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Department of Computing Science and Mathematics

University of Stirling

Stirling FK9 4LA, Scotland

Telephone +44 1786 467 421, Facsimile +44 1786 464 551

Email jerry.swan@cs.stir.ac.uk,{martin.edjvet,ender.ozcan}@nottingham.ac.uk

Technical Report CSM-197

ISSN 1460-9673

January 2014



Abstract

We describe the use of a rewriting system to determine equivalence classes over the search-space
of optimisation problems. These equivalence classes may be used to derive redundant subsequences
in the search-space for incorporation into metaheuristics such as backtracking, genetic algorithms
and tabu-search. We use this approach as the basis for a new tabu-search variant — ‘Equational-
TS’ and apply it to the Quadratic Assignment Problem, yielding significant results in terms of the
number of iterations to convergence.

1 Introduction

Search techniques involving backtracking can employ constraints on partial solution vectors to reduce the
size of the search space. Similarly, the tabu-search metaheuristic ([24], [23]) introduced the mechanism of
a ‘tabu list’ — a method for the injection of domain knowledge via prohibitions on the search trajectory.
Following the conventions of the tabu search literature, we consider an attribute to be associated with
a transition in the state-space graph via some domain-specific attribute function with signature f :
S×O×S → A, f : (sourceState, op, targetState) 7→ attr where S is solution state, O is operator and A
is attribute. We describe a method for capturing all equivalences implied by the algebraic properties of
a set of attributes via the theorem-proving technique known as the Knuth-Bendix algorithm for Strings
[38]. The output of the Knuth-Bendix algorithm is a rewriting system — a set of rules for transforming
a sequence of attributes into an equivalent normal form (i.e. a representative for an equivalence class of
attribute sequences). These rules are expressed as a regular language [20] and this transformation can
then be incorporated into backtracking, tabu-search or any metaheuristic for which there is interest in
eliminating redundant attribute sequences. A concrete example takes the set of attributes to be the set
of operators: if the algebraic structure of the operators can be expressed in an equational form, we may
then determine all cycles in the state-space graph as an offline activity. The ability to reduce operator
sequences to their minimal length equivalent is of interest for several reasons:

• To find shorter paths to a solution.

• To avoid the costly application of redundant operations.

• To meet feasibility constrains on operator sequence length.

In this article, we illustrate the application of rewriting systems to the algebraic structure repre-
senting the set of permutations of n elements. This structure is known as the symmetric group on n
elements (denoted Sn) and is a ubiquitous combinatorial-search neighbourhood, being used, for example,
to represent solutions to the Travelling Salesperson Problem [14].

Figure 1 gives concrete motication for the application of rewriting systems. It is well-known that any
permutation can be expressed as a a sequence of transpositions and Figure 1 depicts the redundancy
present in Sn by plotting the length reduction possible for randomly-generated transposition sequences
of S30, where redundancy is given by the ratio of reduced length to original length. Redundancy can be
observed to be a monotone function of sequence length.

The remainder of this article is organized as follows: in Section 2 we describe the operation of Knuth-
Bendix for Strings (KBS) and its application to Sn. In Section 3 we describe several ways in which
the redundancy of Figure 1 can be exploited by incorporating rewriting into backtracking and genetic
algorithms. In Section 3.4 we introduce a novel tabu-search variant — ‘Equational Tabu Search’ that
uses a rewriting system created offline to derive tabu list entries. In Section 4, we give a specific case
study in which Equational Tabu Search is applied to the Quadratic Assignment Problem (QAP) [39]. In
Section 4.1 we show that the convergence results for application of Equational-TS to QAP are promising
and discuss scalability issues in Section 4.2. In Section 5 we draw some conclusions and discuss the wider
applicability of the method.

