1 Introduction

Completion of satisfactory project work and submission of a well written dissertation is an essential part of the M.Sc. If you do not reach an adequate standard in the dissertation, you will be awarded a Diploma rather than an M.Sc.; fortunately, this happens very rarely. These notes are to help you to choose a dissertation topic and to write the dissertation.

The objectives of the project and dissertation are:

- To demonstrate the student’s ability to conduct an independent (but supervised) piece of work, to report it effectively and to exercise critical assessment.
- To exercise, develop and demonstrate the student’s skills in some aspect(s) of information technology, and/or to increase and deepen the student’s understanding of some aspect(s) of information technology.
- To apply skills and techniques acquired during the taught part of the degree programme.

During the project period you will:

- Carry out individual project work,
- Write a dissertation describing your project,
- Give a brief talk to the M.Sc. class and Computing Science staff about your project work,
- Give a demonstration of your project work to your supervisor and to your second marker.

The project work undertaken must be a practical problem solving project involving a substantial computing element — in other words it will rarely be acceptable for a project to be simply a survey of some kind. It is wise to recognise that although your technical skills are greater than they were last September, at the start of the project they may still fall short of those required for satisfactory completion of your chosen project. You will almost certainly need to augment your knowledge. This will take time (for which you are given credit in the assessment process) but with only three months available you will have to work hard both to grasp new technical material and to understand and solve a problem which you have not handled before, possibly in an area where you are not very experienced. There will be the opportunity in your dissertation to state what you needed to learn, so that the markers can assess your achievements correctly.

It is important to appreciate that it is normally expected that you will undertake the project as a full time activity at Stirling for the designated period, otherwise a timely and successful completion is unlikely.

It is also necessary to stress the importance of regular contact with your project supervisor during the practical work and subsequent write-up. A weekly meeting is a sensible basis for a schedule of contact. The supervisor’s role is not to solve all your design and implementation problems, nor to
make your decisions for you. Their main role is to advise and discuss, to help you plan goals and activities, to help you strike a balance between the different aspects of your work (in particular with respect to the content of the dissertation), to help you monitor your progress — they will also be able to teach you something, and will provide pointers to information sources, although most of the actual learning will be up to you as an individual. At dissertation write-up time, your supervisor will also be able to offer their comments on your draft material — see later for more about this.

Your supervisor is a vital resource, and experience shows that students who try to “go it alone”, without consulting or heeding their supervisor, rarely produce satisfactory results.

2 Choosing a Topic and Supervisor

Details of previous projects are available on the MSc website at http://www.cs.stir.ac.uk/courses/msc/projects/PastDissertations/disstitles.html

The project work undertaken must be a practical, problem solving project, involving a substantial computing element. The project must aim to solve a realistic problem in a systematic manner. The problem should be realistic in the sense that it is not a “toy” problem artificially created for the project, but instead addresses a (potential) real requirement in reasonable breadth and depth. The approach should be systematic in that it applies the systems analysis and software engineering skills learned during the course. It can be helpful to think about applying your new computing skills to some application area that you are familiar with or interested in.

The following paragraphs contain general guidance. In section 3 there is a description of the Making the Most of Masters scheme — a collaboration with businesses and other external organizations for work-based projects.

Information Technology students have come into the subject from previous studies or experience in other areas of expertise. It makes a great deal of sense for them to choose something which either relates to their previous background, thus providing a bed-rock of experience, or is in an area where the course has generated an interest which they would like to pursue. In the past we have had good dissertations where the student has undertaken a project on some topic related to their first degree — amending a commercial software package used for plotting maps (done by a Geography student); developing a data-base for early middle eastern settlements (done by an Archaeology student); teaching aid for a chemistry experiment (done by an Chemistry student) and so forth.

For Computing for Financial Markets students, the project will usually develop an software system for a financial application.

For Computing for Business students, there will usually be a management aspect to the project.

For Big Data students, the project will be, not surprisingly, work in some aspect of Big data.

Clearly you know more about your background than the staff do, and you know what interests you. So it is up to you to generate possible topics and discuss these with the members of staff whose interests seem to match them. We can advise you on who might supervise a possible topic, on the suitability or likely difficulty of a project, but we are not in general responsible for identifying the topics themselves.

As long as there is a substantial applied computing element there is no objection to projects which are supervised partly by staff from other divisions, though you must still have a main supervisor in computing science.

