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Abstract

Problem: Pathfinding is an important aspect of all video games. Algorithms like the A* are
charged withmapping out themovement paths of non‐playable characters and enemies.
However, often these algorithms can comewithmany limitations such as slow speed, high
CPU usage or the creation of suboptimal paths.

Objectives: The aim of this project was to improve the speed of the popular pathfinding
algorithm A* in a python‐based video game.

Methodology: The game used is a Pygame maze game, where the player has to create
a maze through the placing of blocks that a spaceship has to travel through. All other
improvements were made through adaptions to the Python code.

Achievements: The first improvement attempt involved adapting the weighted A*, which
lead tominimal time improvements. The second improvement attempts adapted theway
the A* algorithm chooses the f ‐cost from the open set, by either choosing one randomly
or choosing the node with the highest f ‐cost. The latter proved to provide significant
time improvements over all other algorithms. However, its limitations were discovered
during a testing phase, showcasing that the improved algorithm creates suboptimal paths
in open space maps.
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1 Overview and Introduction

1.1 Introduction

The video game industry is one of the fastest growing sectors with recent years showing
growth that even surpasses the film industry [3]. With this comes a desire for continuous
improvement of the games, such as graphics, storylines and most importantly the game‐
player experience. Most players nowadays desire more realistic experiences, which are
not only achieved through better graphics but also the best game artificial intelligence
(AI), which ultimately will play into the success of the games [4].

In this dissertation thesis, wewill investigate an important part of almost all video games,
which is pathfinding. Pathfinding is the way for a computer to find the shortest path be‐
tween two points, also known as nodes [5]. It is not only used in video games, but also in
a large variety of fields such as robotics, GPS systems and more [6]. Most often in video
games the pathfinding algorithms will be charged with finding the shortest route from
a Mob (a hostile enemy character) or NPC (non‐playable character) to the player or a
second location. Given the importance of such a vital aspect of video games, optimising
it could greatly benefit the industry in general. Pathfinding that is faster, more reliable
and has lower computational usage will greatly enhance the user experience and overall
increase player satisfaction.

Generally, pathfinding in video games specifically is lacking research with not many re‐
cent papers covering the optimisation of such algorithms [25]. In fact, it appears that
most game developers will use the same handful of algorithms while only optimising
them slightly for their use. The goal of this investigation will be to firstly analyse a variety
of traditional pathfinding algorithms such as Dijkstra’s Algorithm, the A* (read as A star),
Breadth‐first Search and Best‐first search. Then, one of these will be picked to be opti‐
mised and improved and subsequently adapted to a python‐based video game. Due to
the nature of the programming language python, the game chosen will be rather simple
in nature and bemaze‐based to truly put the pathfinding algorithm to the test. The game
used will be an adaption of the Pygame space game by Alex Ter‐Sarkisov [1].
The aim is to discover whether a well established pathfinding algorithm can be improved
and adapted to a video game scenario. Pathfinding algorithms have a lot of potential
for improvement, however such improvements are not well researched for video games.
The objective of this thesis will be to analyse whether such improvements can be applied
to video games as well.

1.2 Scope and Objectives

To be able to fulfil the aim of this project, a selection of algorithms needed to be com‐
pared against each other. The A* was ultimately the algorithm that was chosen as it
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performed the best, but also since it is one of the most popular ones in many fields. Dif‐
ferent mazes are then set up in a python‐based video game which uses the A* algorithm
to guide a spaceship through a maze. A set of metrics are then tested and used to im‐
prove the A*.

The simplistic nature of the game will make the research process much easier as it will
use less computational resources. However, the idea is that findings could potentially
be used in much more modern and complex games. The changes explored here could
potentially improve the performance for even very complex games, possibly saving the
player memory and CPU usage, as well as time.

1.3 Overview and presentation of the research question

The aim is to discover whether a well established pathfinding algorithm can be improved
and adapted to a python video game setting. Research into pathfinding in video games is
still very limited, with only a few recent papers covering the topic. Pathfinding algorithms
have a lot of potential for improvement, with even very limited changes potentially hav‐
ing a great impact. The objective of this thesis will be to analyse whether improvements
made to the A* can have an impact on the speed of the algorithm in a video game. Most
video games, even very new titles, will still use classic pathfinding algorithms such as the
A* for their pathfinding needs. The changes explored here could potentially improve the
performance for very complex games, saving the player memory and central processing
unit (CPU) usage, as well as time.

The overall question this thesis is therefore trying to answer is whether the pathfind‐
ing algorithm in a video game can be improved. Or more specifically, whether the per‐
formance of the A* algorithm can be improved in a python based video game and how
these improvements could affect the performance of video games in the future.

This dissertation thesis will have a total of four chapters. The first chapter covered the
introduction to the topic, as well as the objectives of the research conducted. The sec‐
ond chapter will cover the literary background and context such as a general background
of artificial intelligence in video games and all important aspects of pathfinding in video
games. The third chapter will then focus on the comparisons of the algorithms and the
recording of the baseline values. The fourth chapter will cover the research process that
was conducted in order to improve the A* algorithm in a maze‐based video game. It will
also cover the testing phase and results. Finally, the fifth chapter will include a discussion
of the findings and a conclusion evaluating the work that was conducted as well as the
impact it will have on future research.
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1.4 Achievements

In this dissertation, knowledge of Pythonwas required in order to run all the video games
and any algorithm. Through in‐depth research and familiarisation of pathfinding algo‐
rithms, the aim of the project was achieved and the A* algorithm was successfully im‐
proved. Through an additional testing phase the limitations of these algorithm improve‐
ments were also uncovered. This is especially useful, should someone choose to use any
proposed algorithm in a video game or other project, as they can get an understanding
of when it could work and when it would be best to look into a different algorithm.
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2 Background and State‐of‐the‐Art

2.1 Background on video games

The video game sector is continuously growing and improving [3]. The earliest video
games such as Pong were more designed to be played with another player. However, as
technological advancements progressed, the great potential of video games was uncov‐
ered more and more. Instead, of mirroring real in‐person games that had to be played
with a second person, video games had the potential of entertaining people on their own.
Now, everyone could enjoy games alone when they had no one else to play with, fighting
boredombut for some loneliness aswell. With the exception of co‐operative games, such
as racing games or fighting games, all of which required an extra set of controllers that
were often pricey, most games became solo experiences. The earliest examples were
on the first computer systems, such as Spacewar for instance, gradually moving to dedi‐
cated gaming systems such as arcades and consoles. Some of the most notable examples
include Space Invaders, Frogger and Pinball. Ultimately, with the internet merging with
the video game industry, the focus was back onmaking video gamesmultiplayer again, in
some cases bringing together hundreds to thousands of players in the same game. How‐
ever, both single‐player or multiplayer games, as technology improved and becamemore
complex, became more demanding. Game engines improved with non‐playable charac‐
ters needing to become more human‐like and challenging to the player. Most games,
especially when single player, have as the main focus the player’s antagonists. In story‐
based or shooter games these aremost often violent opponents who will try to eliminate
the player, in racing games these will be other race car drivers that the player has to beat
or in survival games these will be animals or creatures that have the goal to kill the player.
These characters’ behaviour in video games is most often generated through game AI.

2.2 Artificial Intelligence in video games

Generally, the main purpose of having AI in video games is to provide players with the
most realistic experience, particularly in single player games [20]. The realism that a
game provides will lead to greater immersion into the game, which in return results in
the game being more entertaining to play. The greater the immersion and entertain‐
ment of the player, the more likely they are to keep playing it. For this reason, realism is
of great importance to game developers whowish for the player to retain interest in their
game. Also, having the game adapt to the player will allow more flexibility and freedom
for them. This then allows for a more open game too.