2 Background

The background for Knuth-Bendix for Strings is most conveniently described in terms of the theory of
finitely-presented monoids. Informally, a monoid can be considered to be a set of strings (that includes
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Figure 1: Percentage reduction by maximum sequence length for sets of 10,000 random transposition
sequences in S30

the empty string) under concatenation. For a general introduction to the theory of monoid and group
presentations, the reader is referred to [51] and [35] respectively. Formally, a monoid is a set of generators
(a.k.a. the alphabet) equipped with an associative binary operation with identity. Let Σ be a finite
alphabet. A word in Σ is some finite sequence of elements of Σ. Σ∗ then denotes the free monoid of
words in Σ under concatenation, i.e. the set of all words over Σ. The identity element is the empty word
ε. A congruence on a monoid M is an equivalence relation ∼ on M such that x ∼ y implies wxz ∼ wyz
∀w, x, y, z ∈ M .

A finitely-presented monoid is denoted by M = Mon〈Σ|R〉, where Σ are the generators of M and R
are the defining relations for the monoid, i.e. a finite set of equations between words in Σ∗. M is then
defined as the quotient monoid Σ∗/ ∼R where ∼R is the congruence on Σ∗ of the defining relations R.
The elements of M are thus equivalence classes of words.

Finitely-presented groups are defined in an analogous fashion, and are denoted 〈X |R〉 for group
generators X , i.e. the existence of inverses is implied for all elements of X . The application of Knuth-
Bendix to a finitely-presented group proceeds via the equivalent monoid presentation for the group,
in which group inverses are explicitly introduced as generators and the two-sided equations between
generators and their inverses are also added to the relations. For example, the free group of order 2 has
group presentation 〈a, b|〉 and corresponding monoid presentation

Mon〈a,A, b, B|a ∗A = ε, A ∗ a = ε, b ∗B = ε,B ∗ b = ε〉

where A = a−1, B = b−1.

2.1 The Knuth-Bendix Algorithm

In order to apply the Knuth-Bendix algorithm to the attribute trajectory, we express the algebraic
relationships between the attributes Σ = {a1, . . . , ak} as a finitely-presented monoid. The domain
knowledge we wish to exploit is represented by the finite set of relations R ∈ Σ∗×Σ∗, being the axiomatic
equations known to hold between the attributes. We also require a reduction ordering ≺ on Σ∗ which
is a well-ordering with the additional property of translation invariance, i.e. a ≺ b ⇒ xay ≺ xby for all
a, b, x, y ∈ Σ∗. The pair R = (R,≺) is known as a rewriting system. The elements of R are known as
rewrite-rules and we replace occurrences of l in a word by r. For u, v ∈ Σ∗, we write u → v if there
exist words x, y and (l, r) ∈ R such that u = xly; v = xry, i.e. if v is obtained from u by the single
application of a rewrite rule. A word u is said to be R-irreducible (or R-reduced) if there is no word
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Figure 2: Automaton accepting minimal confluent rewrite rules of S4

v ∈ Σ∗ with u → v. A rewrite rule (l, r) ∈ R is said to be R-irreducible if r and all proper substrings of l
are R-irreducible. The system R is said to be Noetherian or terminating if there are no infinite rewriting
sequences. This implies that any word in Σ∗ rewrites to an irreducible. If ≺ is a reduction ordering, it
follows that R is Noetherian. R is said to be confluent if all applicable sequences of rewrite rules acting
on an expression eventually yield some word that is common to all sequences. If R is Noetherian and
locally confluent then R is confluent [46].

The Knuth-Bendix algorithm attempts to complete a Noetherian rewrite system via the addition of
new rules. The essential element of the Knuth-Bendix algorithm is a constructive test for local confluence.
If, during the application of this test, we encounter two words a and b that are equivalent under R but
which rewrite to distinct irreducible words c and d, R is not locally confluent and c is in fact equal to
d under the complete set of rewrite rules. The Knuth-Bendix algorithm operates by orienting any such
c and d into a new rewrite rule via ≺, and repeating the test for local confluence over all pairs of rules.
As described, this process may fail to terminate (we are effectively attempting to solve the word problem
for groups, which is well-known to be formally undecidable [15]) and that success may also depend on
the choice of reduction ordering [20]. The existence of a confluent rewriting system is nonetheless well-
known for many specific cases, including all finite groups (and hence the application to QAP described
below). If dealing with an infinite set of attributes for which confluence is not known a priori, one may
consider obtaining the set of rewrite rules as an offline process taking place prior to the execution of any
metaheuristic.

