
Department of Computing Science and Mathematics

University of Stirling

The Homer Home Automation System

Claire Maternaghan

Technical Report CSM-187

ISSN 1460-9673

December 2010

Department of Computing Science and Mathematics
University of Stirling

The Homer Home Automation System

Claire Maternaghan

Department of Computing Science and Mathematics

University of Stirling

Stirling FK9 4LA, Scotland

Telephone +44 1786 467 421, Facsimile +44 1786 464 551

Email cma@cs.stir.ac.uk

Technical Report CSM-187

ISSN 1460-9673

December 2010

Abstract

This report discusses Homer, a system developed for managing home automation and telecare. The
philosophy and architecture of Homer are explained. The nature of home components is discussed, along
with how they �t together into the overall system. Policies are used as a means of automated decisions
based on user-de�ned rules for control of the home system. User-friendly interfaces for home management
are then presented. Finally, the report summarises what has been covered, evaluates the current status
of home automation and telecare, and identi�es trends and future developments in these �elds.

Contents

1 Introduction 3
1.1 Home Automation . 3
1.2 Telecare . 3
1.3 Challenges in Pervasive Computing for the Home . 3
1.4 Home System User Interfaces . 4
1.5 Chapter Overview . 4

2 Homer System 4
2.1 Homer Philosophy . 4
2.2 High Level Architecture . 5
2.3 Homer Framework . 6

2.3.1 Component Bridge . 6
2.3.2 System Bridge . 6
2.3.3 Policy Server . 6
2.3.4 Event Server . 6
2.3.5 Event Hub . 6
2.3.6 Data Type Speci�cation . 8

2.4 Homer Services . 8
2.4.1 Logger . 8
2.4.2 Comms . 8
2.4.3 Weather . 8
2.4.4 Homer Database . 8
2.4.5 Web Server . 9

2.5 External Interface . 9
2.6 User Oriented Features . 10

3 Components 10
3.1 Introduction . 10
3.2 Developing Components . 11
3.3 Managing Components . 13
3.4 Controlling and Automating Components . 17

4 Home Policies 17
4.1 Format . 18
4.2 Language . 18
4.3 Representation . 18
4.4 Implementation . 18
4.5 Sample Policies . 22

5 Home Interface 23
5.1 iPad for Homer . 24
5.2 Policies . 24

1

6 Conclusion 25
6.1 Summary . 25
6.2 Evaluation . 27
6.3 The Future . 27

2

1 Introduction

Computing has already pervaded the home through use of personal computers, mobile phones, and
microcomputers embedded in domestic appliances. This report discusses how home automation and
telecare are bringing a new dimension to pervasive computing in the home. This allows equipment and
facilities within the home to be combined and made available through range of technolgies, platforms and
interfaces . As a concrete example, the Homer system shows how a common architecture and approach
can support both applications.

This section introduces home automation and telecare, and presents the general challenges that they
pose.

1.1 Home Automation

The concept of home automation has been around for many years. There are a number of commercial
solutions, but these would be better termed home control as they mostly support control of aspects of
the home such as lighting, heating, security, audio and video. However, they tend to lack �exibility in
combining the control features and hence result in rather rigid and tailored solutions, rather than one
�exibile solution that the user can customise to meet their changing needs.

Due to the widespread use of personal computing, mobile phones, media players and the like, con-
sumers have become increasingly knowledgeable about technology, more comfortable with its use, and
more acceptive of technology in their every day lifes. The time is therefore ripe to o�er more sophisti-
cated ways of managing the home. This can deal with aspects such as comfort, energy e�ciency, health,
home media and home management.

1.2 Telecare

The global population is ageing, with the percentage of older people (over 65) expected to be 19.3% by
2050 � and much higher in some developed countries [5]. It is both socially desirable for older people
to remain in their own homes for as long as possible and infeasible for society to provide su�cient care
homes for this growing segment of the population.

Telecare aims to support delivery of care to the home, with a particular emphasis on social care.
Telehealth is similar, but focuses on aspects such as health monitoring and support. Remote delivery
of care is expensive in manpower, so computer-based support is an attractive and e�ective solution.
Telecare and telehealth can monitor undesirable situations such as night wandering or abnormal medical
readings. However, they can also identify potential problems in daily life such as poor sleeping patterns
or reduced meal preparation.

Telecare resembles home automation in requiring management of how the home reacts. Although
the two applications have some overlap, telecare makes use of specialised devices such as medication
monitors, fall detectors and enuresis (bed wetting) sensors. Telecare is usually linked with a call centre
for handling alerts. Advantage may also be taken of a wide-area link to upload home care data to a
remote facility (e.g. a social work o�ce or a health centre). Not only are telecare systems proprietary,
they usually require specialised technical expertise and reprogramming to modify the services they o�er.

1.3 Challenges in Pervasive Computing for the Home

Home computing must be appropriate for ordinary householders. Despite increased understanding of
computer-based capabilities, consumers will have little understanding of or interest in the technical
details of home equipment. The concepts and interfaces therefore need to be readily understood. Home
equipment also needs to be acceptable: devices that look out of place in the home are unlikely to be
welcome, and devices that need disruptive installations are unlikely to be accepted.