Game AI can generally be understood as a broad set of algorithms or coding structures
that will impact computer graphics, NPC or map behaviour and more. However, even
though over the years video games have reached very high degrees of realism, game AI
has not been following this trend. Generally, most game AI will be based on non‐adaptive
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methods, which means that there will not usually be any learning involved [10]. For this
reason, game AI cannot be understood as AI in the traditional sense. The methods not
adapting to user input will result in players often being able to exploit certain game me‐
chanics to their advantage. For instance, hostile NPC behaviour will be manipulated as
their patterns will become quite predictable to the player. Game AI would be charged
with picking attacks or attack patterns which the player will eventually be able to recog‐
nise and outsmart. Similarly, a well‐known example is that of the movement of enemies
in the game Dark Souls, where players will abuse the movement algorithms of the AI to
gain more experience points (XP). The player will get the enemy to chase them and sub‐
sequently lead them to a cliff where the enemy will fall down from and perish, while the
player gains XP from the killing. This is also an example of how game AI is exhibited in a
modern video game.

Game AI is not only used to mimic enemy behaviour but also ally behaviour. This will
mostly be the case in first‐person games such as “Half‐Life”, “Call of Duty” or “Overwatch”.
Where the role of an ally NPC cannot be filled by another human, game developers will
design game AI that will mimic the behaviour of another player. Here again, it is of great
importance to develop an AI that is realistic rather than perfect. This implies certain
movements that a human would make, or for example shooting not always hitting the
target or not perfectly dodging damage that is thrown their way. This helps the player
assume human intelligence where there is none. This also ties into the fact that the game
needs to be entertaining for players to keep enjoying it. If the AI ally makes the game too
easy for the player, it will not be as enjoyable and immersive. There are many other
examples of game AI such as changing the environment based on the players in‐game
decisions and even creating or changing dialogues. Yet, there will always be instances
where the AI’s behaviour will not match the game environment and appear inconsistent.
This phenomenon is called “Artificial Stupidity” and will include behaviour patterns that
humans might describe as lacking common sense or simply unrealistic. One example
being in the game Pokemon, a single player game where the goal is to collect creatures
that the player finds in the wild and fight the creatures of other “pokemon trainers”. It
is commonly known that often the AI that constitutes the pokemon trainers will pick at‐
tacks that make no sense in the fight that they are in. For example, they will pick a fire
attack against a fire pokemon, instead of picking a water attack that might have more
impact. For this reason, the game AI in the older Pokemon games is commonly described
as being “artificially stupid” [11].

However, over the past few years with the increased desire to make video games as close
to reality as possible, came also a desire to create the best human‐like behaviour possible.
Therefore, adaptive game AI has emerged with the aim of creating game AI that mimics
the human behaviour of always being able to adapt to changes in our environments. This
type of AI will use machine‐learning techniques that enable the NPCs and the game itself
to learn from the player’s behavioural patterns.

One example, being the method of using dynamic scripting, as described by Spronck,
Ponsen, Sprinkhuizen‐Kuyper and Postma in 2006 [28]. This method enables hostile ene‐
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mies to adapt to changing player tactics through pre‐defined elements. It will learn player
behaviour and tactics when they are acted out repeatedly through an algorithm. For in‐
stance, it will scale the game difficulty to the player skill in a role‐playing game. Other
examples will utilise methods based on reinforcement learning and decision‐making sys‐
tems [24].

Nevertheless, adaptive AI is still not very practical due to the large amount of memory
such a process would require and the amount of training that would need to be done for
the AI to appear very realistically. The game would need to be quite long and repetitive
in order to gather enough training data from a single player. A solution to this would be
to combine the data from all players and share the trained knowledge. However, such
methods are not very well researched yet. Thus, AI methods can be employed in many
different ways, mostly using non‐adaptive techniques as adaptive methods are not op‐
timised yet. Another important AI method in video games that is often overlooked are
pathfinding algorithms, arguably the most important non‐adaptive game AI.

2.3 The concept of pathfinding

Pathfinding algorithms, while at first glance not seeming like a traditional AI technique,
are an important aspect of many modern technological fields. Even though, they do
not have the property of learning as do other AI techniques, they are still considered to
have intelligent properties [27]. For instance, these algorithms give a non‐sentient agent
(should that be a NPC in a game or a robot in real life) the ability to navigate a space
intelligently and naturally, avoiding both fixed and dynamic obstacles without requiring
too much computational effort. This ties into the fact that most pathfinding algorithms
have been developed by AI researchers.
Such algorithms can generally be found in a lot of fields. Most consumers will have en‐
countered pathfinding in everyday life in GPS technologies such as in Satellite Navigation
Systems or Google Maps. Such algorithms are also used in the field of robotics to help
robots navigate 3D spaces.

2.3.1 General use of pathfinding algorithms

Generally speaking, pathfinding can be understood as the plotting of a path by a com‐
puter system between a start and an end node. This algorithmwill repeatedly search the
space until it finds the shortest path. However, most often finding the truly shortest path
can often take a long time depending on the size of the space it is run in. Therefore, com‐
promises had to be made in order to find paths faster. If a pathfinding algorithm finds
a path much faster, generally this path will not be the shortest and most optimal. It will
use techniques to smartly deduce which node it should travel to in order to find a path
in a speedy manner that is still adequate. In a best‐case scenario the algorithm some‐
times even finds the optimal shortest path. However, no fast algorithm can guarantee
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this with full certainty as this would imply that the algorithm knows every node and can
confidently say that the path chosen is the shortest one.

The average person will have most likely encountered a pathfinding algorithm in their
life. With the rise of mobile GPS devices, more users are relying everyday on Person‐
alized Route Recommendations (commonly known as PRR) in dedicated devices such as
Tom‐Tom or Garmin Sat‐Nav systems ormobile apps such as GoogleMaps andWaze [18].
Using online and satellite maps of road networks, PRR aims to generate for each user a
path from their location to a chosen end destination [15]. Such pathfinding can be very
challenging due to the many factors that need to be taken into account, such as environ‐
mental factors, personal preferences, temporal constraints and more. Such navigation
systems will often exend upon existing popular algorithms, such as Dijkstra’s and the A*
algorithm to effectively analyse the search space it is in and produce a high‐quality path
for the end‐user [18].

Another important application of pathfinding is in the field of robotics. Pathfinding in
this field is conducted in continuous and unknown 2D/3D environments [14]. Generally
pathfinding will start by creating a simplified grid‐like view of the search space through
skeletionization techniques [6]. Then, similar to navigation systems, it will use a pathfind‐
ing algorithm to find the end point from a starting location, the most common one used
being the A*. What makes pathfinding for robotics so important is the real‐life aspect it
has. Similar to satnavs it will use the real world as a search space, however the agent
travelling the created path is not sentient. Humans are most often able to avoid ob‐
jects that might obstruct them in their path, however robots do not have this ability on
their own. Therefore, the path created must take into account objects not only to create
the path to the goal but also to avoid any damaging collisions. This is also quite different
from pathfinding in video gameswhere again the agent is not sentient and needs to avoid
collision at all cost, however no real life damages can be done to themselves or the en‐
vironment. Other applications include logistics and crowd simulation, where pathfinding
algorithms will be used to control agents in real‐life simulations to analyse concepts such
as collision avoidance and multi‐agent pathfinding [26].