As discussed above, the output of a successful application of Knuth-Bendix is a regular language
representing the rewriting system. Fig 2 gives the automaton accepting the minimal confluent rewrite
rules for S4, the symmetric group on 4 generators, using the ‘standard presentation’ [12] with shortlex
reduction order, i.e. ordered first by length, then lexicographically according to some given element
ordering. The element ordering in this case is taken to be ti,i+1 < ti+1,i+2:

〈t1,2t2,3, . . . , tn−1,n|(ti,i+1ti+1,i+2)
3, 1 ≤ i ≤ n− 2,

(ti,i+1tj,j+1)
2, 1 ≤ i < n− 2, i+ 1 < j ≤ n− 1,

(ti,i+1)
2, 1 ≤ i ≤ n− 1〉

In Fig. 2, the start state is denoted by a box and the accept state by a double circle. A slight technical
complication arises from the possibility that a word may rewrite to another of unequal length. In order
to accommodate this, the alphabet for this automaton is the set of pairs of padded generators over the
alphabet Σ ∪ $, where $ is the padding symbol corresponding to the empty word. In order to obtain a
rewrite rule from such automata, the path from a start state to an accept state is ‘unzipped’, i.e. one
appends the first element of each transition label to the left hand side of the rule and the second element
to the right hand side of the rule. Hence, the topmost rule in Fig. 2 is given by t1,2 ∗ t1,2 → $ ∗ $, i.e.
t21,2 → ε. Fig. 3 gives the entire corresponding set of rewrite rules.
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t21,2 → ε

t22,3 → ε

t23,4 → ε

t2,3t1,2t2,3 → t1,2t2,3t1,2

t3,4t1,2 → t1,2t3,4

t3,4t2,3t3,4 → t2,3t3,4t2,3

t3,4t2,3t1,2t3,4 → t2,3t3,4t2,3t1,2

Figure 3: Minimal confluent rewrite rules for S4

void backtrack ( List< Att r ibu te > c ) {
i f ( r ewr i t e ( c ) ≺ c or r e j e c t ( c ) )

return ;

i f ( y i e l d s S o l u t i o n ( c ) )
output ( ‘ So lu t ion found : ’ + c ) ;

L ist< Att r ibu te > s = c ;
i f ( s . l ength ( ) < MAXATTRIBUTE SEQUENCE LENGTH )

s . append ( l e a s tA t t r i b u t e ( ) ) ;

f o r ( ; ; )
{

backtrack ( s ) ;
At t r ibu te a = nex tAt t r ibute ( s . getLastElement ( ) ) ;
i f ( a == nu l l )

break ;
s . setLastElement ( a ) ;

}
}

Listing 1: Backtracking over attribute sequences using Knuth-Bendix

3 Application to Metaheuristics

We now describe the application of Knuth-Bendix for Strings to backtracking [32], genetic algorithms
[29] and tabu search ([24],[23]).

3.1 Application to Backtracking

Knuth-Bendix for Strings may be used to constrain searches that backtrack over attribute sequences.
In order for this to be applicable, the backtracking procedure must generate attribute sequences in the
order determined by ≺. Each successive attribute sequence s is then reduced to its normal form n.
If n preceds s under the reduction ordering ≺ we may eliminate s from further consideration since its
equivalent normal form has already been encountered. Listing 1 outlines a recursive implementation
of backtracking augmented in this fashion. The function leastAttribute returns the minimal attribute
under ≺ and the function nextAttribute( a ) returns the minimal attribute b such that a ≺ b (or null
if no such attribute exists). Since both of these functions are static properties of the set of attributes,
they have time-efficiency O(1). Any additional domain-specific constraints on attribute sequences may
be expressed via the reject function.
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3.2 Application to Genetic Algorithms

Problems for which the solution is the minimal depth path to a goal state are readily expressed as genetic
algorithms in which the genome is a (fixed or variable-length) operator sequence. The application of
Knuth-Bendix to rewrite potential solutions is thus a useful way of rejecting infeasible solutions: if we
employ a length-preserving≺ (i.e. rewrites have non-increasing word-length — such as shortlex, described
above) then if the normal form is shorter, the potential solution contains redundant subsequences and is
thus infeasible. For example, in [44] genetic algorithms over operator sequences are applied to a number
of potential counterexamples to the longstanding Andrews-Curtis conjecture [2]. To the chagrin of
group-theorists and metaheuristic researchers, depth-first search employing secondary storage represents
the state-of-the-art in this area ([28], [7], [55]). Since it is well-known that the operators for Andrews-
Curtis form a group with a rich algebraic structure, Knuth-Bendix might profitably be used to exploit
this domain knowledge and increase the effectiveness of genetic algorithms or other metaheuristics over
operator sequences.