Interoperability remains a challenge. Although a number of standards are available for home automa-
tion, these are often proprietary, low-level, and do not guarantee interworking across di�erent commercial
solutions. Since telecare is in its infancy, there is little standardisation of telecare equipment interfaces.
User-visible interfaces to home equipment are also proprietary and unlikely to be standardised.

Attempts have been made to introduce �exible home automation through user-de�ned rules or map-
pings. However, these usually require technical expertise that ordinary householders are unlikely to have

3

or to learn. Telecare management is highly specialised, being performed by technicians or care workers
rather than end users. Nonetheless, it would be desirable to open this up to less technical users (e.g.
end users themselves or their family caregivers).

1.4 Home System User Interfaces

Interface design techniques of relevance to home systems include programming by demonstration, tangible
programming and visual programming.

Programming by demonstration (e.g. a CAPpella [3], Alfred [4]) allows the user to set up a situation
and then demonstrate how the system should respond to it. However, it can take signi�cant e�ort to
demonstrate all the situations that might arise. It can also be di�cult to demonstrate rare events.

Tangible programming uses real-world analogues to de�ne system behaviour. Accord [10] de�nes
rules by assembling jigsaw pieces. Media Cubes [1] are similarly used to de�ne rules by placing action
requests next to devices. As noted by the designers of Camp [12], approaches like these require users
to think in unnatural, device-oriented terms. Instead, Camp focuses on requirements expressed using
words from a `magnetic poetry' set. However, what can be expressed is deliberately restricted to avoid
complex natural language processing.

Visual programming is an attractive option for home control. The approach of [6] allows end users
to de�ne rules graphically in ubiquitous computing environments, though what may be stated is very
restrictive. iCAP [11] allows new devices to be de�ned by drawing icons. These are then dragged onto
a situation window (for rule conditions) or an action window (for system response). Oscar [9] allows
components to be interconnected visually, but is almost entirely focused on home media.

1.5 Chapter Overview

The Homer project, discussed in Section 2, o�ers a generic solution for both home automation and tele-
care. The philosophy and high-level architecture of the system are described. The types of components
are described, and how they are �exibly integrated into the system. Above the components, policies are
automated rules for how the home should react to various situations. Finally, user-friendly interfaces at
the top level aim to make it easy for non-technical users to manage their homes. Section 6 summarises
the chapter, and evaluates the overall state of the art. Future trends in home automation and telecare
are identi�ed.

2 Homer System

This section discusses the Homer system, which has been fully implemented unless otherwise stated. The
overall architecture, its components, internal framework, policy server and user interfaces are discussed.

The aim was to develop a �exible and dynamic framework that supports any type of device, appliance
or home service. The framework focuses on how to represent components in a way that makes them easy
to use as building blocks in higher-level services. The framework can then combine these building blocks
in a variety of ways to create applications, services, rule-based systems, etc. It is possible to use the
same components for completely di�erent purposes, and to recon�gure them dynamically as requirements
change. This supports the design principles recommended by Davido� et al. [2] for developing end-user
programming systems within a smart home environment.

Considerable device functionality is available within a typical home. Unfortunately, it is not yet
common to combine the capabilities of individual devices. Audio-visual systems are the exception, but
even there the combination is limited to simple and �xed interconnections. Basic tasks like managing
home appliances from a remote location are possible, yet integrated solutions are not readily available.
A home system should allow the user to manage and interconnect home devices as required. The Oscar
project carried out by Newman et al. [9], discussed in [8], demonstrates such a system but it is limited
to media devices within the home.

2.1 Homer Philosophy

Homer aims to act as a middle layer between users and components (hardware or software), hiding
complexity from both developers and users. Components register themselves with Homer, which then

4

exposes their functionality to the home user. Instances of components can then be created and placed
within a model of the home environment. The user can view and control the state of all component
instances. Home management policies can also be written to make use of the de�ned component instances.

A common limitation of current home automation systems is that the home logic is hidden, so that
it cannot be controlled or changed by the user. This can result in the home behaving in ways which
the user does not understand and cannot discover without contacting the system installer. It is also
common to �nd that changes to the home logic have to be made by the system installer (at cost). Some
commercial systems do allow the user to create rules for the home. However the user interfaces for this
are often complex and hard to use, meaning that the average householder is unlikely to attempt any
changes. Homer includes an integrated policy server that is made available through an HTTP interface.
This makes it easy to create new extensions and interfaces.

2.2 High Level Architecture

Networks are fundamental to both telecare and home automation. They link devices and services in
the home, and to services provided in the wide area. Home networks connect a broad range of devices,
appliances, sensors and actuators.

