Visualising and Predicting the Performance of Optimisation Algorithms

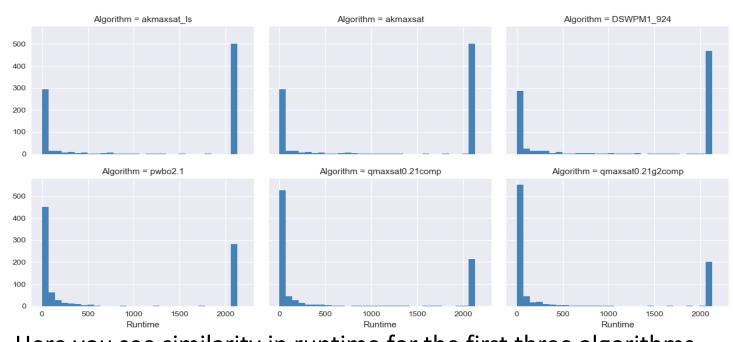
Johnson Osisioma **MSc in Big Data**

Problem Definition

A Max SAT problem is an optimised version of SAT problem. The input to Max SAT problem propositional logic formulae in Conjunctive Normal Form: this is a conjunction of clauses where each clause is a disjunction of values which are variables or their negations.

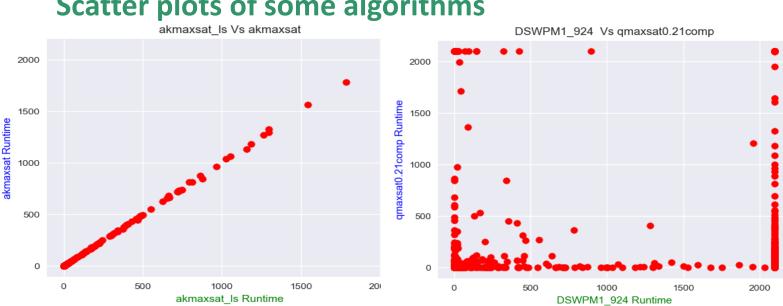
Project Description

This project considers existing datasets of features describing instances of optimisation problems paired with the performance of a set of algorithms to solve them. The project aim is to produce both (i.) visual maps of algorithms to solve them (ii.) predictive models of algorithm performance.


The performance data is based on the algorithms: akmaxsat, akmaxsat_ls, DSWPM1_924, pwbo2.1, qmaxsat0.21comp, qmaxsat0.21g2comp.

The approach is to use libraries in Python for visualization, and prediction using machine learning models. This is accomplished by applying a number of methods and assess how they tackle this problem.

Discussion


Further work on the project includes visualisation with t-NSE plots for non-linear high dimensionality reduction and algorithm predication

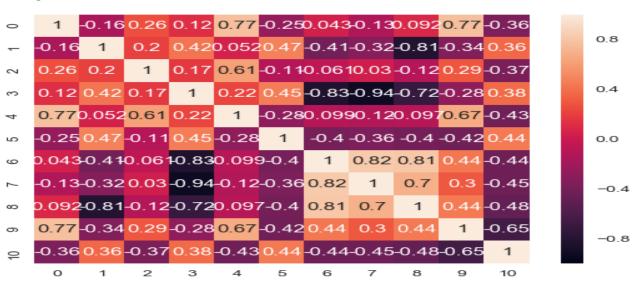
Runtime performance of algorithms

Here you see similarity in runtime for the first three algorithms runtimes

Scatter plots of some algorithms

Whilst there is a great similarity between akmaxsat and akmaxsat_ls runtime, there is a wide disparity between DSWPMI_924 and qmaxsat0.21comp runtime- this shows that whilst some instances timed out with qmaxsat0.21comp, they actually did very well with DSWPMI_924 and vice versa.