3.3 Application to Tabu Search

The essential mechanism of tabu search (termed recency-based memory) maintains a restricted local
neighbourhood by prohibiting the choice of a transition if (some attribute of) that transition has been
encountered recently [24]. The simplest (or strict-tabu) implementation implements the recency struc-
ture as a sequence of the last k attributes encountered, where k is the tabu-tenure. In addition, it is
possible to maintain an absolute-tabu attribute list that constrains the search-space via problem-specific
knowledge. Tabu-search is generally equipped with an aspiration criterion, which allows the selection
of a transition that would otherwise be prohibited (e.g. if the target state evaluates as superior to any
state yet encountered).

3.4 Equational Tabu-Search

We now introduce the Equational Tabu Search (Eq-TS), a novel tabu-search mechanism. In Eq-TS, the
elements of the tabu-list are normal forms of attribute sequences. As part of its current state, Eq-TS
maintains the normal form of the operator sequence obtained from the metaheuristic trajectory. On each
successive transition in the state-space graph, the operator associated with that transition is appended
to the attribute sequence and the resulting sequence reduced to normal form. Eq-TS thus describes how
to create successive elements of the tabu list and is independent (at least at a conceptual level) of the
policies used for determining the tabu list size and diversification policy (i.e. whatever combination of
static, robust, reactive etc features are employed). Based on the assumption that frequently-encountered
attribute sequences are representative of basins of attraction in attribute space, we have elected in this
article to employ the mechanisms of reactive tabu search [5, 4] for the other policy aspects of Eq-TS.

Given the relative complexity of TS as a local search strategy, it simplifies both exposition and imple-
mentation to use the techniques of generative programming [13] to decompose the algorithm into generic
policy components. These components may then be combined to yield alternative search algorithms.
This is the approach adopted for the HotFrame C++ local search framework [21], and we outline
the implementation of Eq-TS with reference to its realization as a HotFrame policy. The invoking
framework for the policy is then precisely as described in [21]. Listing 2 contains a minimal HotFrame

tabu policy. The policy for Eq-TS is given in listing 3. For brevity, some ‘helper’ classes are referenced
in this listing:

Word: a sequence of operators.

FrequencyElem: a pair of integers representing the iteration number and frequency count associated
with an Attribute.

MapAttribToFrequencyElem: a mapping from Attribute to FrequencyElem, implementable (for
example) as a red-black tree [11] or as a hashtable [32].
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class Str ictTabuByTrajectory
{

Ci r cu l a rL i s t< Att r ibu te > r e c en cyL i s t ;
public :

bool isTabu ( Att r ibu te a ) const {
return r e c en cyL i s t . con ta in s ( a ) ;

}

void add ( Att r ibu te a , int c u r r e n t I t e r a t i o n ) {
r e c en cyL i s t . add ( a ) ;

}
} ;

Listing 2: HotFrame strict tabu policy

4 Application of Equational Tabu Search to the Quadratic As-

signment Problem

The QAP was first introduced in by Koopmans and Beckmann in 1957 and requires a minimal cost
assignment of n resources to n locations. It remains one of the hardest optimization problems of common
interest — it is known to be NP-hard [49] and exact results are not generally obtainable for instances of
n > 20. Originally formulated as the facility location problem [39], the problem is described as follows.
Given two n× n matrices A = (aij) and B = (bkl), find a permutation π on n integers that minimizes
the objective function

h(π) = Σn
i=1Σ

n
j=1aij ∗ bπiπj

In the original formulation, aij is the ‘flow’ between facilities i and j; bkl represents the distance between
locations k and l; π represents the assignment of facilities to locations and the objective function therefore
gives the ‘transportation-cost’ between facilities.