There is considerable variety in the protocols used within and to the home. A home platform needs
to be as device- and protocol-independent as possible in order to handle this variability. The solution
adopted here is to abstract the details by treating devices as providing services. It is then possible to
treat everything in the home as a service. This gives a uniform and �exible architecture, and also bene�ts
from the advantages of SOA (Service Oriented Architecture). Fortunately, interfaces (drivers) for many
protocols exist in commercial or open-source form. It has therefore been possible in this work to focus
on the higher-level framework and services. There are many component frameworks. The attraction of
using services as components is that the bene�ts of SOA can be realised, such as loose coupling and easy
combination of components.

A wide range of possible framework options were explored; OSGi (Open Source Gateway Initiative,
www.osgi.org), using the Knop�er�sh (www.knopflerfish.org) implementation, was chosen as the
�nal framework tool. A full review of the frameworks explored and the reasons for choosing OSGi can
be found in [7].

A high level architectural diagram for Homer is shown in �gure 1. The rest of this section explains
the various parts of the diagram in detail. Firstly, the Homer Framework and Services are explored.
Next, the components are described, then it is shown how developers add devices to Homer which are
automatically detected and o�ered to the user. The Java client user interface is shown for managing
these components. The policy server is explained in section 4, and the webserver and external interface
are explained in section 2.5. Finaly, external Homer applications are shown and discussed in section 5.

5

Logger

Comms

Weather

Homer
Database

Web
Server

Public

Private

Services

Weather

X10

Homer Framework
Example

Components

Visonic

Webcam

Email

OSGi

Email

Key: : used by all.

Figure 1: High-level architecture diagram for Homer

2.3 Homer Framework

The Homer Framework bundle, shown in �gure 2, is the core of the Homer system. It handles the
following apsects:

2.3.1 Component Bridge

The component bridge is used for communication between components and Homer. It extracts relevant
information from registered Homer components, as demonstrated above, and sends information to the
components such as requests for a particular action to be carried out.

2.3.2 System Bridge

Similarly, the system bridge is used for communication between Homer and private services such as the
Homer database and web server.

2.3.3 Policy Server

The policy server is descibed in more detail in section 4.

2.3.4 Event Server

The event server is a hook for a future link to the research carried out on so-called `device services' [13].
This allows component-level events to be �exibly mapped to/from policy-level events through external
logic de�ned by web service orchestration. This supports programmable sensor and actuator fusion. It
is planned to investigate future use of this by Homer.

2.3.5 Event Hub

The events hub acts as the central communicator for all interested parties. For example, the component
bridge will listen for any condition checks or action requests for each system device type, so as to then

6

Policy
Server

OSGi
Events

Component
Bridge

Event Hub

System
Bridge

Event
Server

Homer
Components

Homer System
Services

Figure 2: Homer Internal Architecture

7

contact the relevant component. The component bridge would also tell the event hub about any triggers
from its components, as means of distributing such messages.

Homer makes use of OSGi's event messaging service where events can be posted and listened for.
Events carry the IDs for various pieces of information about the particular device. This includes system
device information (e.g. type `X10 Appliance Module', instance `B3' as X10 module address), user device
information (e.g. type `lamp', instance `bedside light'), location information (e.g. context `home', location
`bedroom'), and event details (e.g. trigger `turned on', condition `is o�', action `dim' with parameter
`50'). This allows di�erent system elements to listen for di�erent kinds of information. For example, a
Twitter service could listen for any kind of trigger event and report this via a tweet. As another example,
a kitchen display could listen for events in the kitchen to keep the device statuses up-to-date.

The format of Homer OSGi events is:�uk/ac/stir/cs/homer/<system device type id>', with the follow-
ing list of attached parameters: �UserDeviceID�, �UserDeviceTypeID�, �SystemDeviceID�, �LocationID�,
�LocationContextID�, �EventID�, �EventType�, and optionally: �Parameters�.

2.3.6 Data Type Speci�cation

A protocol for de�ning data types that can be translated to JSON (JavaScript Object Notation, www.
json.org) for sending to interested systems such as a webpage or iPad application. These data types
are to allow component developers to de�ne the type of information they may need. This was seen in
the examples above when a new X10 Lamp or Appliance module was created: the user must be asked
for the `house code' which is a string of 2-3 characters, and also when the user sets the light level for a
particular device which uses the X10 Lamp Module the user must be asked for a 'percentage' which is a
number value between 0 and 100. This information can be parsed before being displayed to users in any
way seen �t by the user interface developer/designer.

2.4 Homer Services

Bundled with the Homer Framework Home System are simple services which o�er helpful tasks for
developers. Some of these services are `private', meaning that they cannot be used by components, while
others are public, meaning that both the internal system and the components can freely make use of
them. Currently the services available are:

2.4.1 Logger

A simple logging bundle which o�ers the Logback (logback.qos.ch) API to other bundles. It also
ports Java Util Loggings and Knop�er�sh (the implemetionation of OSGi Homer uses) to Logback
automatically too.

2.4.2 Comms

Provides the functionality for components to be able to connect, and communicate with, an RS232 or
USB port.

2.4.3 Weather

A basic service which uses the Google Weather API to obtain the current weather for a particular
location.