	Table analysis of best algorithm											qmaxsat0		Wghtd Score					
				Wghtd Score			Wghtd Score			Wghtd Sco	re		Wghtd Score	qmaxsat0.2		Wghtd Score	.21g2com		(qmaxsat0.21g2com
Rank	Weight	akmaxsat	(%)	(akmaxsat)	akmaxsat_ls	(%)	(akmaxsat_ls)	DSWPM1_924	(%)	(DSWPM1_9	924) pwbo2.1	(%)	(pwbo2.1)	1comp	(%)	(qmaxsat0.21comp)	р	(%)	p)
1	6	285	32.53	1710	46	5.25	276	78	8.90	468	21	2.40	126	192	21.92	1152	254	29.00	1524
2	5	93	10.62	465	287	32.76	1435	23	2.63	115	63	7.19	315	212	24.20	1060	198	22.60	990
3	4	65	7.42	260	61	6.96	244	257	29.34	1028	282	32.19	1128	157	17.92	628	54	6.16	216
4	3	171	19.52	513	76	8.68	228	180	20.55	540	271	30.94	813	67	7.65	201	111	12.67	333
5	2	244	27.85	488	179	20.43	358	57	6.51	114	151	17.24	302	204	23.29	408	41	4.68	82
6	1	18	2.05	18	227	25.91	227	281	32.08	281	88	10.05	88	44	5.02	44	218	24.89	218
		876	100.00	3454	876	100.00	2768	876	100.00	2546	876	100.00	2772	876	100.00	3493	876	100.00	3363
				2nd			4th			5th			6th			1st			3rd


stir.ac.uk

UNIVERSITY of STIRLING

Top 10 correlations

Here you observe that the correlations get stronger as the legend grows darker with -0.65 being the strongest correlation runtime value

Analysis of feature values using correlation

	akmaxsat	akmaxsat_ls	DSWPM1_924	pwbo2.1	qmaxsat0.21 comp	qmaxsat0.21g2c omp
Feature	vcg_cls_min	vcg_cls_min	binary (0.43)	perc_soft	perc_soft	perc_soft (0.43)
1	(-0.65)	(-0.65)		(0.26)	(0.36)	
Feature	pnr_var_min	pnr_var_min	horn_max (0.38)	binary (0.22)	unary (0.21)	pnr_var_mean
2	(-0.48)	(-0.48)				(0.34)
Feature	pnr_cls_mea	pnr_cls_mean	pnr_var_spread (-	horn (-0.21)	pnr_var_mea	unary (0.28)
3	n (-0.45)	(-0.45)	0.37)		n (0.2)	
Feature	pnr_var_me	pnr_var_mean	horn (-0.37)	numClauses	binary (0.19)	horn (-0.27)
4	an (-0.44)	(-0.45)		(0.2)		
Feature	vcg_var_std	vcg_var_std	horn_spread (-	horn_max (-	horn (-0.17)	pnr_var_max
5	(0.44)	(0.44)	0.36)	0.2)		(0.26)
Feature	horn_mean	horn_mean (-	var_clauses_ratio	horn_spread	horn_mean (-	pnr_cls_mean
6	(-0.43)	0.43)	(-0.34)	(-0.19)	0.17)	(0.19)
Feature	horn (0.38)	horn (0.38)	horn_mean (-	pnr_var_mea	numClauses	pnr_var_min
7			0.32)	n (0.19)	(0.17)	(0.17)
Feature	horn_std (-	horn_std (-	pnr_var_min	pnr_cls_std	horn_max (-	binary (0.17)
8	0.37)	0.37)	(0.31)	(0.16)	0.17)	
Feature	pnr_var_spr	pnr_var_sprea	horn_std (-0.3)	horn_mean (-	pnr_cls_std	horn_max (-
9	ead (0.36)	d (0.36)		0.15)	(0.16)	0.13)
Feature	horn_min (-	horn_min (-	pnr_var_std (-	horn_min (-	horn_spread	horn_spread (-
10	0.36)	0.36)	0.28)	0.13)	(-0.16)	0.12)

Here you observe that Akmaxsat and akmaxsat_ls have almost identical top 10 features and values. DSWPM1_924 has a feature listed (pnr_var_spread), which has negative correlation where akmaxsat and akmaxsat_ls show positive correlation values for the same feature. This is an interesting finding that needs further research.

BE THE DIFFERENCE