The QAP can be formulated as an integer programwith quadratic objective function [39]; as a concave
quadratic minimization problem ammenable to cutting-plane approaches [6]; via a trace formulation (for
symmetric QAPs) for obtaining lower bounds from eigenvalues ([17],[18]) and (under some additional
constraints) reformulated as a linear assignment problem using Kronecker products in [25]. There are a
number of alternative linearizations that reformulate the QAP as a mixed-integer linear program ([41],
[37], [22],[1]), but this approach is primarily of use in computing lower bounds. Exact solution methods
for the QAP include branch and bound and cutting plane methods and the gamut of metaheuristic search
methods (including EO, GRASP, tabu and ant systems) have also been applied — the reader is referred
to [3, 42, 16] for overviews and to [33, 53, 34, 45] for state-of-the-art results.

The search-space of the QAP of size n is the set of permutations on n elements. As discussed above,
this is equivalently denoted by Sn, the symmetric group on n elements. One possible choice of operators
is Tn, the set of all pairwise transpositions of elements. It is well-known that Tn can be described as a
finitely-presented group that is isomorphic to Sn. The group generators of Tn are ti,j , 1 ≤ i < j ≤ n
with each generator self-inverse. The relations that hold in Tn are as follows (with ε denoting the empty
word):

[ti,j , tk,l] = ε if |{i, j} ∩ {k, l}| = 0, for 1 ≤ i < j ≤ n, 1 ≤ k < l ≤ n (R1)

(tijtkl)
3 = ε if |{i, j} ∩ {k, l}| = 1, for 1 ≤ i < j ≤ n, 1 ≤ k < l ≤ n (R2)

ti,jtj,kti,jti,k = ε for distinct i, j, k, taking ty,x 7→ tx,y if y > x (R3)

where the commutator [g, h] is defined as g−1h−1gh.

We illustrate the application of Knuth-Bendix to T4, taking ≺ as the shortlex ordering previously de-
scribed. Element order is given by t1,2 < t1,3 < t1,4 < t2,3 < t2,4 < t3,4. We applied the Knuth-Bendix
algorithm to this presentation using the software package maf [58], which is capable of producing a
finite-state automaton that accepts precisely the minimal confluent set of rewrite rules (Fig. 4). The
isomporphic rewrite rules for T4 are given in Fig. 5.
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class EquationalTabu {
int l a s tReac t i on ;
Word normalAttribSequence ;
L ist< Word > r e c en cyL i s t ;
MapAttribToFrequencyElem f r equ en cyL i s t ;

public :

bool isTabu ( Att r ibu te a ) const

{
Word w = normalAttribSequence . append ( a ) ;
return r e c en cyL i s t . con ta in s ( r ewr i t e ( w ) ) ;

}

void add ( Att r ibu te a , int c u r r e n t I t e r a t i o n )
{

normalAttribSequence = r ewr i t e ( normalAttribSequence . append ( a ) ) ;

i f ( f r e qu en cyL i s t . con ta in s ( normalAttribSequence ) )
{

extendRecencyList ( ) ;
l a s tReac t i on = cu r r e n t I t e r a t i o n ;
updateMovingAverage ( ) ;

// update i t e r a t i o n and f requency
f r e qu en cyL i s t . get ( normalAttribSequence ) . update ( c u r r e n t I t e r a t i o n ) ;

i f ( number o f repeated s o l u t i o n s in f r equ en cyL i s t exceed a th re sho ld
parameter )

{
escape ( ) ;

}
}
else

{
f r e qu en cyL i s t . put ( normalAttribSequence , FrequencyElem( cu r r en t I t e r a t i on , 1

) ) ;
i f ( c u r r e n t I t e r a t i o n − l a s tReac t i on > movingAverage )
{

shr inkRecencyLis t ( ) ;
l a s tReac t i on = cu r r e n t I t e r a t i o n ;

}
}

}
} ;