2.4.4 Homer Database

The Homer Database uses the H2 Database Engine (www.h2database.com) to store and access all the
data involved within the home system. H2 is an open-source Java SQL database and was chosen as it is
a popular and fast, with a small footprint. This includes all the system device types and system devices,
the user device types and user devices, the possible triggers, conditions and actions, and any policies.
The Homer Database API provides a clean external access point to the data, which is available for the
Homer Framework and other internal bundles such as the Policy Server and Web Server.

8

2.4.5 Web Server

The Web server bundle makes use of the inbuilt OSGi HTTP Web Server to o�er external access to
Homer. This external interfaces is described in the following section.

2.5 External Interface

The web server bundle of Homer exposes an HTTP-based API that supports HTTP requests for informa-
tion. Each HTTP request requires an application key and secret key as a means of simple authentication
before any information is returned. The full functionality of the system is available through the server al-
lowing any external technology to make use of Homer. Such examples could include: iOS (for iPhone and
iPad development), web technologies for a web client, Android (for Android mobile phone) applications
and Flash applications.

The Homer HTTP API uses JSON as a means of sending and receiving chunks of infomation as it is
a simple and well-supported format. As an example, an application could be made that allows the user
to control the home, so �rst of all a list of the location contexts that there could be devices within is
shown to the user. So it could display �Home� and �Work�, as both of these have devices that could be
controlled, however �Neighbour's House� is not shown since we cannot do anything to their house, we
can only query some information about that location. The following JSON would be sent to Homer:

queryObj: { operation:"getLocationContexts" actionID:"*' }

Homer would then look up all the location contexts which have any type of action and return to the
external application:

result:

{

[

"id": "<some string id, e.g. `1'>"

"name": "<some string name, e.g. work">

"image": "<some string image id which you can use to request an image

from homer (all images are stored within the database, so knowing

the id of the image allows the client to request the image from Homer)>"

]

}

This JSON represents an array of location contexts, giving a unique ID, a display name and an image
ID for each location context. Assume that the user chooses a location context (say, with ID `1'). The
application then needs to display all the locations within the chosen location context which contains any
actions. The external application would send:

queryObj: {operation:"getLocations" locationContextID:"1" actionID:"*" }

Homer would return an array of locations within location context `1' that have one or more de-
viceswithin that have actions:

result:

{

[

"id": "<some int id, e.g. 1>"

"name": "<some string name, e.g. office">

"contextID": "1" (the location context that the location is in)

"image": "<some string image id which you can use to request an image from homer>"

]

}

This JSON respresents an array of locations, giving a unique ID, a display name, the location context
it resides in and an image ID.

9

2.6 User Oriented Features

Homer is being developed iteratively, both device-up and user-down. This means that features are
continually added to Homer in order to support the user interface ideas. These features are discussed
in Section 5 from the user point of view, rather than the system point of view. Some examples of these
features are sensor and actuator fusion (saving `when' and `do' clauses for reuse), and the notion of
people within the system having associated triggers, conditions and actions.

3 Components

A component within Homer simply wraps and exposes a particular type of device or software service.
Each component is implemented as an OSGi bundle, which allows components to be added at run
time. As examples of components, there is support for X10 devices (mains-controlled), Tunstall devices
(telecare), SMS (messaging) and weather forecasting. This section explores the creation of components
from the developers point of view, and the nature of these components to the end-user.

3.1 Introduction

A component within Homer o�ers some kind of capability to the user. This functionality is associated
with a particular system device type, and is split into three di�erent aspects: triggers (events), conditions
(states) and actions. A component acts as a proxy between Homer and the underlying hardware or
software service. Components are categorised according to their underlying technology. However, users
view the system using categories that they create and which make sense to them.

As an example, X10 supports a variety of hardware that uses a common protocol and is therefore one
Homer component. X10 devices are either appliance modules (on, o�) or lamp modules (on, o�, dim),
which are treated as two di�erent system device types. Users have access to a simple device management
application, shown in section , which allows them to create new instances (user devices) of hardware
within the home. Users create their own categories (user device types) instead of having to refer to
the system device type names (here, X10 appliance modules or X10 lamp modules). This allows users
to name and group devices in ways meaningful to them, without having to be aware of the underlying
technology. For example, user-de�ned categories for X10 devices might include heating and lighting.

As a further example, Visonic make a range of wireless sensors for the home. Being supported
by a common protocol, these are managed by one Homer component. The di�erent kinds of sensors
(movement, opening, etc.) are treated as di�erent system device types. As the user installs these
sensors, they can be allocated to categories meaningful to the user (security, doors, etc.). Decoupling
the user view of devices from the underlying technology makes the system more usable. Users can refer
to devices within the home as they wish. Devices are associated with particular technologies only at
installation time.

All components o�er services in the form of triggers, conditions and actions; these are speci�c to each
system device type. For example an X10 appliance module system has actions `turn on' and `turn o�',
whereas an X10 lamp module also supports `dim'. Components report their advertised triggers, check
their advertised conditions on request, and perform their advertised actions.