2.3.2 Use of pathfinding in video games

As previously discussed, pathfinding is an important AI method in video games. It en‐
ables non‐playable characters to appear more realistic and human‐like. Similar to agents
in robotics, the character is a non‐sentient agent that needs to navigate an unfamiliar
space while avoiding obstacles. However, in the case of video games, the search space
is pre‐defined and much smaller. It also does not have the truly unpredictable nature of
human life, making the setup of the pathfinding algorithm much more straight forward.
For instance, in a lot of older games obstacles will not move and other characters in the
game can be passed through. However, as games become more realistic themselves and
more visually demanding, pathfinding had to follow that trend as well. Some games can
now generate randommaps, making the search space as unpredictable as the real world.
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Other games, will have a large amount of moving objects or characters that seem to ap‐
pear in random patterns and locations, that the algorithm also needs to account for in
some cases.

Depending on the game, the pathfinding AI can have different goals and characteris‐
tics. For a first‐person shooter game, such as Bungie’s “Halo”, the algorithm would be
in charge of leading the hostile enemy character to the player while avoiding any obsta‐
cles in the way. In a similar fashion, in role‐playing games like Bethesda’s “Skyrim”, it
would be friendly characters that could be led to the player. In stealth games, where the
player has to sneakily avoid hostile mobs, the pathfinding algorithm would be charged
with moving through the space in a predictable manner. The player is then able to anal‐
yse the enemy’s movement while attempting to stealthy go passed it. An example of
such a game is Naughty Dog’s “The Last of Us”, where the player is charged with avoiding
zombies amidst an apocalypse. In race games, the algorithm is needed to control your
racing opponents. For example in games like Nintendo’s “Mario Kart”, the enemy charac‐
ters will not be pre‐programmed to drive a certain path since they are also charged with
bumping into and throwing items at the player, while the player drives in unpredictable
ways. However, pathfinding is not only used to navigate non‐playable characters through
a space in a video game. In games like Rockstar’s “Grand Theft Auto”, the player has a
map that can be used like a GPS to find a path to a certain location. This is especially help‐
ful while driving a car, and the player is able to choose whatever location they wish to
travel to. Themap then forms a path from the current location to the chosen destination,
which the player can then follow like they would on a real map.

2.4 Game world geometry

Typically, pathfinding algorithms can be presented on a simple graph or grid‐like map
structures. Gridmaps will create a representation of the environment using small regular
shapes called “tiles”. Less complex games will generally go for such a representation of
theworld as it is simple and easy to understand for the pathfinding algorithm. An example
of such a map representation can be seen here:

Figure 2.1: Grid Map
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These types of maps will be used for more simplistic scenarios as they come with many
implications. For one, the movement from one tile to another can vary greatly depend‐
ing on the game. The agent could simply travel from one tile to another, always ending
in the centre of the tile. Or it could also consider moving the agent on edges and ver‐
tices. Similarly, one may also wish to allow diagonal movement where the cost could be
weighted differently. Also, if the tiles are particularly large when compared to the size of
your agent, it could also be considered to move it from one edge to another. These con‐
siderations also need to be made when remembering that most of these maps will have
obstacles that the agent will encounter. Often, these obstacles will end up also having
edges and vertices that need to be considered by the algorithm depending on their size
relative to the tile.

For map representations in more complex games the most common alternative is the
use of polygons. This type of representation is typically used when the movement across
large areas is uniform and if the agents can move in straight lines instead of going from
tile to tile. Find below a small example of such a map:

Figure 2.2: Polyglon Map

The example above shows a polygon map where an agent needs to travel from a start to
an end point while avoiding two obstacles of different sizes. As can be seen, there are
several waypoints, known as navigation points, that are defined on the map as seen on
different parts of the polygons. For the pathfinding algorithm to know which points are
connected, it needs to build a visibility graph. This graph represents pairs of points that
can be seen from each other [8]. The purpose of this is to check the line of sight from
existing vertices and add edges where needed. There are many simple algorithms that
do this especially onmore simplistic non‐changingmaps, however formore sophisticated
maps a more powerful algorithm is needed.

As seen above, polygon maps are used in more simplistic game maps for pathfinding.
However, more complex environments will most often use a similar concept known as
navigation mesh (Nav Mesh for short). In such maps the obstacles are not represented
as polygons, but the walkable areas are. The polygons in such a mesh need to be con‐
vex in order for the agent to move in a single line. Often in more complex games these
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walkable areas can even include additional conditions such as height, or the requirement
of swimming, or greater movement cost…etc. For navigation meshes, the agent can in
the simplest form travel like on a grid where they travel from one centre to another, or
through edges and vertices as navigation points. Find below an example of such a map:

Figure 2.3: Navigation Mesh

As on a grid, the centre of the polygons can be defined as a first set of nodes in the
environment. Edges and vertices can be used to define navigation points on the map. In
addition to this, the algorithm will add the start and end nodes to the map that can be
anywhere but the obstacles (as can be seen below).

Figure 2.4: Navigation Mesh 2
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Figure 2.5: Navigation Mesh 3

2.5 Pathfinding algorithms

For an agent to be able to travel from A to B, an algorithm is needed that evaluates the
space and defines the path. There are several algorithms that are commonly used, and
some of the most popular ones will be discussed here.

2.5.1 Dijkstra’s algorithm

Dijkstra’s algorithm was the first response to the pathfinding problem and was the algo‐
rithm of choice for a long time [5]. It works by conducting an exhaustive search of the
entire graph, meaning it searches the shortest path for every node from the start node.
The complete process of the algorithm works as follows:

0. The starting node will be considered as solved.
1. Identification of all unsolved nodes that are connected to any solved node (in the

case of the first step, the starting node).
2. For each line connecting a solved node to a unsolved node, calculate the cost.
3. Choose the node with the smallest cost. If there is a tie, then a random node is

chosen.
4. Change the status of the node with the lowest cost from unsolved to solved.
5. Add a line to the set keeping track of the overall path.
6. Repeat steps 1–5 until the goal node is reached.

The cost for Dijkstra’s algorithm is calculated as follows, where g(n) is the cost thus far
to reach node n:

f(n) = g(n)
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This method ensures that the shortest path is always found. However, for larger maps
or matrices, this can lead to great processing times and high computational efforts. In
response to these issues, the A* algorithm was created.

2.5.2 A*

The A* algorithm is one of the most used algorithms for pathfinding. It can also be ap‐
plied to many non‐pathfinding problems in engineering and robotics for instance. It is
very commonly used in video games as it performs very well and is easy to implement
[12]. However, it can also suffer from high CPU and memory usage, as well as high pro‐
cessing times. These issues can ensue for a large variety of reasons, such as computa‐
tional limitations as well as the heuristic function used.

In essence, the A* analyses repeatedly the most promising closest unexplored node until
it reaches the end node. It compares well to Dijkstra’s algorithm, as it is an improved
version of it. Unlike Dijkstra’s, which analyses all the nodes on the map, it will use an
adapted cost function to determine whether a node is worth travelling to. This adapted
function uses heuristics in its calculations. These heuristics add a layer to the previously
discussed Dijkstra’s function that enables the algorithm to run faster as it won’t explore
all the nodes. Once the cost for a step is calculated, the node with the lowest cost will
then be picked. The process is then repeated until reaching the goal node. While doing
so, the algorithm makes a note of all the nodes it encounters and adds them to what
is known as the priority queue or the open set. For this reason, the A* has very large
computational and memory requirements.

2.5.3 The cost function

The algorithm uses the cost function f(n) that calculates the estimated cost of the path
using the node n (i.e. the current node). The function looks as follows:

f(n) = g(n) + h(n)

where
• f(n) = total estimated cost of path through the node n

• g(n) = cost thus far to reach the node n

• h(n) = estimated cost from the node n to the end node.

