à metaheuristics combinations; 
 5: create results output CSV file à with target column names, including GHP PF Index and GHP PF Solutions 
 6: for i (number of Runs) ß 1 to 2 do 
 7:  for j (number of genetic hyperparameter configurations) ß 1 to 64 do 
 8:   for k (number of Groups of Houses) ß 1 to 30 do 
 9:    define GHP for a group of houses 
10:    run NSGA-II algorithm for current Group of Houses, with currently specified 

       genetic hyperparameters configuration 
11:    create a Quality Indicators job for NSGA-II preceding execution  
12:    append a Quality Indicators job to a global list of Quality Indicators job to be performed later 
13:    collate results (GHP Pareto Front of non-dominated solutions) 
14:    create results visualisations (GHP Pareto Front of non-dominated solutions) 
15:    save results visualisations to PNG (GHP Pareto Front of non-dominated solutions) 
16:    save results tabular data to CSV (all columns of CSV) 
17:   end for 
18:  end for 
19: end for 
20: save results dataframe to CSV 

Readme for Group of Houses Sub-Problem (GHP) 

Below is the Readme file for SHP (Notebook-2). 

README Readme File for Single House Problem (SHP), as part of M.Sc. AI Dissertation (ITNPBD5) 

AUTHORS Student ID: 2832057 (M.Sc. in Artificial Intelligence, 2020/21) 

THANKS To the authors and distributors of the Python Libraries, toolkits and methods outlined in the Pseudo-
code in the preceding sub-section, as well as the developers and providers of the Anaconda Platform. 

CHANGE LOG Please refer to the Pseudocode in preceding sub-section and in-flight comments within Notebook-2. 

INSTALL Upload the Jupyter Notebook titled “2-Dissertation 2021 - 15 Oct - GHP.ipynb” to the root directory 
folder of your choice. 

INPUT DATA CHM_RetrofitHouses_updated.csv 

TO RUN LO-
CALLY 

To run the full set of Jupyter Notebooks on a local PC; 
Choose a root directory on your local PC; 
Create sub-folders for organisational purposes, named as follows; 

• Data, and copy the CHM_RetrofitHouses_updated.csv file to this location 
• PF/Single, (2) PF/Group and (3) PF/Hypervolume 
• PF-jMetalPy/Single and (2) PF-jMetalPy/Group 
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• Results CSVs 
• Intervention Counts, (2) Comparisons and (3) GH Comparisons 
• Intervention Counts Aggregated,(2) Comparisons Aggregated and (3) Comparison Means 

 
jMetalPy's 'Experiment' shall create the following outputs; 

• Sub-folder named (1) Experiment, for intermediate outputs (used later to calculate Hypervolume 
outputs) 

• Output file named QualityIndicators.csv in the root directory 
 
Comment out the cells in the Notebook for running on Google Colab. 
 
Choose “Restart & Run All” under the Kernel menu in Jupyter Notebook. 

TO RUN ON 
GOOGLE COLAB 

To run the Jupyter Notebook on Google Colab; 
Choose a root directory on your Google Drive; 
Same as for running on local PC, above. 
Same as for running on local PC, above. 
Comment out the cells in the Notebook for running on a local PC. 
Choose “Restart & Run All” under the Kernel menu in Jupyter Notebook. 

COPYING / LI-
CENSE 

For educational use only in the Division of Computing Science and Mathematics at the University of 
Stirling. 

BUGS No known bugs. Please refer to comments in the Notebook. 

CONTRIBUTING Future Work has been added to a sub-section of the same name in the submitted Dissertation paper. 

 

QI Experimentation Results Outputs from jMetalPy 

The jMetalPy QI’s experiment automatically by the jMetalPy Experiment class, creates the following 
output results; 

1. jMetalPy.log file, with chronological order of the experiment’s events and timings. 

2. QualityIndicators.csv file, with results of the experiment, from which the GHP PF with the 
Reference Point and HV details is then plotted for visualisation purposes. 

3. Nested sub-folder structure containing experiments results, named NSGAII-Config ID x, 
where x = the genetic hyperparameters Configuration ID; 

a. Nested sub-folder structure (Group of Houses y), where y = Group (ID). 

i. VAR.z.tsv – Variables in the job, per group, where z = Run number. 

ii. FUN.z.tsv – Functions in the job, per group, where z = Run number. 

iii. TIME.z – Several, where z = Run number. 
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Appendix 3 – Installation guide 
 

To install the MOEA software, follow the instructions in the Readme files included in Appendix 2, and 
the instructions within each of the seven (7) Jupyter Notebooks. 

 

 