Multiple underlying technologies can support one user device. For example, the lounge TV might
be controlled by both an X10 appliance module for on/o� as well as an infrared controller for changing
channels and volume. For any user device, the actions that can be carried out are those of the parent
system device types. Suppose the kitchen TV made use of only an X10 appliance module. Both TVs
could be powered on or o�, while the lounge TV could also have its channels and volume changed.

Device support has been created for use in both home automation and telecare. Examples in various
categories which Homer currently supports are as follows:

• Appliance Control: Appliances controlled via the mains include lighting, fans and TVs. Appliances
controlled via infrared include TVs, audio-visual systems and DVD recorders.

• Communication: Communications services include email, SMS (Short Message Service), Facebook,
Twitter, message display on a digital photo frame, and speech input/output (using code from the
University of Edinburgh).

10

• Energy Consumption: Energy usage will be monitored per appliance once suitable hardware be-
comes generally available for the UK. This will allow Homer to react to how much energy is being
used and help reduce energy consumption. For example, clothes washing might be delayed until
other energy demands are lower.

• Environment: Oregon Scienti�c sensors (www.oregonscientific.com) are used for humidity, tem-
perature, etc. The Google Weather API is used to obtain the current weather or a forecast for
chosen locations.

• Home Automation: Sensors from companies like Tunstall (www.tunstallhealth.com) and Visonic
(www.visonic.com) include movement detectors, pressure mats and reed switches (cupboard, door,
window). Homer is capable of handling a variety of home actuators (though the current support is
limited). Future support will include curtain/blind controllers, garage door controllers, and remote
door locking and unlocking.

• Telecare: Telecare sensors from Tunstall and Visonic include alarms (pendant, wrist), hazard
detectors (�ood, gas, smoke), medicine dispensers, and pressure mats (bed, chair). Specialised
sensors include detectors for enuresis, epileptic seizures and falls.

• User Interfaces: Various `Internet buddies' are supported as they appeal to ordinary users. Ex-
amples of these are the i-Buddy `angel' (www.unioncreations.com), the Nabaztag `rabbit' (www.
nabaztag.com), and the Tux Droid `penguin' (www.ksyoh.com). The WiiMote (www.nintendo.
com) can be used to communicate using gestures and tactile output. Using code from the Univer-
sity of Glasgow, similar functions are available from the Shake (Sensing Hardware Accessory for
Kinaesthetic Expression, www.dcs.gla.ac.uk/research/shake). The Homer interface described
in Section 5 supports iPad (www.apple.com/ipad), iPhone (www.apple.com/iphone) and web in-
terfaces. These o�er di�erent services and means of control to the home user.

3.2 Developing Components

Each component or service is an OSGi bundle which must import the HomerFrameworkAPI bundle. An
OSGi bundle activator (the main class for an OSGi bundle) simply registers its component class with
Homer. The component class must implement HomerComponent, which has required methods to obtain
a list of hardware types (for example X10 Appliance Module and X10 Lamp Module) or high-level system
services (for example Weather or SMS). Other methods register, edit and delete a component instance
(for example edit the bedroom lamp's X10 address from A1 to A2 in the X10 bundle).

The component must also implement WhichHasTriggers, WhichHasConditions and/or WhichHasAc-
tions dependent on the functionality o�ered by the system device types supported by the component.
This provides Homer with access to necesary methods to check a condition is true or false (for example,
is the bedroom lamp on?), request that an action is performed (for example, turn on the bedroom lamp),
or to get a list of triggers, conditions and/or actions for each hardware type supported by that bundle.
These methods allow Homer to o�er the features of the component to the user.

An example of a Homer component bundle could be X10. When the X10 bundle starts:

• It registers itself with Homer:

ComponentGateway.Singleton.get().registerComponent(new X10Component());

• Homer then queries the X10 component to �nd out what system device types the X10 bundle
supports (described above as a hardware type or high level system service).

• The X10 component returns a unique identi�er and initial user-friendly name for both an X10
Lamp Module and an X10 Device Module. Homer o�ers a hashing function to produce a unique
string identi�er when given a class type and string name. Sample code shown in code 1.

These IDs will be consistent each time the bundle starts and therefore can be used reliably within the
X10 bundle to refer to each di�erent type of device supported and also throughout the rest of Homer.

11

static final String X10_APPLIANCE_MODULE_SYSTEM_TYPE =

IDUtil.getUniqueIdentifier(X10Component.class, "X10 Appliance Module");

static final String X10_LAMP_MODULE_SYSTEM_TYPE =

IDUtil.getUniqueIdentifier(X10Component.class, "X10 Lamp Module");

Code 1: Creating Unique System Device Type Identi�ers

As well as returning an ID and initial user-friendly name the bundle must also return any information
required for instantiating an instance of the device type. Creating a new device which has the hardware
of either an appliance module or a lamp module requires the X10 house code that is associated with the
device.

The method to obtain the list of supported system device types is shown in code 2.

public SystemDeviceType[] getSystemDeviceTypeData()

{

// create the text field which is needed for the user to input the house code

// "A1" is the default text, minimum of 2 characters, maximum 3, and has no units.