Therefore, f(n) merely produces an estimated cost for each node and is considered a
heuristic function. The algorithm works by calculating the f(n) cost estimate for all ad‐
jacent cells to the node where it is currently situated to then travel to the node with
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the lowest cost. The process is repeated until the goal node has been reached. Now,
to understand how the function works it is important to understand each component of
the function. While f(n) simply refers to the overall cost estimate, g(n) represents the
overall cost so far to reach the node in question n. Now, h(n) can be understood and
done in a variety of ways. The most common method used is the Manhattan distance.
As mentioned previously the heuristic aspect of the A* is what makes it different from
Dijkstra’s algorithm. Thus, if in the A* h(n) = 0 it becomes Dijkstra’s algorithm and will
guaranteed find the shortest path.

Find below all the steps the A* algorithm takes when calculating a path.
1. Create the open set.
2. Mark the start node as open and calculate f(n).
3. From the open set, select the node with the lowest f ‐score. Ties are solved arbi‐

trarily, but in favour of the best node.
4. Otherwise, the current node with the lowest f ‐score is marked as closed. For all

nodes adjacent to the current node, if it is walkable or if it is marked as closed, it
is ignored. Otherwise, if the node is not currently on the open list, it is added and
calculate the f ‐score for it. Alternatively, should the node already be on the open
list, check if the path to that node is better using the g‐score.

5. If the currently selected node is the goal node, it is marked as closed and the algo‐
rithm is terminated.

6. If the target square cannot be found and the open list is empty, no path is created
and the algorithm is terminated.

2.5.4 The heuristics

Moreover, it is important to pick a good heuristicmethod in order for the A* to perform to
the best of its abilities. In an ideal scenario, h(n)would be equal to the exact cost it takes
to reach the final node. This is evidently not possible as it cannot know the path before‐
hand. Another factor that is important when choosing a heuristic function is that it has
to be admissible. This means that it can under no circumstances overestimate the cost
to reach the end node. Examples of such admissible heuristics are Manhattan distance,
Hamming distance, Euclidean distance and therefore also h(n) = 0. The Manhattan dis‐
tance works very well with the A* as is calculates an h(n) that is less than the cost of
reaching the goal node. As can be seen below, it is computed by determining the overall
number of squares travelled vertically and horizontally to reach the goal. This method
will ignore diagonal movement as well as obstacles. It can be understood as follows:

h = |xstart − xdestination|+ |ystart − ydestination|

Due to the nature of this method, the algorithm will prefer straight line movements. An‐
other very popular heuristicsmethod is that of the Euclidean distance. The function looks
as follows:

h =
√

(xstart − xdestination)2 + (ystart − ydestination)2
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Compared to theManhattan distance it is far more precise and accurate, however due to
this precision it is much slower.

2.5.5 Limitation of the A* algorithm

Nevertheless, the heuristics aspect of the A* is at the same time its greatest limitation.
While it gives the algorithm a significant edge over Dijkstra’s in terms of speed, it is also
not as reliable if the goal is to find the shortest path. Since the heuristic is a mere esti‐
mation of the cost from the current node to the end point, it adds a level of uncertainty
to the path. Since this aspect is an estimation, it renders the whole path an estimation
as well. This means that f(n) overall becomes a heuristics function rather than a fool‐
proof algorithm with an optimal solution. Yet, the Dijkstra’s algorithm always examines
the whole search space, leading to a stage where it will know all nodes on the map and
therefore be able to deduce the truly optimal and shortest path to the goal. As can be
seen in Figure (ref), the A* works with estimation from node to node, while Dijkstra’s
examines every node and then finds the shortest path.

However, in many cases the trade‐off between speed and finding the truly shortest path
can be argued as being needed. This is especially the case in video games, where the
player would rather have the enemy come right at them even if this takes a couple more
steps (something the player would probably not notice anyway), instead of having towait
for the game to compute the exact shortest path.

2.6 Other types of pathfinding algorithms

2.6.1 Breadth‐first search Algorithm

The Breadth‐first search algorithm is a traversing algorithm that visits each node of a
graph or tree in a breadthward motion. The algorithm starts at a selected node and
explores all the neighbour nodes before moving to the nodes at the next level. The steps
are as follows:

1. Choose any node to be the starting node.
2. Explore and traverse any unvisited node that is adjacent to the starting node.
3. Mark any traversed node as completed.
4. Move to the next layer of adjacent unvisited nodes.
5. Repeat this process until all nodes are marked.
6. Create the path going backwards.

The Breadth‐first search finds the shortest path from a given starting node to all other
nodes. It has different applications, for example network analysis, map routing, as well
as puzzle solving.
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2.6.2 Best‐first search algorithm

The Best‐first search algorithm uses an evaluation function to choose themost promising
node (from all available nodes) to traverse the graph to that node.
A variation of this algorithm is the Greedy Best‐first Search algorithm, which first expands
the node which has the smallest estimated heuristic cost to the goal node. It does how‐
ever not take into account the cost thus far to reach the current node. The costs of the
nodes is stored in a priority queue.
The A* algorithm is a Best‐first search algorithm however it cannot be categorised as
greedy as it takes into account g(n), which makes it more optimal than the greedy Best‐
first search algorithm. The steps of the Best‐first search a similar to those of the A*.
However, what differs is how a node is chosen to be included in the path. It does not
take into account the cost so far to reach the node and only traverses using the heuristic
function.
Therefore,

f(n) = h(n)

This also implies that if the A* algorithm has g(n) = 0 then it turns into a Best‐first search
algorithm.

2.7 Improvements of pathfinding algorithms

Knowing how pathfinding algorithms work, it can now be understood how these could
potentially be improved. Generally, the improvements of such an algorithm lead to either
better processing time performance, better paths (meaning the shortest or most optimal
path), the reliability in finding the best paths, lower CPU and memory usage, or all of
the above. These improvements are generally made by either improving the hardware
the algorithm runs on, improving the map, creating a new algorithm or improving the
heuristics.

2.7.1 Improvement of the hardware

The simplest solution for improving the performance of a search algorithm is to improve
the hardware the game and the algorithm runs on. A better CPU and more memory will
result in the whole computational aspect running faster and having lower memory us‐
age. However, in the realm of gaming this will be an aspect the user has to take care of.
A player with a better PC for instance, will have a game that runs smoother and evidently
a pathfinding algorithm in the background that runs at a much faster pace. Similarly for
consoles, where younger consoles (e.g. PlayStation 3 vs PlayStation 4) will have better
components which means the game will run much smoother. However, this is an ex‐
pectation that cannot be met by every consumer meaning that the game developers will
have to find a way of optimising their algorithms and ultimately their games.
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2.7.2 Improvement of the map

One way of doing so is by improving the way the map is laid out or what type of map
is used. A recent study conducted by Adaixo from 2014 used the influence map of a
game, meaning the map that represents game information such as events or strategic
and tactical decisions to optimise pathfinding in video games. This resulted in better
time performance and less memory usage as well [7]. Similarly, a study from 2013 by Lee
and Lawrence developed an entirely new pathfinding algorithm they called DBA*. It uses
a database of pre‐computed paths to effectively reduce the search time. This method
claims to require less memory and time to compute, compared to real‐time search algo‐
rithms such as the A* [13]. Another study by Cui and Shi from 2011 developed a method
of directionoriented pathfinding, where the search space is laid out as ann‐sided polygon
navigation mesh, instead of a more conventional graph or grid, and popular algorithms
such as the A* can then be used to find the shortest path [4]. This is supposed to pro‐
pose a higher quality path and use less time and memory. Similarly, a study by Anguelov
from 2011 also proposes a new algorithm bases on the A* called the Spatial Grid A*. This
method uses grid‐based navgraphs, a way of storing the entire game environment and
spatial information. The algorithm stores this information as a bitmap image resulting in
lower memory usage overall [8].

