#### **Transfer Learning approach for Smoke Image Detection UNIVERSITY** of STIRLING

### **Simone Fisicaro MSc in Big Data**

#### Introduction

Wildfires are rare events that can cause huge losses of lives, wildlife and money. Smoke **Detection Algorithms** may help reduce response times and contribute to a better understanding of wildfire patterns.

**Convolutional Neural Networks (CNN)** are an extremely powerful tool, able to control actions and perform tasks on a human competitive level.

The approach of **Transfer Learning** allows the construction of **Deep CNNs** through the usage of architectures and weights already existing [1]. It is a particularly effective technique when working with small datasets and easily generalizable problem.

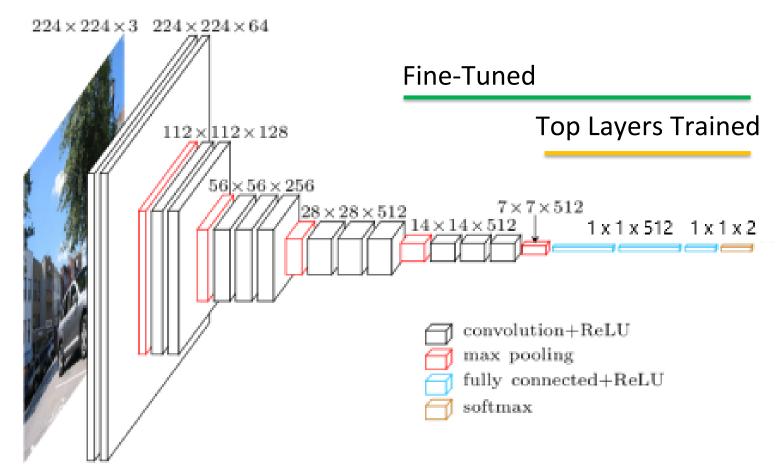



Fig. 1 – VGG16 architecture and layers to train.

## **Objective**

This work aims to study and understand how Transfer Learning techniques perform in the task of **Detecting Smoke in Images.** 

#### Methodology

Data: 300 labelled images from open source datasets and internet image search. A balanced set, split into training, validation, and testing (70, 15, 15).

**Pre-processing:** Cropping, labeling, normalising to standard size, scaling and flipping.

**Modelling:** Transfer Learning process (Fig. 1 & 3).

**Evaluation:** Loss and accuracy curves for epochs, confusion matrix and AUC-ROC curve, CNN heatmaps.



[1] Chuanqi Tan, Fuchun Sun, Tao Kong, Wenchang Zhang, Chao Yang, Chunfang Liu "A Survey on Deep Transfer Learning" https://arxiv.org/abs/1808.01974

# stir.ac.uk

For further information contact: Simone Fisicaro







Fig. 2 – Original image (left) and heatmap of the last convolution (right).

#### **Partial Results**

- Quality of the dataset and complexity of the task made the problem not trivial.
- The model is overfitting.
- The network learns what's surrounding the smoke's shape (Fig. 2).
- Next steps:
  - Improve the quality of the dataset.
  - Define a better data preparation strategy.

# BE THE DIFFERENCE

*sif00012@students.stir.ac.uk*