HomerText houseCodeTextField = new HomerText("A1", 2, 3, Unit.NONE);

// create a configuration part which for the text field

// "X10 Code:" must introduce the text field on screen and

// there is no need for text after the text field.

ConfigPart configPart = new ConfigPart("X10 Code:", houseCodeTextField, null);

// create the configuration data object to store our text field

// it can hold any number of configParts; in this case we only have one text field.

ConfigData configData = new ConfigData(configPart);

// return the list of supported system device types,

// with unique identifier, initial name and any configuration data.

return new SystemDeviceType[]

{

new SystemDeviceType(X10_LAMP_MODULE_SYSTEM_TYPE,

"X10 Lamp Module", configData),

new SystemDeviceType(X10_APPLIANCE_MODULE_SYSTEM_TYPE,

"X10 Appliance Module", configData)

};

}

Code 2: Get System Device Type Data

• Homer then looks up the Homer database to see if it already knows about these device types:

� If it does not, then add this device type to the database.

� If it does, then check to see if there are any instances (system devices) of that system device
type in the database:

∗ if there are no system devices then do nothing.

∗ if there are system devices which are of system device type X10 Appliance Module or Lamp
Module then let the X10 bundle know about each by calling the registerComponentInstance
method on the X10 component, giving it the unique identi�er for the system device along
with a string array of data that is necessary for the system device type. In this case this
is an array with one string in it which would be the X10 house code. The X10 component
should store the house codes (along with the associated system device ID) for being asked

12

at a later time to carry out some action on or check about a particular system device.
This saves the component having to look up information in the database or in Homer.

• Homer will also check the component for triggers, conditions and actions (checking every time the
bundle is manually restarted in case the bundle was updated) for each system device type supported
by the bundle, and register these in the database. The information required for each is a unique
identi�er (generated using the same technique described for system device type), string friendly
name and a default icon. In the X10 case we would return the same set of triggers, conditions
and actions for both appliance and lamp module, except with the additional action of `dim' for the
lamp module. The code for getting the actions is shown in code 3.

public List<Action> getActions(String deviceTypeID) {

List<Action> actions = new ArrayList<Action>();

if (X10_APPLIANCE_MODULE_SYSTEM_TYPE.equals(deviceTypeID))

{

actions.add(new Action(AM_TURN_ON_ID, "turn on", Action.DEFAULT_TURN_ON_IMAGE));

actions.add(new Action(AM_TURN_OFF_ID,"turn off", Action.DEFAULT_TURN_OFF_IMAGE));

}

else if (X10_LAMP_MODULE_SYSTEM_TYPE.equals(deviceTypeID))

{

actions.add(new Action(LM_TURN_ON_ID, "turn on", Action.DEFAULT_TURN_ON_IMAGE));

actions.add(new Action(LM_TURN_OFF_ID,"turn off", Action.DEFAULT_TURN_OFF_IMAGE));

// when dimming the light the desired dim percent is required

// it is a number, range from 0 to 100, increments of 10,

// 0 decimal places, default value of 50, % unit

Parameter lightPercentParam = new Parameter(new HomerNumber(0, 100, 10, 0, 50,

Unit.PERCENT));

// Parameter data is created from a collection of parameters

// in this case it only needs one parameter

ParameterData paramData = new ParameterData(lightPercentParam);

actions.add(new Action(LM_DIM_ID, "set light level",

Action.DEFAULT_TURN_ON_IMAGE, paramData));

}

return actions;

}

Code 3: Get Actions

3.3 Managing Components

Creating new instances of components is not something that is done at system level. Instead a simple
user interface has been created to demonstrate the separation of this logic and ease for the user. This
user interface is a simple Swing application: a separate OSGi bundle which can be started along with the
other OSGi bundles (Homer framwork, components, etc.) or ommited from this set of start-up bundles.
It is purely to demonstrate the principles and would, in reality, be made a lot more pretty and accessible
(most likely from the iPad application described in section 5 or web-based interface).

So far the terms System Device Type and System Device have been introduced. These terms refer to
the hardware or a fundamental service. They are usually hidden from the user and only exposed when
hardware changes need to be made. An entity relationship diagram is shown in �gure 3 to demonstrate
the relationships between the various terms.

13

Location
Location
Context

within

User Device
Type

User Device
is of type

System
Device Type

System
Device

is of type

contains

is instance of

Triggers

may have

Conditions Actions

Figure 3: Entity Relationship Diagram of the Homer Terms

The screenshot in �gure 4 shows the hardware management screen displaying two hardware types:
X10 lamp module and X10 appliance module. These are the system device types. There are two instances
of each system device type: reading lamp, bedside lamp, fan and TV. These are the system devices. This
view can add, edit and remove system devices. The system device types are from what the registered
bundles o�er, as seen in the code examples above. The only aspect of this which can be changed by
users is the name for the system device type (in case there is a name they would �nd it easier to refer to
certain hardware).