2.7.3 Improvement of the algorithm and heuristics

Generally, if an algorithms needs to be improved the easiest solution is to analyse the
algorithm itself and how it is run. For any kind of algorithm, small changes to how it
is coded or set up can lead to improvements in time as well as general performance.
Over the years, there have been a few papers proposing improvements to pathfinding
algorithms. For instance, a paper by Lina and Yungfeng from 2010 proposes an improved
version of the A* that searches less nodes in order to ensure higher efficiency of the algo‐
rithm. This is achieved by introducing a new function that improves the heuristic aspect
of the A* cost function [19]. Similarly, a paper by Mathew from 2015 proposes a similar
method found on direction based heuristics that speeds up the overall search process of
algorithms such as the A* and Breadth‐first Search. It only evaluates only the necessary
nodes on the map and eliminates redundant nodes from the graph, reducing memory
usage effectively [5]. Another paper by Peng, Huan and Lao proposes a very unique way
of improving the A* algorithm by improving the method of storing and accessing infor‐
mation in the open set. Their proposed improved algorithm is able to access information
from the open set in one operation, as opposed to traversing the information of multi‐
ple nodes in the original A*. This proved to increase the operating efficiency by more
than 40% [14]. There has also been a limited amount of research conducted into the
development of adaptive algorithms for player and enemy movement. A recent study
conducted by Wang, Wu, Zhao and Lin developed an empowered version of pathfinding
algorithms that uses deep learning and machine learning to generate user‐specific route
suggestions [18]. However, such amethod has not been adapted to video games just yet.
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Finally, a commonmethod that is often explored in regards to search algorithms is adding
aweight parameter. This addedweight to the heuristic score can be used to influence the
balance between the quality of the solution and the search effort [21]. For the weighted
A*, it is generally commonly assumed that increasing theweight on the heuristic estimate
leads to faster searches overall. This is a parallel to the previouslymentionedGreedy‐best
search that only uses the heuristic cost to create a path. This means that the higher the
weight in the weighted A*, the more it becomes like a greedy search. However, this also
comes with the added flaws of occasionally expanding more nodes than the A*, leading
to paths that are not optimal. Also, it is known that increasing cannot always guarantee
a faster search [22]. Moreover, it is important to note that not a lot of literature exists
of the benefits of weighted search algorithms in gaming. For this reason, this project will
investigate whether the weighted A* could increase the speed of the search.

Now, it is important to understand which improvements would benefit a video game the
most. It seems frompast studies that themost sought after quality of an improved search
algorithm is speed and less computational usage, rather than path quality or optimality.
These also make sense in video game context, as players would most likely prefer a game
that runs faster, smoother and has lower CPU and memory usage, than have a game that
always finds the shortest path in a pathfinding problem. Most games require focus and
attention and generally immerse the player, leading to the average player not paying at‐
tention to smaller details such as the amount of steps it took for an enemy to approach
them. And since these most players most likely value their PC resources and time over
other factors, it can be assumed that these metrics are what need to be improved in a
search algorithm.
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3 Comparison of algorithms and record‐
ing of baseline results

This chapter will cover all the work that was done before the algorithms improvements
and the testing phase. It will discuss the algorithm comparisons that were conducted
until ultimately choosing the A*, as well as the recording of all the baseline values that
will be used for comparison in the improvement and testing phase.

3.1 Comparison of algorithms

The research process began by deciding which algorithm should be chosen to be im‐
proved. To do this, some of the most popular pathfinding algorithms were chosen and
compared against each other. The algorithms chosen were A*, Dijkstra’s, Breadth‐first
search and Best‐first search. Using the online tool by Xueqiao Xu, the pathfinding algo‐
rithms were put to the test on the same arbitrarily created map (see Figure 3.1) [2]. This
particular algorithm tool was chosen to ensure all algorithms could be tested on the same
map and in the same context for a fair comparison. The testmapwas designed to be large
in size and with a significant amount of windy roads and dead‐ends.

Figure 3.1: Algorithm test Map (green square = start node, red square = end node)

Several heuristic distances were tested as well for the A* and Best‐first search. The re‐
sults of this comparative process can be found in the table below:
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Algorithm Length (in cm) Time (in seconds) Heuristics
A* 88.18 7 Manhattan
A* 88.18 8 Euclidean

Best‐first search 92.33 2.5 Manhattan
Best‐first search 94.33 3.7 Euclidean

Breadth‐first search 88.18 49 None

Dijkstra’s 88.18 16.2 None

As can be seen above, the A* algorithm consistently outperforms the other algorithms
by finding the most optimal shortest path in the shortest amount of time. It can be con‐
firmed that this is the shortest path as it matches the result of the Dijkstra’s algorithm
which will always find the shortest path as it analyses every node. Nevertheless, the
Best‐first Search appears to be much faster than the A*, however it often will not find
the shortest path.

Now, considering these results, it would be of the greatest interest to attempt to im‐
prove the A*. As it already outperforms the rest, it would be interesting to see if it can
achieve similar times to the Best‐first search, while keeping the quality of the path. Fur‐
thermore, as previously discussed, the A* is still one of the most used algorithms, not
only in gaming, but in many other fields. Improving it could greatly benefit future games
as well as potentially affecting other sectors too. Therefore, the A* will be chosen as a
base algorithm for all incoming improvement attempts and tests.

3.2 Description of the Pygame‐based maze game and the
baseline mazes

As important as the choice of algorithmwas the choice of which game the improvements
should be tested on. Due to technical limitations, the game chosen had to be run in
Python. The best platform of choice for games based in Python is Pygame. Pygame is a
set of modules containing graphic and sound libraries used to create video games in the
programming language Python. The game chosen was an open‐sourcemaze based game
built by Alex Ter‐Sarkisov. The game gives the player the ability to create a maze, which a
spaceship then has to navigate. The player also gets to decide the starting position of the
ship as well as the goal it has to travel to. A screenshot of the game is shown in Figure
3.2.
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Figure 3.2: Example Screenshot of the Pygame‐based video game by Alex Ter‐Sarkisov

In order to ensure consistency across all tests performed, the background was altered in
order to define a clear space where all mazes were built. The space was defined by a
red box that was central to the overall background. This ensured the best computational
efforts as the space was smaller, as well as easier construction of mazes. An image of this
adjustment can be found in Figure 3.3.

Figure 3.3: Adjusted background of the game

Formostmazes, the lines of this central spacewere used to define thewalls of themazes.
Due to the game not containing a feature to save mazes, it was of great importance to
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have a clear structure that could be followed to ensure all mazes could be replicated. For
all improvements that will bemade, eachmaze had to be run several times to gather time
metrics that were then averaged and compared. These times would not be accurate if
the mazes were not the same at every run.

3.3 The baseline mazes

As previously discussed, to increase player satisfaction the two metrics that would be of
greatest interest are CPU usage and speed. This thesis paper will focus on improving the
speed of the pathfinding algorithm. Speed in this case represents the time it takes for the
algorithm to find a path from the start node to the goal node. Specifically for the game
used, it represents the time after the maze is built and the player hits the “space” button
on their keyboard until the algorithm finds a path on screen. Before any tests could be
performed, base values had to be recorded for a total of five baseline mazes. These were
used to record all the baseline values for the unchanged original A* algorithm, as well as
the first values for the improved algorithms.