You may find it helpful to look at the list of past dissertation titles and abstracts accessible from the course Web page. Some good examples of past dissertations are available for you to consult — on the shelves in room 4B94 and in the Library.

Try to identify delimited rather than open ended project topics: this will help you to identify the concrete tasks to be carried out, and will help your focus when working on them.
We have had many successful projects carried out in conjunction with external companies. Arrangements for such collaboration must be made with care, and is best done through the Making the Most of Masters scheme (see 3).

Most project work is intended, at least in principle, for use by some particular body of users. It is thus very important that you consider the useability of your software and the design of its interface. It is also important that you should be able to obtain some critical feedback from representatives of those users and report it in the dissertation.

It is vital that you make sure that the computing facilities (both software and hardware) that you need are available in the Division or elsewhere that is accessible to you, or can be obtained in good time.

Group projects: Some supervisors may be able to offer group projects. Students would work on linked topics, but would not be solving the same problem, and would write independent dissertations.

Use of personal equipment: You may find it desirable to use either your own computer, or other computing equipment, or software, not under the control of the Division. This is acceptable, but you should be aware that the Division may not be able to offer you technical support, and the risk of equipment failure or inadequacy will be entirely your own.

3 Making the Most of Masters

The School of Natural Sciences has a long experience of work related learning with many students undertaking their dissertations with relevant businesses (private and public) and third sector organisations.

In recent years, Stirling has been funded to support work based projects through the initiative Making the Most of Masters (MMM) (see www.mastersprojects.ac.uk) with a dedicated Project Co-ordinator based in the School and in the Careers Development Centre, Dr Eunice Atkins (eunice.atkins@stir.ac.uk). Through undertaking a work based project it is intended that students will be able to enhance their individual initiative, confidence, self-esteem and their ability to cope with change. In addition, it should also enhance professional competence and provide an opportunity to network with individuals from relevant organizations.

The Programme Directors work with the MMM team to develop links with employers to find “real-life” dissertation projects which are appropriate and have the relevant depth for MSc projects. Students will only be considered for work based projects if their module marks are consistently high. Watch out for more information about applying for a MMM project.

4 Proposal Form

No later than the end of the Spring semester (earlier for Big Data students) you must submit a proposal on the attached form (page 13) to the Course Director for approval.

On the proposal form you must give a provisional title to indicate the area of work, a brief description of the project, and a provisional list of activities and schedule for completion of the project.

Note that the form requires the signature of the member of staff who has agreed to supervise the project.

5 The Project Workbook

You must submit a project workbook along with your final dissertation. The workbook is intended to be a collection of notes, both informal and formal, for your benefit. The assessors may look at
the workbook for clarification as they are marking the dissertation, but *the workbook itself is not formally assessed.* Your workbook will be returned to you after the assessment process is complete.

Although the workbook is submitted only at the end of the project period, your supervisor will expect to review it regularly and to initial it as having been seen. The workbook should be written as you go along, not after the fact!

For example you may find it surprisingly difficult to remember why you made certain design decisions one month earlier, or may have lost a reference to a book, paper or web page you found useful. Every entry should have a date so that you can review the history of the work. The workbook will be a personal resource for you.

The workbook should be maintained spontaneously. For this reason, it is normal that entries be handwritten. Indeed you should treat it like a scrapbook in which you record anything useful *as you find it, as it happens, as you think of it, and not* a place to write elaborate, time-consuming essays. You could also glue items in (program listings, screen shots, etc)! It is suggested that you use a loose leaf binder or a hard-back exercise book. A4 size will allow easier inclusion of diagrams than A5 would.

At a minimum the workbook should contain:

Header Give your project title, name, student registration number and supervisor name.

Weekly Progress Record what you did on a week by week basis.

Supervisor Meetings Record key items from discussions with your supervisor.

And the entries will usefully include things like:

References Write down references to any paper you read or URL you consulted.

Problems and Solutions Record any problems you found. Also record the solutions you considered and why you chose a particular approach.

Sketches and Diagrams GUI mock-ups, software structures, class/sequence/state diagrams, database designs, . . .

To Do Make a note of things you have to do so that you do not forget them, and things that you would like to do or perhaps ought to do but might not have time for.

Be honest in your workbook — it is meant to be a useful record for you rather than a Utopian view for some other reader! When we assess your project you will *not* be penalised for recording things that went wrong — and indeed recording things that do not work, or are not very effective, provides valuable information for the future! There is no reason to be tempted to go back over your workbook and edit out the ‘problematic’ parts!