Figure 4: Hardware Management Screen - by System Device Type

System device types are correlated directly to the hardware. This needs a di�erent, more user focused,

14

means of referring to devices within the home. This has resulted in the concept of user device types
and user devices. User device types are user-friendly names for types of devices within the home which
are chosen and managed by the user. The screenshot in �gure 5 shows an alternative view of managing
devices within the home, this time focused on user device types. In the screenshot there are four di�erent
user device types that have been created: lamp, TV, kitchen appliance and fan. There are two lamp user
devices, one TV user device and one fan user device. Each user device maps directly to a system device.
So, the reading lamp and bedside lamp are both X10 lamp modules that are automatically mapped to a
system device of type X10 lamp module. Similarly the TV and fan map to a system device of type X10
appliance module. This allows a user device, say a television, to be supported by more than one system
device type, e.g. an X10 appliance module to turn the mains power on and o� and an infrared controller
to control the television using infrared.

Figure 5: Homer Management Screen - by User Device Type

A property of a user device is its location, and a location must have a location context. The screenshot
shown in �gure 6 shows this concept by representing the devices in the home in yet another view. In this
screenshot the location context shown is Home, with the locations Living Room, Bedroom and Utility
Room. From this view we are able to add, edit and delete location contexts and locations, as well add
new devices to particular locations. We can see also that currently our Reading Lamp, Fan and TV are
all located within the living room and the bedside lamp within the bedroom. The utility room does not
contain any devices at the moment.

15

Figure 6: Homer Management Screen - by Location

When adding or editing a device from any of the views shown in �gures 4 to 6, the user is presented
with a screen shown in �gure 7. This form allows the user to choose an appropriate image for their
device, a name, the system types, the user type and �nally any properties that are required by any of
the system types that the user chooses. For the fan in �gure 7, which is of hardware type X10 Appliance
Module, the form shows a text �eld at the bottom of the form asking the user to enter the house code for
the fan. This text box is shown as the developer of the X10 appliance module requested that it needed
a string parameter (demonstrated in the code samples above).

Figure 7: Homer Screen shot: adding/amending/deleting a user device.

16

3.4 Controlling and Automating Components

Once a component bundle has started, Homer requests information about the component. As mentioned
above, it requests information about the types of device types it o�ers for allowing the system to o�er
users the functionality of adding new devices of that device type. At this same stage Homer also asks
the component for any triggers, conditions and/or actions (TCAs) that each of the registered system
device types supports (as shown in the code example in section 3.2). All TCAs are registered in the
Homer database and associated with the particular system device type. This means that when a user
adds a new user device, say a Bedroom Lamp of user device type Lamp, Homer will use the system
device type X10 Lamp Module. Homer will also know that the bedroom lamp can be turned o�, turned
on or set to a speci�c light level. Another example could be a television. Suppose the user de�ned a
device Main TV of type TV which used the system device types X10 Appliance Module and InfraRed.
Homer would then amalgamate the actions for X10 Appliance Module and Infrared to conclude that it
could turn the TV on, turn the TV o�, change the channel and volume, and any other features that the
InfraRed component for that particular TV could o�er. Similarly there could be a Kitchen TV that is
also of the user device type TV but only supports the X10 Appliance Module system device type; in this
case, Homer could only turn the TV on or o�.

All registered triggers, conditions and actions for each system device type can have their textual de-
scription and associated images edited by users if they so desire. The screenshot in �gure 8 demonstrates
this. Because all the TCAs are referenced by their unique identi�ers the user can change the names
without having any impact on the system or saved policies.

Figure 8: Editing triggers, conditions and actions

Components can be included automatically in policy de�nitions. For example, the X10 Appliance
Module supports the triggers `turned o�' and `turned on' and the actions `turn on' and `turn o�'. For
a fan, of type Fan, called Fan which supported the X10 Appliance Module then when de�ning a policy
the user will be o�ered these functions. So the user could put together a policy which said: `When Fan
turns o� then turn on fan'. Although this is not a sensible policy, it demonstrates how the information
we know about the Fan can be put together to create policies. For more on policies see section 4.

4 Home Policies

Policies de�ne how the home should react to events. A wide variety of policies can be de�ned for both
home automation and telecare. These policies cover aspects such as appliance control (e.g. lighting
control), communication (e.g. how to be contacted), comfort (e.g. room temperature), entertainment
(e.g. favourite programmes), modalities (e.g. use of speech), reminders (e.g. appointments), security
(e.g. intruder detection), system aspects (e.g. access control), and telecare (e.g. medication alerts).

17

4.1 Format

Homer policies have a `when-do' format. The when clause comprises triggers and conditions that can be
combined with and, or and then. The do clause can contain multiple actions and conditional groups. A
policy is represented as a tree: a hierarchy of terms combined with explicit precedence. How a particular
user interface implementation decides to display this to the user is irrelevant to Homer (see Section 5).
The following examples illustrate various policy formats:

When the house is unoccupied and it is dark do turn on the hall light.

When John arrives home or Mary arrives home do play music and (if the outside temperature
< 10 then do turn on the heating).