The first maze has a rather simple structure with long corridors and paths that lead to
dead‐ends that could confuse the agent. An image of this maze can be seen in Figure 3.4
along with the solution the A* finds in Figure 3.5.

Figure 3.4: Maze no.1

21



Figure 3.5: Maze no.1 solution

The secondmaze (see Figure 3.6) was built to have even more long and windy roads with
several dead‐ends and paths the agent could take. The solution can be found in Figure
3.7.

Figure 3.6: Maze no.2
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Figure 3.7: Maze no.2 solution

The third maze (see Figure 3.8), is the only baseline maze that expands outwith the red
centre box. This was done purposefully to ensure symmetry. The idea behind this maze
was to give the agent two paths with the same distance, thus same cost and see which
one they would prefer. As can be seen in the solution in Figure 3.9, the unchanged A*
prefers to travel downwards at every run.

Figure 3.8: Maze no.3
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Figure 3.9: Maze no.3 solution

The fourth and fifth maze (Figure 3.10 and Figure 3.12) were designed to be the most
complex and convoluted mazes out of the bunch. They include a large amount of paths
the agent can take, while also including many cul‐de‐sacs too. The solutions to both can
be found in Figure 3.11 and Figure 3.13.

Figure 3.10: Maze no.4
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Figure 3.11: Maze no.4 solution

Figure 3.12: Maze no.5
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Figure 3.13: Maze no.5 solution

The above shown mazes were then used to record the baseline values for the original
A* algorithm before any improvements are made to it. All values using the improved al‐
gorithms are then compared against these. Due to background noise that will interfere
with the times, all base metrics were recorded 10 times and then averaged out to form
an average number for each maze. However, please note that most recorded time val‐
ues were very similar and only had millisecond differences. These baseline numbers can
be found in the table below, with the time represented in seconds and rounded to four
decimal places.

Maze Average time (in seconds)

N. 1 0.2796
N. 2 0.2419
N. 3 0.3131
N. 4 0.2498
N. 5 0.2989

Another important note to make before proceeding is that all algorithms used from here
on out will have the same cost for every step. This means that every step the algorithm
analyses will have equal costs and no node will cost more to be travelled to.
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4 Improving the algorithm

4.1 Improving the A* using weights

Firstly, the decision was made to attempt improving the speed of the algorithm using the
weighted A*. As mentioned prior, it is a popular method of improving search algorithms,
frequently used in fields such as robotics and more. The interest here is to investigate
the impact this particular algorithm could have in a video game context. It is known to
significantly increase the speed by trading off optimality of the algorithm. The goal here is
to analysewhether such a trade‐off canwork for video games too, since so far this has not
been researchedmuch. Video games are generally not as computationally demanding as
robotics or complex satellite navigation systems. Therefore, the question arises whether
the weighted A* can make a significant time improvement here on a much smaller scale,
considering the baseline processing times are most likely already significantly lower than
in more complex games for example.

4.1.1 Background on the weighted A*

While the A* works by following the function f = g ∗ h, the weighted A* adjusts the
heuristic component as follows:

f = g ∗ ε ∗ h

If the weight is 1, nothing changes and the normal A* algorithm runs, however if the
weight is 0, this will create Dijkstra’s algorithm. Thus, for the weighted A*, ε > 1. In this
case, ε represents a weight that is used to increase the heuristics value. This creates a
bias towards the nodes that are closer to the goal node [21].

4.1.2 Adaptation of the weighted A*

The weighted A* was run with the weights 1.2, 2.5 and 3.5 to ensure a good spread of
values. The weights of 2.5 and 3.5 are commonly used for the weighted A*, while the
1.2 weight was picked as it only presents a slight change to the original A* algorithm and
it was of interest to see whether a small change could make a significant impact. Every
weight was tested 10 times on every previously mentioned maze. As with the baseline
values, this was to account for any computer background noise that may be affecting the
values. The results for each maze were then averaged out to create an overall time for
each maze.

The mazes used were the same ones as for the baseline values to ensure a fair com‐
parison (see Figure 3.4, Figure 3.6, Figure 3.8, Figure 3.10 and Figure 3.12). The values
can now be seen along with the average non‐adjusted values in the table below. The
average times for all mazes are given in seconds and rounded to four decimal places.
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Maze Baseline Average time (1.2) Average time (2.5) Average time (3.5)
N. 1 0.2796 0.2933 0.2674 0.2862
N. 2 0.2419 0.2382 0.1556 0.1606
N. 3 0.3131 0.2407 0.2357 0.2467
N. 4 0.2498 0.2337 0.2262 0.2412
N. 5 0.2989 0.2652 0.2587 0.2567

4.1.3 Results after implementation of the weighted A*

As can be seen in the table above, the results of this improvement attempt appear to
be not very significant. Firstly, the algorithm using the 1.2 weight performed worse for
the first maze than the original A*. However, this could be linked to background noise
interfering with the values, meaning they would normally be similar in time. The other
values for that algorithm seem to be slight improvements. Yet again, it is quite difficult
to confirm this due to background noise. For the algorithm that used a weighting of 2.5,
the averages seem to be slightly better across the board with the value for maze 2 being
particularly good. And for the last algorithm with a weight of 3.5, the values start to rise
slightly again. However, it still performed better than the 1.2 weighting. When it comes
to the quality of the path, all the path solutions found by the weighted A* algorithmwere
identical to the original A* (see Figure 3.5, Figure 3.7, Figure 3.9, Figure 3.11 and Figure
3.13). Therefore, no optimality was lost when implementing the weighted A*. Overall,
the results of the weighted A* were either not significant or not impactful enough to be
considered a satisfactory improvement of the original algorithm. The slight differences in
values are not consistent enough and could be the by‐product of computer noise affecting
the speed times. Therefore, other adjustments had to be tested in order to improve the
search times of the algorithm.

4.2 Improving the A* using heuristics adjustments

4.2.1 Improvement attempt using the maximum f ‐score and random‐
ness

As the results of theweighted A* did not give any satisfactory results, other improvement
attempts were made to increase the speed of the algorithm. As mentioned before, the
A* chooses a path through heuristic estimates given by the function f(n). The algorithm
will choose the node with the lowest f ‐score from the open set in order to build the path
to the goal node. In theory, this should have as a result the best possible path, should the
heuristic value be the most optimal. Inspired by the weighted A*, the idea was to find
another improvement to the overall algorithm process that could increase the search
time. Therefore, it was attempted to change the way the algorithm chooses nodes to
build a path. Since in normal fashion it will deliberately choose the node with the lowest
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f ‐score, it would be interesting to find out what would happen if the algorithm was told
to choose the nodes with the highest f ‐score. No past research could be found on that
topic, most likely as it might seem paradoxical to attempt this.

Additionally, it is important to note that during the recording of the baseline metrics,
it was discovered that paths were always the same, no matter how many times the al‐
gorithm was run. This means that overall, the algorithm seems to lack randomness in
the way it creates paths. Therefore it would be interesting to investigate whether added
randomness could improve performance speed. It is often the case that randomisation
can help increase speed in an algorithm. Therefore, a second improvement was made
where the algorithm would choose a f ‐score randomly from the open set.

Therefore, two improvement attempts will now be made onto the original A* algorithm.
On the one hand, it will be investigated whether added randomness can aid in increasing
the speed of the algorithm. And on the other hand, whether letting the algorithm choose
the max f ‐score can also affect the search speed.