6 Structure of the Report

During the project period, some good examples of past M.Sc. dissertations will be available for you to inspect. The following structure for the dissertation is suggested as a minimum:

Front Sheet: This should contain your name, the title of the dissertation, the date, the Department (note: its title is *Computing Science and Mathematics*), and the fact that it is submitted in partial fulfilment for the degree.

Abstract: This should give an overview of the main purpose, points and achievements of the dissertation. The main purpose of this item is to indicate to a potential reader the general subject area of the dissertation. No more than one page.
Attestation: You are required to include a short statement that your work is original. If there is any exception to this (e.g. you used material or code from another source), you must acknowledge this and cite the source. If any of your work was undertaken away from the University (e.g. in conjunction with a company) or outside the project period (e.g. during a vacation job), you are required to state this.

Acknowledgements: You could mention your supervisor, others who helped you, permission to include copyright material, etc.

If you are being financially supported by a grant, or other form of sponsorship, you should acknowledge the funding body.

Contents: List the (sub)sections, and include page numbers if you can.

Introduction: Explain the context and purpose of the project. It is important that you ensure that the introduction is full and clear. Your dissertation will be marked by both your supervisor and another member of staff; it will also be read by the External Examiner, and may be read by your successors on the course. You should identify clearly the kind of reader that you are aiming the dissertation at, and write an introduction suitable for that reader.

It is usually a sound idea to explain how the topic arose — there may be an existing system which is in need of improvement or development — then describe in outline the problem you are trying to tackle, and why you have chosen to do so.

You should state in the Introduction what new technologies/tools you needed to learn in order to carry out the project, and it is useful to provide a concise overview of the structure and content of the dissertation.

Background/literature survey/related work: It may well be that your chosen topic will be in an area where your knowledge is greater than that of the presumed readers. If so it is important that you include in your explanations sufficient (and just sufficient) of the non-computing background so that the readers can follow the rest of the dissertation.

A vital component in the dissertation is a critical survey of “related work” — so that your work can be seen to have been carried out in as fully informed a way as possible. In a more academic style of project, a more traditional literature survey is appropriate (with the survey also covering modern sources such as the Internet, of course). In a more system-development style project, it is appropriate to survey any existing systems or products that have similar or related goals. Most projects will be a mixture of both kinds of project. In either case the survey should be critical: you should comment on the strengths and weaknesses of the “related work”, as you see it in relation to the nature of your project. [It is also appropriate to explicitly consider the alternative technologies that could be brought to bear on the problem — see the next heading.]

At the end of the Introduction and Background you want readers to feel comfortable that they understand the background to the problem, what you set out to do, and enough of any non-computing material to feel certain that they will be able to understand the explanations of your efforts which follow in the succeeding chapters. Good dissertations are nearly always recognisable as such by the time the reader has got to this point.

Problem specification and solution: At this point you should probably give a complete and precise statement of the problem that you are setting out to solve: this could (and often will) be a requirements description of a software system that you propose to develop; it could be a description of a case study and the analysis that you intend to perform. This statement of the problem should usually not be in terms of the solution technology that you propose, except where some technical aspect of the solution is a genuine requirement.
It is usually a good idea to discuss the reasons why you chose to tackle the problem in the way you did, and using the technology that you did. It is rare for there to be only one possible solution and there may well be several possible paths to the selected solution. Discuss the alternative solutions or technologies available, and justify the approach adopted. It is helpful for the reader to know what factors you thought were important, or perhaps paramount, in deciding on your approach.

There is a tendency to rather skate over the points mentioned in the last paragraph and rush into the minutiae of programming. **This is not advisable.** Although the project and dissertation have to have a substantial computing component, *the dissertation should normally emphasise aspects of analysis and design and should contain rather less of the programming detail than you might expect.* You will probably not have space in the dissertation to write about the details of all that you have programmed — it is also a very hard thing to write about well. Your readers would probably find such detailed writing difficult to read, and less than illuminating. On the other hand, you *should include some details* of your implementation. The best advice to to include a judicious amount of programming detail — to illustrate important points or principles.

Explain your solution, and how well or otherwise this followed the intended path. It is rare for things to go exactly as planned and the readers know this. What they are interested in is your analysis of the causes of, and the means by which you overcame, any problems encountered.

Even though you have explained the non-computing background in the introduction there will inevitably be further points that need to be included as you develop your account of the work. If the introduction has been well handled than such points should fit neatly in to the reader’s understanding.