Listing 3: Equational-Reactive tabu criterion
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Figure 4: Automaton accepting minimal confluent rewrite rules of T4
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t21,2 → ε

t21,3 → ε

t21,4 → ε

t22,3 → ε

t22,4 → ε

t23,4 → ε

t1,3t1,2 → t1,2t2,3

t1,3t1,4t2,3 → t1,2t1,3t1,4

t1,3t2,3 → t1,2t1,3

t1,4t1,2 → t1,2t2,4

t1,4t2,3t2,4 → t1,2t1,3t1,4

t1,4t2,3t3,4 → t1,2t1,4t2,3

t1,4t2,4 → t1,2t1,4

t1,4t1,3 → t1,3t3,4

t1,4t3,4 → t1,3t1,4

t2,3t1,2 → t1,2t1,3

t2,3t1,3 → t1,2t2,3

t2,3t1,4 → t1,4t2,3

t2,4t1,2 → t1,2t1,4

t2,4t1,4 → t1,2t2,4

t2,4t1,3 → t1,3t2,4

t2,4t2,3 → t2,3t3,4

t2,4t3,4 → t2,3t2,4

t3,4t1,2 → t1,2t3,4

t3,4t1,3 → t1,3t1,4

t3,4t1,4 → t1,3t3,4

t3,4t2,3 → t2,3t2,4

t3,4t2,4 → t2,3t3,4

Figure 5: Minimal confluent rewrite rules for T4
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n time(s) rewriting-fsa states rewriting-fsa equations

10 < 1 103 538
20 16.56 498 5,378
30 398.42 1,193 19,518
40 3,899 2,188 47,958
50 23,498 3,483 95,698
60 99,430 5,078 167,738
70 338,646 6,973 269,078

Table 1: Computation time for (Tn,≺R) using MAF utility automata -nowd

Shortlex ordering enjoys a number of useful theoretical and practical properties and is therefore
generally to be preferred as a reduction ordering [19]. However, for groups such as Tn that have large
numbers of generators, Knuth-Bendix using shortlex may quickly become intractable: using maf, we
were only able to obtain a confluent rewriting system for n ≤ 10. Further results were therefore obtained
using a wreath-product reduction ordering [51], denoted ≺R. Table 1 gives the time in seconds required
by MAF’s automata program to produce a confluent rewriting system for Tn (n = 10 − 70) under a
wreath-product ordering (all computations in this article were performed on a Pentium R© 3 GHz PC).
Once a rewriting system for Tn is obtained, it is of course applicable to any problem with an isomorphic
set of operators (e.g. TSP [26], appropriate variants of Group-Shop scheduling [50] etc). Rewriting
systems successfully obtained for Tn can therefore be made available as a resource of general utility.

4.1 Results

Problem instances were taken from the QAPlib repository [9]. As a benchmark for comparing the
performance of Eq-TS, we elected to use the publicly-available implementation of robust tabu search
(Ro-TS) for the QAP due to Taillard [56], since it features prominently as a method of obtaining the
optimum\universally best-known solutions across many QAPlib instances.

Ro-TS and Eq-TS were applied to a number of instances for up to 100,000 iterations (terminating
prematurely if the optimum value is obtained) and the performance averaged over 50 runs. The results
are summarised in Table 2, the columns of which are given by:

%-converged Percentage of samples that converge to the best-known value.

mean(dopt) Mean of the distance to the optimal (or universally best-known) value.

sd(dopt) Standard deviation of the distance to the optimal (or universally best-known) value.

mean(ibest) Mean of the number of iterations to the best value obtained.

sd(ibest) Standard deviation of the number of iterations to the best value obtained.

Some other instances analysed for which convergence was almost immediate for both algorithms (e.g.
some members of the esc32 family and the entire esc16 family) are omitted from these results.

Eq-TS can be seen from Table 2 to exhibit a higher percentage of convergence in 8 of the 15 cases,
an equal percentage in 6 cases and a lower percentage in 1 case. All the cases in which the convergence
percentage is equal have a convergence of 100%.

