
Continuous Applications

using Apache Spark

Robert Hamlet

MSc Big Data

Online Machine Learning with Streaming Data

Background

Streaming Data

Applying models to streaming data reduces ‘time -to-

insight’, critical for time-critical applications of

machine learning such as anomaly detection and e -

commerce.

Online Machine Learning

Continuously-adapting models can keep abreast of

drifting environmental conditions, representing an

improvement in mitigating model degradation over

regular batch rebuilds.

Apache Spark

Apache Spark, along with its new Structured

Streaming functionality, is a rapidly-growing

distributed processing platform that could potentially

allow continuous architectures within a single

environment.

Scenario

This architecture has been developed using e-

commerce user browsing and purchasing data from

the ‘RecSys Challenge 2015’. The imagined case

study explored predicting the likelihood of a user

making a purchase, perhaps to trigger offering

threshold users a voucher to sway them.

Challenges

Crossing the Streams

Structured Streaming queries have a rigidly defined

and enclosed structure and do not yet support

stream-stream joins. Moving data between streams

can be achieved using Broadcast Variables, but

triggering the broadcast of these breaks query

linearity (see fig below, queries must end with a

dataframe, and a writeStream).

Model Training

The new spark.ml machine learning library does not

yet have a streaming logistic regression model, and a

model transformer cannot be re-trained at each

trigger of a Structured Streaming query.

Solution

Solving both challenges could be possible by

performing the model training and variable broadcast

outside of the query and its restrictions by using a

custom sink.

This could train a new model each time it is

triggered, without the constraint of having to output

a dataframe by writeStream.

Since this can be executed on the driver node it will

have access to the SparkContext (necessary to

broadcast variables), although this introduces a

performance bottleneck.

Allowed (green) and disallowed (red) query structures

Supervised by Andreas Lang and Jonathan Forbes (Aquila Insight),

 Dr. Kevin Swingler (University of Stirling)