On computing matters you have to make a judgement. Do not annoy the reader by telling him what he already knows. If, for instance, your project deals with data-bases then clearly you can expect readers to know the general principles which underlie them so you don’t waste their (and your) time by telling them. On the other hand they may very well not know the idiosyncrasies of a particular data-base, so if there were some which affected your work then explain what they were, and why they were significant.

It is very important that you make it very clear what you have achieved — you will probably have a software application, or perhaps a Web site, that someone could actually use, *so show the reader what can be done with it!* It is probably appropriate to include material giving an *illustration, or demonstration,* of your finished system at work in one or more typical situations — for example, screenshots of a typical session, interspersed with a brief explanation. This part of the dissertation should not be too long, and so probably *cannot cover* everything that your system can do.

Assessment/evaluation: You should include a critical appraisal of your design and the resultant system, commenting on both strengths and weaknesses: if things have not gone as well as planned in one or two areas, and they nearly always have, don’t be afraid of saying so. It is almost always to your advantage, *it shows the reader that you have some insight and understanding of what you have been doing.*

On reflection you may decide that your design should have been approached rather differently, or that you might have been better off with a different implementation technology — comment on this, and perhaps outline the alternative solutions.

You must incorporate critical feedback from potential typical intended users of your product, together with *your comments* on the feedback. Explain how you obtained the feedback: the choice of tasks that you perhaps asked your “guinea pigs” to carry out, the
design of the questions/questionnaires that you asked them to complete, how you chose your test group of users.

Conclusion: Summarise your main results or achievements, commenting on both strengths and weaknesses. Give suggestions for future work.

References: These are papers and books to which you have referred. General reading should go in a separate Bibliography. Give your citations in the text. A typical format is:

In the text: The architectural semantics given in [Turner 1987] is a load of rubbish.

In the references:

Where you need to include a reference to material obtained via the World Wide Web, FTP, etc, be careful how you do it: such material is usually “ephemeral” — it may not exist for long, and may either vanish or change location. The reference shows that you looked something up, but it may not help a reader in the future to find it for themselves! Make sure that you give the full details of such material, and preferably the date on which you last knew it to be current. Wherever possible, give references to non-ephemeral material instead or in addition.

Appendices: Put detailed or reference material into appendices.

You must not put full printouts of all your coding into the appendices — you may submit it as supplementary material that we keep alongside your dissertation (see below).

User guide and installation guide: If you produced software that is intended for others to use, or that others may wish to extend/improve, then you should consider including a user guide and an installation guide as appendices. The latter will list all the files that the software comprises (source, executable, data, ‘make’, etc), where those files should be located for correct operation, how the executable components can be rebuilt from their sources, whether any special system settings/defaults are required, whether any other special applications/facilities are required, how to run the software, and so on.

7 Writing the Report

The above dealt with the structure of the report. There remains the question of actually producing it! From a stylistic point of view: It is usually better not to write in the first person, since this is a technical report — that is, do not use “I” or “me”. Also, the dissertation should not read like a diary of your project activities.

When you are writing the dissertation remember who the potential readers are, and explain the ideas in a suitable way. It is best to assume that the reader will be well educated in computing science, but will know little or nothing of the particular topic on which you have been working. In particular, the supervisor will know what the project is about, but the other examiners will not. It is up to you to tell them. They will base their assessment of your work primarily on what you have written in the report, so concentrate on making it intelligible to them.

The writing of this amount of material is going to take time, almost always much more than one is inclined to believe. You really need to be producing your first draft chapters by the first week of August. This may sound early but any later is starting to be too late. There is an obvious problem, namely that at that stage you are still working on the project itself and are not in a position to produce a “final” version.
There are two possible approaches. You can do the parts that can be put in reasonably final form — the first two or three chapters should come into this category, and so perhaps may some of the appendices — and then gradually fill in the gaps as the project continues. The alternative is to do a rough draft of the complete text, excluding perhaps the appendices and diagrams, and then gradually improve and refine the draft.

The first approach may seem easier in the sense that you do not write text until you are reasonably certain of what you intend to say; the second approach appears trickier since you have to draft some parts in without all the material necessary for its completion. This is not as difficult nor as foolish as it may seem: in many ways the process is similar to the development of a large program. You can either enter sections or paragraphs which simply say “Here I will discuss the handling of problem X” and pass on, or enter text which describes the handling of X (perhaps as you hope it will occur) and correct it later if this becomes necessary. In effect you may not know exactly what you intend to say but you are making a decision as to where you intend to say it.