To further illustrate the nature of the differences in convergence, we compared the underlying distri-
butions for dopt and ibest according to the confidence intervals of the Mann-Whitney nonparametric test
[30]. We tabulate entries defined as follows: = denotes equal distributions according to this test, + or −
respectively indicating which of Eq-TS or Ro-TS is to be preferred. Since some entries lie in the 90-95%
confidence range, the results are split into Tables 3 and 4, which are derived from 95 and 90 percent
confidence intervals respectively.

From Tables , 3 and 4 we therefore conclude that Eq-TS is to be preferred in terms of the solution
quality and\or number of iterations to convergence in 11 of the 15 instances studied.
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Instance Alg %-converged mean(dopt) sd(dopt) mean(ibest) sd(ibest)

bur26a Ro-TS 98 22.12 154.84 21283.7 21114.6
bur26a Eq-TS 100 0 0 7968.96 7389.09

bur26b Ro-TS 98 129.26 904.82 21774.6 23095
bur26b Eq-TS 100 0 0 6640.4 6026.57

bur26c Ro-TS 92 484.76 2306.46 19627.7 22242.9
bur26c Eq-TS 100 0 0 6141.88 5977.97

bur26d Ro-TS 94 123.14 846.347 14791.5 13466.4
bur26d Eq-TS 100 0 0 3608.3 3793.95

bur26e Ro-TS 96 233.48 1583.73 14574.7 20907
bur26e Eq-TS 100 0 0 2870.58 2621.33

bur26f Ro-TS 90 539.36 2515 13703.7 17895.6
bur26f Eq-TS 100 0 0 1898.86 1842.45

bur26g Ro-TS 100 0 0 14377 12913.4
bur26g Eq-TS 100 0 0 5467.22 5378.24

bur26h Ro-TS 98 14.48 101.36 14366.5 18498.8
bur26h Eq-TS 100 0 0 1681.2 1798.68

chr12a Ro-TS 100 0 0 1443.96 1056.32
chr12a Eq-TS 100 0 0 1079.14 757.658

esc32b Ro-TS 100 0 0 4899.04 4243.36
esc32b Eq-TS 100 0 0 1076.44 867.815

esc32d Ro-TS 100 0 0 3381.84 1814.14
esc32d Eq-TS 100 0 0 207.32 183.05

kra30a Ro-TS 84 190.4 436.261 20664.3 17045.2
kra30a Eq-TS 86 108 302.549 38921.2 25149.1

lipa30a Ro-TS 100 0 0 4659.18 4645.88
lipa30a Eq-TS 96 3.76 18.6629 20083 17152.2

lipa30b Ro-TS 100 0 0 247.2 526.157
lipa30b Eq-TS 100 0 0 266.42 314.133

nug25 Ro-TS 100 0 0 3182.04 3216.24
nug25 Eq-TS 100 0 0 11230.8 10288.2

Table 2: Convergence metrics for QAPlib problem instances using Tabu Search variants

Instance dopt ibest

bur26a = +
bur26b = +
bur26c + +
bur26d + +
bur26f + +
bur26g = +
bur26h + +
chr12a = +
esc32b = +
esc32d = +

Table 3: Results of Mann-Whitney test (95% confidence) on distributions of Ro-TS versus Eq-TS for
QAP problem instances
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Instance dopt ibest

bur26e + +
kra30a = -
lipa30a - -
lipa30b = -
nug25 = -

Table 4: Results of Mann-Whitney test (90% confidence) on distributions of Ro-TS versus Eq-TS for
QAP problem instances

4.2 Scalability

As discussed above, the term-rewriting aspect consists of two phases: a) the offline application of the
KBMAG procedure to construct the automata representing the rewriting system b) the online application
of rewriting (which is also employed for the confluence test within the offline application KBMAG) to
reduce a word to normal form.

With respect to the above presentation for Sn, the current implementation of MAF can yield a
rewriting system for n up to 70, before failing due to resource limitations (addressable memory is currently
a maximum of 4 GB on all supported platforms). Local implementation concerns such as memory issues
notwithstanding, it is clearly desirable to be able to derive a RWS for much larger values of Sn, thereby
opening up the possibility of application to problems such as the Travelling Salesperson [14].

We therefore proceed to describe the efficiency-critical aspects of the KBMAG procedure and outline
possible alternative implementations.

