Motion Detection using Accelerometer Feedback

Aled Haydn Davies MSc. Software Engineering

Background

An accessible, open-source product enabling highperforming athletes to monitor running technique in real-time, providing feedback over a period of time. Initial work focusses on arm orientation.

Existing motion detection software is not perfect:

- uses Infrared technology Xbox Kinect[™] to approximate user position and posture.
- Nintendo Wii[™] uses accelerometers to track controller position in relation to sensor.

Project Outline

- Investigate and avoid weaknesses in existing Motion Detection technologies.
- Suggest a model for a superior, yet cost effective, system for tracking limb movement.
- Acceptably predict target limb angle within a few degrees (Goniometer readings will confirm values).

Accelerometers

Both Kinect[™] and Wii[™] depend on placement of the Low-cost, programmable µ-controller designed with sensor in relation to the receiver. The product uses a a Nordic-nRF51822 CPU to introduce children to reference accelerometer on the subject's chest, Programming through block-coding. Advanced moving the point of reference for the sensors from scripting can be undertaken using C++, Python, etc. the host device onto the user. through the mbed compiler.

If the starting angle θ_0 is known, then the direction vector can always be calculated as y, where

- $\frac{d^2y}{dx^2}$ = acceleration.
- **Direction Vector**
- -----> Accelerometer Vector

Joint Angle

Movement is a result of muscular force exterted on Open-source development environment to design, test, and implement Android applications. pliable joints, indicating that the angle of relevant joints at any time describe the static position of a Java coding environment, particular limb.

Acceleration occurs as a result of all forces acting on an object (<u>https://physics.info/motion/</u>), suggesting that limb acceleration can predict limb angle.

The Diagram (*left*) details the importance of correct technique and suggests potential sites to focus angle calculation.

stir.ac.uk

For further information contact: *Aled Haydn Davies*

UNIVERSITY of STIRLING

BBC Micro:Bit

Features:

- Accelerometer,
- Magnetometer,
- Bluetooth LE/ Radio,
- LED display/UI,

http://microbit.org/guide/features/ https://os.mbed.com/platforms/Microbit/

Android Studio

- GUI design (XML),
- Use device CPU for GUI Computation/Calculation,
- Allows Access to Device's Bluetooth Capabilities,

https://developer.android.com/studio/install

BE THE DIFFERENCE

ahd@cs.stir.ac.uk