The rationale of the second approach is that a reader can get a much better feel of the overall impression conveyed by the document and this has several distinct advantages. If a re-arrangement of the material is necessary or desirable then this is more likely to become apparent from a full draft and the sooner this is done the better. There is less text to switch and, at this stage, little or no cross-referencing to correct. Additionally, with a full draft, it is much easier to judge whether there is time to complete the project work you intend and, if not, to make a selection of the bits on which you should concentrate. Should there be a “hole” in your work — and again this is more likely to be exposed by a full draft — then it is far better to discover this at a time when something can be done about it.

If you prefer to follow the first approach then by all means do so but if you want a critical review from your supervisor then make sure they get the complete version in adequate time. If it doesn’t appear until a week or so before the hand-in date the supervisor has to find time, just before the start of a new academic year, to read and comment. Should it happen that the report does contain some severe shortcomings then there will be little time to do anything other than attempt to rectify the worst of them.

If you plan to use a word processing package to write your dissertation, for example Microsoft Word, then **learn how to use it properly**. Constructing a document with the size and form of a technical dissertation is a very different matter from writing a letter home or composing a 2000 word essay on Robert Burns. Word can give you a lot of help if you exploit its capabilities: find out about paragraph styles, figure captions, bookmarks, cross references, including screen images and so on — you may waste a lot of time otherwise!

You will find a Microsoft Word dissertation template on the Projects Web page — you are required to use this template: take a copy and just fill in the spaces!

Plagiarism: Work which is submitted for assessment must be your own work. All students should note that the University has a formal policy on plagiarism which can be found at

http://www.quality.stir.ac.uk/ac-policy/Misconduct.php

Practical advice on how to avoid plagiarism can be found in the University’s Little Book of Plagiarism at

http://www.quality.stir.ac.uk/documents/BookofPlagiarism.pdf

8 Submission

You must submit to the Divisional office (4B80):

- Three copies of the dissertation — printed **double-sided** on **plain A4 paper and NOT bound in a cover**.

- One additional copy of the Title page and Abstract from the dissertation.
• Your project workbook.

• A completed dissertation submission form (attached, page 15).

You must submit through Turnitin on the Succeed pages for your project module:

• One copy of your dissertation in MS Word format.
 Turnitin will be available for you to make multiple submissions, to check the originality rating of your dissertation. The final submission must be identical to the printed dissertation that you submit.

You should also submit to your supervisor by email:

• A copy of any electronic material: program files, web pages, projects, configuration files, supplementary libraries, and so on.

They should be submitted on or before the specified submission date, unless you have arranged otherwise with the Course Director or Student Programmes Office.

The dissertation must be clearly printed, double-sided, on plain A4 sheets. Leave a lefthand and righthand margin of about 3 cm. for binding. It is suggested that the dissertation is typeset in an 11 point font with a one-and-a-half line spacing. The dissertation template on the Projects Web page already contains appropriate settings. The entire dissertation should be roughly about 40-50 pages in size (15,000 words) including diagrams and tables; a further 20 pages can be included for appendices. If you expect to have significantly more or less text, have this approved by your supervisor.

You should minimise use of the laser printers for printing draft material by previewing the output on-screen. You must not use the Division’s laser printers for printing multiple copies of your dissertation — they are not resourced for such use, and are not fast enough. You are strongly recommend instead to use one of the centrally managed student print stations located around the University. See the web page http://www.stir.ac.uk/is/student/it/printcopy/

To do this you need to print to one of the named printer services, and for this you will need to be logged on to a PC in a central lab. You can submit three copies for printing. If you wish, you may print on high quality paper, but we do not require it.

Do NOT simply include bulky material such as program code in your dissertation. However, if the material is an essential part of the dissertation (e.g. a program illustrating an algorithm) and requires to be assessed, then make it an appendix of the dissertation and copy it along with the rest — ask your supervisor about this.

You should submit the copies of the dissertation unbound; we will then have them bound in a uniform way. One copy will be placed in the Division’s library, one will be kept by the supervisor, and one will be returned to you with your project workbook. A selection of the best dissertations are kept in the main University Library for general access, and you are required to agree to this.