4.2.2 Implementation of the new changes

Firstly, the algorithmwas adjusted by letting it choose a random value from the open set.
This means that instead of choosing the lowest value from it, it picked one at random,
which was then used to determine which node should be travelled to next. Then, in a
second file, the original algorithm was altered once more, but this time by making it pick
the highest f ‐score out of the open set. Both new algorithms were then tested on the
five previously seen baselinemazes (see Figure 3.4, Figure 3.6, Figure 3.8, Figure 3.10 and
Figure 3.12). For each maze, each algorithm was run 10 times with the values then being
averaged. Find below the table of these averages given in seconds and rounded to four
decimal places.

Maze Baseline Average time (max) Average time (random)
N. 1 0.2796 0.1611 0.2523
N. 2 0.2419 0.1782 0.2445
N. 3 0.3131 0.0722 0.2607
N. 4 0.2498 0.1059 0.2565
N. 5 0.2990 0.1447 0.2877

4.2.3 Results after implementing the two improved algorithms

As can be seen in the table above, the random algorithm showed slight improvements
to the search speed times, similar to the weighted A*. Yet again, these slight improve‐
ments could be linked to computer noise affecting the times which is why it can not be
confidently said that the algorithm is a true improvement. However, the algorithm using
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the maximum f ‐score showed significant improvements across the board. The third al‐
gorithm especially seems to have been affected positively by this new algorithm.

However, as with the weighted A*, it is important to analyse the quality of the path as
well, since generally, increase in speedmeans the quality of path can suffer in a trade‐off.

Figure 4.1: Improvement phase ‐ maze 1 (max)

Figure 4.2: Improvement phase ‐ maze 1 (random)
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Figure 4.3: Improvement phase ‐ maze 2 (max)

Figure 4.4: Improvement phase ‐ maze 2 (random)
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Figure 4.5: Improvement phase ‐ maze 3 (max)

Figure 4.6: Improvement phase ‐ maze 3 (random)
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Figure 4.7: Improvement phase ‐ maze 4 (max)

Figure 4.8: Improvement phase ‐ maze 4 (random)
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Figure 4.9: Improvement phase ‐ maze 5 (max)

Figure 4.10: Improvement phase ‐ maze 5 (random)

As can be seen from the figures above, there are some variations between the two new
algorithms themselves, as well as the baseline solutions. These changes are not much
of a surprise since the method with which the algorithm chooses to create paths was
greatly altered. However, in the case of these five mazes, the proposed new paths do
not seem to lose much in quality. There appear to be extra steps in a few paths, but
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none completely wander off‐course and create long travel times. A player would most
likely not notice these differences. Thus, in the case of these mazes, the algorithms are
adequate improvement suggestions.

4.3 Testing the improvements using random mazes

4.3.1 Comparison of the optimality of the paths

The first maze was simply the map without any obstacles, with the start node and the
goal node being positioned at opposing corners of the screen (see Figures 4.11, 4.12,
4.13 and 4.14).

Figure 4.11: Testing phase ‐ maze 1 (normal)
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Figure 4.12: Testing phase ‐ maze 1 (max)

Figure 4.13: Testing phase ‐ maze 1 (random)
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Figure 4.14: Testing phase ‐ maze 1 (weighted)

As can be seen, theweighted A* performed the best in terms of path quality. The random
algorithm had a few deviations, but nothing major that a player would notice. However,
the maximum f ‐score algorithmwent completely off‐course by travelling across the map
in a series of sharp turns.

The second maze was built using the same wall references than in the original mazes,
however the obstacles were all laid out in a grid like pattern (see Figures 4.15, 4.16, 4.17
and 4.18).
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Figure 4.15: Testing phase ‐ maze 2 (normal)

Figure 4.16: Testing phase ‐ maze 2 (max)
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Figure 4.17: Testing phase ‐ maze 2 (random)

Figure 4.18: Testing phase ‐ maze 2 (weighted)

In this configuration of the map, all algorithms seem to have performed adequately. The
weighted A* once again creates the same path as the original, while the random algo‐
rithm travels further to the right of the maze. The maximum f ‐score algorithm seems to
travel completely to the right, being close to the wall and only taking one turn.

Finally, the thirdmaze used the same open concept asmaze 1 however, the start and goal
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node were separated by a dotted line of blocks (see Figures 4.19, 4.20, 4.21 and 4.22).

Figure 4.19: Testing phase ‐ maze 3 (normal)

Figure 4.20: Testing phase ‐ maze 3 (max)
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Figure 4.21: Testing phase ‐ maze 3 (random)

Figure 4.22: Testing phase ‐ maze 3 (weighted)

Finally, here all four algorithms seem to have performed very similarly with the random
algorithm and the maximum f ‐score algorithm only adding one turn to the path. Once
again, these would be changes that a player would not mind and therefore the paths are
adequate.
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4.3.2 Results of the final testing phase

Now that the optimality of the paths has been analysed, the speed of the algorithms in
the testing phase will be discussed. First, it is important to note that since the weights
in the original tests did not give conclusive results, only one iteration of the weighted
A* was included. The weighting was set to 2.5 as it seemed to have performed the best
out of the three proposed weights. The time comparisons for the base algorithm, the
weighted A*, the random algorithm and the maximum f ‐score algorithm can be found
in the table below, with the times being in seconds and rounded to four decimal places.

Maze Original A* Average time (max) Average Time (random) Average time (weights)
N. 1 7.3633 6.5181 7.3828 1.0159
N. 2 0.5184 0.1321 0.5183 0.2957
N. 3 7.0826 0.03402 4.0009 7.1316

What can be seen from these numbers is that for maze 1, the weighted A* surprisingly
performed the best out of all algorithms, followed by the maximum f ‐score algorithm.
The random algorithm seems to perform slightly worse than the original A*. It seems
that for the second maze, the random algorithm was also outperformed by the other
two, with the maximum f ‐score algorithm performing slightly better than the weighted
A*. Finally, in the thirdmaze, the random algorithm seems to have significantly improved
the search time, while the weighted A* seems to not have had much impact. However,
the maximum f ‐score algorithm has made an immense improvement here once again.

These times show that the maximum f ‐score algorithm creates great improvements in
terms of speed for some maps. However, as can be seen for the test maze 1, the quality
of the path is simply not worth the time that is gained from using the maximum f ‐score.
It seems that in the case of that algorithm, confined spaces are better suited since the
option for paths is more limited. For the times where the maximum f ‐score algorithm
seems to suffer, the weighted A* seems to be a great backup option, clearly outper‐
forming it in the first maze. However, the random algorithm consistently stays behind in
terms of speed, yet it seems to consistently give adequate paths. It appears to be a good
middle‐ground option should there be no room to run tests on the game.
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5 Discussion and Conclusion

5.1 Discussion

The results from the first improvement attempt have shown that the weighted A* did
not effectively work in this particular testing context. If there was an improvement in the
processing times, then these could not have been detected effectively due to computer
noise that affects the times as well. The general hypothesis as to why this was the case is
that the game and search spacemight have been too small. A smaller search space led to
a lower search time, resulting in the weighting not having a great impact. This does not
mean that it should not be seen as a viable option to improve pathfinding. From what
was seen during the testing phase, the algorithm could improve times over the proposed
algorithm and the original A*, as was seen in the test map 1 (see Figures 4.13 and 4.14).
It is most likely that open search spaces with less objects have more success with the
weighted A*. However these are just speculations and more research should be con‐
ducted into finding out what factors affect the weighted A*.