4.3 Efficiency of Rewriting

The function rewrite(c) returns the normal form for c with respect to ≺. In the most general case,
rewrite(c) has time-efficiency O(|c|2), but for finite monoids, rewriting can be achieved by coset-table
lookup in O(|c|) [57].

When rewriting, we want the longest suffix of w (if any) that is the left side of a rule. For finding
overlaps, we want the longest suffix of w that is a prefix of a rule. To achieve this efficiently requires
the use of an index structure for the rewriting system. A variety of term indexing strategies exist, each
exhibiting a particular space and time tradeoff [51, 52]. An index automaton recognises the set of all
irreducible words and represents an extremely time-efficient search strategy for rewriting (it may also be
augmented for for finding overlaps). However index automata are also very memory-intensive and are
therefore less suitable for very large sets of rewrite rules.

An alternative indexing strategy employing generalized suffix trees is given in [54]. Having constructed
a generalized suffix tree then, for all pairs of left sides (l1, l2), finding the longest prefix of l1 that is a
suffix of l2 can be achieved in (sequential) linear time. Hariharan gives an optimal parallel construction
algorithm for suffix trees that exhibits logarithmic speedup [27].

In general, it is well-known that Knuth-Bendix is highly ammenable to parallelism [48], with nearly
linear speedup reported by [59]. In particular, more than one left side may be a subword of w. Bündgen
et al [8] give a parallel implementation of rewriting with speedup that is linear in the number of matching
left sides.

4.4 Efficiency of the Automata Construction

The most expensive aspect of the automata construction involves the composite operation on two DFAs
Mx, My, an operation that is derived from the Cartesian product of the automata [31]. This requires
the determinization of an NFA, and is therefore asymptotically O(2|S|). Composite can be seen to be
associative, and we define Mw for w ∈ Σ∗ by repeated application. The verification process requires
that we form Mr for all relators r. It is possible to achieve a logarithmic reduction in the number of
composite operations by factoring out common subexpressions in the relators [54].
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5 Conclusion

We described the use of a completion theorem prover (the Knuth-Bendix algorithm as employed within
the KBMAG procedure) to derive all equations that hold in the monoid structure of a set of attributes
associated with the metaheuristic trajectory.

We introduced ‘Equational-TS’ — a tabu search variant that uses rewriting to derive a tabu list of
equivalent attribute sequences and applied it to the Quadratic Assignment Problem. The results show
that this technique leads to convergence with fewer evaluations of the objective function as compared to
‘Robust-TS’ (an approach known to be effective with QAP).

Alternative implementation strategies for improved efficiency were also discussed. In addition to
theoretical results regarding the Knuth-Bendix algorithm [36] that imply efficiency gains, the overall
performance of KBMAG is strongly driven by the choice of reduction heuristics [19]. Beyond the ap-
plication of the known efficiency improvements we describe, further investigation of reduction heuristics
together with combination of these approaches could make much larger problem instances accessible.

In many application domains, it is well-known that the evaluation of the objective function is often the
dominant computational cost in state-space search, these results encourage investigation into the further
incorporation of algebraic domain knowledge. In addition, problems in which the attribute algebra has
a richer set of equations than that of the QAP would exploit the potential of the rewriting mechanism
more fully.

If the algebraic structure of the attributes is no more descriptive than a monoid, we may use this
method to obtain an efficiency improvement, e.g. in an application of genetic algorithms in which the
genome represents an operator sequence, we can employ our confluent set of rewrite rules to transform
it into its equivalent length-minimal sequence. If the algebraic structure of our attributes is indeed a
group (rather than merely a monoid), we can turn these relations into relators (i.e. ensure that the
right-hand side of each rewrite-rule is the empty word by mulitplying both sides by the inverse of the
right-hand side). By this means, we can determine all redundant attribute sequences and may use these
sequences to prune the search-space in backtracking, via tabu lists or other representations where the
elimination of redundancy is required for purposes of efficiency or feasibility. Further generalizing the
nature of the algebraic structure leads to wider applications, for example in genetic programming [40]
and hyper-heuristics [10]: normal forms may be used to combat bloat or minimize evaluation cost in
genetic programming [43] or grammatical evolution [47].
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