9 Talk

A one day workshop will be organised during early August, at which all M.Sc. students are required to give a brief Powerpoint presentation of their project work to their fellow M.Sc. students and to Divisional staff. Detailed arrangements for the workshop will be announced nearer the date. This is an excellent opportunity to practice your technical presentation skills in a supportive environment. The presentation is not formally marked, but it will help your supervisor and second marker to gain an initial impression of your project. The Powerpoint presentations will be collected, and published on the previous projects web page at http://www.cs.stir.ac.uk/courses/msc/projects/PastDissertations/disstitles.html
10 Demonstration

In addition to the formal submission of the dissertation, you are required to demonstrate the software/systems that you have developed to your supervisor and to a second member of staff who will also mark your dissertation. Your supervisor and the second marker will ask you questions about your work too. The demonstration will contribute to your markers’ assessment of your project and dissertation.

You will be informed who your second marker is before the submission deadline, and it will be your responsibility to arrange a demonstration.

11 Assessment

Each dissertation is independently assessed by your supervisor and another member of staff; the External Examiner is also involved. An M.Sc. with Distinction may be awarded for a particularly good dissertation combined with particularly good coursework.

The quality of the following aspects of your project and dissertation will be taken into account in the assessment:

Formulation: Statement of the purpose and objectives of the project.

Discussion: Explanation of the state-of-the-art as found in the literature, and your assessment of this. Analysis of the problem being tackled.

Approach, solution and evaluation: Justification of your approach to the problem. Discussion of any significant choices that had to made, in particular where there were trade-offs or compromises to be resolved. Description of your solution, including an appropriate level of implementation detail. Description of testing and evaluation of your solution. Explanation of what you actually did if you were unable to completely follow your planned approach.

Conclusions/assessment: Summary of achievements. Reflection on strengths and weaknesses of the solution. Recommendations for further work.

Difficulty: The level of difficulty of the project: in the dissertation you should draw attention to any problems or difficulties which you overcome, and which you could not reasonably have overcome, and you should be clear about what new technologies you had to learn in order to carry out your project.

Achievement: The level of achievement in the project.

Presentation: Try to give a good presentation of your work. Make effective use of a word processor to give a neat, consistent layout to the dissertation. Use spelling checkers, grammar style analysers, etc. wherever possible. Give your supervisor good time to read your drafts.

When assessing a final mark for your project and dissertation, the assessors give separate marks for the technical and presentational aspects of your work, and these are combined with weightings 70% and 30% respectively to obtain the final mark.

The technical content (weight 0.7) is marked against the University’s Postgraduate Common Marking Scheme Descriptors (see http://www.stir.ac.uk/regulations/postgraduate/assessmentandawardofcredit/), with the following weightings of the different aspects of the report:
12 Conclusion

In border-line cases, you may be required to attend a short oral examination of your work. If you fail to attend this examination, the Examiners will exercise their discretion in making the final decision.

The copyright in your work and the dissertation is vested in you and your supervisor.
Programme: (delete as appropriate)
Information Technology / Software Engineering / Computing for Business / Computing for Financial Markets / Big Data

Your name: Registration no:
Project supervisor: Provisional project title:

Description of project, with provisional list of activities and schedule:
(continue on another sheet if necessary)

Your signature: Date:
Supervisor’s signature:
University of Stirling
Computing Science and Mathematics

MSc Dissertation submission form

You should submit your dissertation at the Divisional office, room 4B80, on or before the specified date. You must complete all parts of this form except those lines marked with *, and hand it in when submitting your dissertation. The Secretary receiving the dissertation will complete the lines marked * The upper part of the form will be retained by the Division in your file, and the receipt will be returned to you as proof of submission.

MSc dissertation submission (to be retained by the Division in the student’s file)
MSc in IT / SE / CB / CFM / BD (delete as appropriate)
I am submitting:

• One original and two copies of my dissertation entitled

IN CAPITALS

• My project workbook, and one additional copy of the Title page and Abstract.

• (Optional) One set of supplementary material: YES/NO

• I confirm that I have submitted a copy of my dissertation to Turnitin YES/NO

• I agree to my dissertation being lodged in the main University Library for general access.

(Delete if you do not agree)

Signed . Date .

Name . Reg no: .

* Received by . Date .

Receipt for MSc dissertation (to be returned to the student)
MSc in IT / SE / CB / CFM / BD (delete as appropriate)
Received from (student’s name)

• One original and two copies of the dissertation entitled

IN CAPITALS

• The project workbook, and one additional copy of the Title page and Abstract.

• (Optional) Supplementary material: YES/NO

* Received by . Date .