Now, the second improvement phase tested two more algorithms, which also produced
interesting yet mixed results. The random algorithm appears to somewhat affect work
better than the original A*, however only during the testing phase for test maze 3 (see
Figures 4.21 and 4.22) can a significant improvement be detected. It appears that here
again, the map seems to have an influence on what algorithm will work best. Addition‐
ally, the maximum f ‐score algorithm seems to have produced some of the more impres‐
sive time differences, with its downside being the optimality and quality of the produced
paths. The layout of the map, but also the location of the start and end node seem to
play a role in the quality of the produced path. As can be seen in the test maze 1 (see
Figures 4.11 and 4.12), when there are no obstacles and the start and end node are in
opposing corners, the produced path is completely distorted. However, the test map 3
(see Figures 4.19 and 4.20), which had little objects and the start and end node across
from each other, seem to have worked perfectly with the maximum f ‐score algorithm.
In that case, this is probably related to the position of the start and goal node. Since the
agent does not have to travel trough a large portion of the map, the produced path will
be more contained and less likely to wander off‐course.

Therefore, the results from the random mazes in the testing phase show that the im‐
provements cannot be applied to all types of search spaces and maps. As previously
mentioned, it seems that especially open spaces with no obstacles cannot benefit from
the algorithm with the maximum f ‐score algorithm chosen, but the weighted A* ap‐
peared very promising, with faster speed and the same optimal paths produced by the
original A*. The results also provide a lot of information on how the algorithm works.
It appears that when not restricted by objects or walls, the maximum f ‐score algorithm
will always create a path that is too long and sub‐optimal. However, when surrounded by
a closed‐off wall the trade‐off between speed and optimality can be accepted, as in such
cases the player would not notice that the agent is taking a slightly longer route. There‐
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fore it is of great importance to consider adapting the pathfinding algorithm to the type
of map that is being used in the game. For instance, should the game have a more open
and empty space, then it is worth exploring the weighted A* or the original A*. How‐
ever, for more compact and walled‐off spaces, the maximum f ‐score algorithm could
give some impressive time performances, in comparison to the A* and the weighted A*.
Should the game have a mixed bag of maps, the random algorithm could be an option,
but also potentially implementing different algorithms for different spaces. This is only
a viable option should the extra added layer of code for a greater variety of pathfinding
algorithms not use too much CPU power, rendering the trade‐off null. Thus, it is always
important to run tests in the game in question before choosing a search algorithm. Then
again, the question remains whether going through the trouble of implementingmultiple
search algorithms is worth spending extra time for the potentially only small amount of
speed gained. In circumstances where the extra time and resources do not want to be
invested, the original A* algorithm is still a great option.

Nevertheless, it cannot be said for certain what makes the maximum f ‐score algorithm
this much faster than its counterparts. A theory is that the open set is arranged with the
largest f ‐score on top, making the retrieval process faster. If this is the case, then future
work could experiment with rearranging the open list differently to see if the maximum
f ‐score algorithm still works. If it does not, then the open space should be arranged with
the lowest f ‐score at the top to see if the original A* now also runs significantly faster.

Another important thing to note is the size of this particular game used. It could seem
that the improvements made here are not very significant as they are only a few sec‐
onds or milliseconds apart. However, in a much larger game with a search space that is
a few hundred times larger, these times will probably add up, making the results more
noticeable in some circumstances. However, the best practice is never to assume and
generalise results and expect them to work in a different context. For this reason, future
researchers or even game developers are urged to investigate whether this improved al‐
gorithm can truly givemuch better time values in amuch larger game andmap. However,
in larger search spaces there is always the possibility that the trade off between speed
and optimality works less effectively for algorithms like the maximum f ‐score algorithm.
It might be the case that it only works faster due to the small size of the game, leading to
a shorter open set. On a larger search space the open set will also be much larger, which
means the algorithm has to filter through a much larger amount of f ‐scores.

However, the main theory remains that the results could probably be replicated in more
complex games. This Pygame‐based video gameworks ultimately like any other 2D game
out there. Every game, when stripped from detail, is simply a search map like a matrix
containing agents that travel from one square A to another square B. Even themost com‐
plex games rely on this same principle, with only the type of search space differing from
game to game.

The algorithm improvements that were achieved in this project could now have great
real life applications. As mentioned before, the game‐player experience and continuous
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improvement of the gaming experience is what developers are working on constantly.
Small but important improvements like faster running algorithms could greatly increase
customer satisfaction. A smoother and faster running game will lead to a happier player
thatwill furtherwant to engagewith that video game company and buy their future prod‐
ucts. High customer satisfaction will then also lead to positive reviews and comments on
social media platforms. Nowadays, forum spaces such as Reddit and video platforms
like YouTube offer video game customers a space for criticism. Before the internet was
as prominent, opinions and critiques on games could not be shared as easily with other
players. Therefore also negative opinions or issues with the game were less likely to be
noticed by the general consumer. This is not the case nowadays, with screenshots of
bugs or game mechanics being shared with anyone, often leading to these games being
ridiculed by a large crowd of people. Sometimes bad press can be used in the game’s
favour, a famous example being Cyberpunk 2077, a game that was highly anticipated but
hadmany issueswith bugs and glitches at release. It received a lot of ridicule fromplayers
which helped bring the game a lot of traction and ultimately more sales. However, it is
safe to say that generally video game developers prefer to produce games that have good
reviews and reputations. These good reputations can be maintained by improvements
made to the foundations of the game, such as the search algorithms.

Video games are also becomingmore advanced and complex, withmany saying the future
of gaming is in virtual reality (VR). As the quality of games also increases, the importance
of a good gaming experience becomes more prominent. Players also begin to expect a
certain level of quality from their games, such as innovative designs and the most realis‐
tic graphics. To keep up with this constant demand for improvement, game developers
have to continuously try to improve all aspects of their game. This desire for improve‐
ment also comes from the fact that more players, especially younger generations, are
becoming more knowledgeable on the technical aspects of games. With the customer
base becomingmore tech‐savvy, small improvements to the game can bemore easily no‐
ticed. However, this means that smaller bugs and issues are also noticed, providing more
room for criticism. With the younger generations becoming more tech knowledgeable,
more are starting to build their own PCs and learn more about technology in general.
However, this is often also the customer base that cannot afford to buy the best compo‐
nents on the market. This was especially difficult during the COVID‐19 pandemic, where
computer part prices surged due to the high demand of younger people building PCs and
a general shortage of computer parts. This customer base will then benefit from games
that are less CPU and memory demanding while still wanting to enjoy a great gaming ex‐
perience. This again showcases the importance of making small improvements to video
games, such as the algorithms that were developed during this project.

5.2 Conclusion and scope for the future

To conclude, this project successfully managed to create improvement algorithms for the
A* algorithm. The tests performed uncovered interesting information on the A* itself and
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how map layouts can affect a particular algorithm and the search speed. For instance,
the weighted A* did not produce any significant results with the baseline mazes, but
had an important impact during the testing phase on the open map. The random algo‐
rithm showed similar results by producing significant improvements in the testing phase.
Themaximum f ‐score algorithmhowever continuously showed significant time improve‐
ments, with the testing phase uncovering that somemaps yield suboptimal paths. There‐
fore, all algorithms could be used to improve the original A*, however it is important to
note their limitations when choosing to use them in a video game.

Future researchers are urged to run more tests on the proposed algorithms. The test‐
ing phase of this particular project was limited to only three additional maps, however
probably much more information on the algorithms could be uncovered through further
testing. Also, future work could test these algorithms in a game of much larger scale
as well. Overall, it is also encouraged that game developers test these improvements
in their games, as the time improvements gained could not only benefit them but also
greatly increase the satisfaction of their customers.
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