When someone gets up at night then the front door is opened do say `go back to bed' and
illuminate a path back to the bedroom.

Users can �nd it di�cult to di�erentiate between triggers (e.g. the door opens) and conditions (e.g. the
door is open). This confusion is eliminated by treating triggers and conditions similarly. For each element
in a when clause, the policy server listens for triggers as well as state changes that a�ect conditions.
State changes imply that something has happened to trigger the change of state, allowing the rest of the
when clause to be evaluated. Conditions are also evaluated when an event triggers a policy.

It is very rare for triggers to occur at the exact same time, therefore policies have a time interval in
which all triggers occur and all conditions are met. The time interval depends on the particular policy
being de�ned. For example, take the following two when clauses: the �rst trying to determine if the
house owner has arrived home and the second determining if a visitor arrived at the home:

When the garage door opens then the garage door closes then the front door opens (within
5 minutes)

When movement is detected on the porch and the front door bell is pressed (within 1 minute)

4.2 Language

The Homer Policy language is expressed in code 4.

4.3 Representation

A policy is represented as a tree structure, wrapped using JSON. When Homer is given a new policy it
is saved to a database and passed to the policy server. This then loads the policy into a custom tree
structure. The when part of the tree is represented with nodes of one of the following types: and, or,
then or event. Each node stores any child nodes or, in the case of an event node, stores the details
of the particular trigger or condition. The do part of the tree is, again, represented as a tree. The
only nodes allowed within the do part of the policy are event and conditional (if) nodes. The same
principles apply as for the when part, with hierarchies of terms with action end nodes.The explicit
representation in JSON is shown in code 5.

As an example policy which would read to the user:

When O�ce Door opens then Movement is detected then O�ce Door closes do turn on
the desk light.

Written in JSON in code 6.

4.4 Implementation

A policy can be enabled or disabled by the user; this dictates whether the policy should be listening
for events. Multiple policies can exist at run time. Currently the policy server has been tested with 50
enabled policies, and is expected to scale comfortably to 500 policies or more. Any more than that could
be argued unlikely within one home. If a policy is enabled then it can be either waiting or activated. A
waiting policy is simply waiting for any of its child (or sub-childs etc.) nodes to report that an event has
happened. If a policy is activated, one of its child nodes has reported that something has happened. The

18

policy: scenario procedure;

scenario: "when" scenario_node ("within" duration)?;

scenario_node: scenario_and | scenario_or | scenario_then | scenario_event;

scenario_and: "and" '{' scenario_node+ '}';

scenario_or: "or" '{' scenario_node+ '}';

scenario_then: "then" '{' scenario_node+ '}';

scenario_event: "event" user_device_id event_id type parameters?;

duration: integer;

integer: ('0'..'9')+;

user_device_id: quoted_string;

event_id: quoted_string;

type: "trigger" | "condition";

parameters: "params" '{' quoted_string+ '}';

quoted_string: '"' character '"';

character: /* any Unicode character except '"', which is escaped as '\"' */ ;

procedure: "do" procedure_node;

procedure_node: procedure_and | procedure_if | procedure_action;

procedure_and: "and" "{" procedure_node+ "}" ;

procedure_if: "if" condition '{" procedure_node+ '}' ("else" "{" procedure_node+ '}')?;

procedure_action: "action" user_device_id event_id parameters?;

condition: user_device_id event_id parameters?;

Code 4: Policy JSON Structure

19

policy: {

"id": "unique id generated by homer and used for unique identification"

"name": "user chosen name for the policy"

"author": "name of who wrote the policy"

"dateCreated": time in millis of date created date

"dateLastEdited": time in millis of the date the policy was last edited

"enabled": boolean flag stating if the policy is currenly enabled

"timeInterval": number of seconds that the when clause's triggers must occur

and/or conditions must be met

"when": {

"AND/OR/THEN": [Ordered list of children, with the same options as that

of the children of "when"]

OR an event node:

"EVENT": {

"userdeviceid":"unique id for the user device"

"eventid": "unique trigger or condition id"

"type": "TRIGGER" OR "CONDITION"

(optional) "parameters": [Ordered list of string values]

}

}

"do": {

"AND": [Ordered list of children, with the same options as that

of the children of "do"]

OR an if node

"IF": {

"CONDITION": {

"userdeviceid": "unique id for the user device"

"eventid": "unique condition id"

(optional) "parameters": [Ordered list of string values]

}

"IF_TRUE": [Ordered list of children, with the same options as

that of the children of "do"]

"ELSE": [Ordered list of children, with the same options as that

of the children of "do"]

}

OR an event node:

"EVENT": {

"userdeviceid": "unique id for the user device"

"eventid": "unique action id"

(optional) "parameters": [Ordered list of string values]

}

}

}

Code 5: Policy JSON Structure

20

policy: {

"id": "123"

"name": "Turn on light when someone walks into office"

"author": "Claire"

"dateCreated": 123456

"dateLastEdited": 123789

"enabled": true

"timeInterval": 60

"when": {

"THEN": [

{"EVENT": {

"userdeviceid":" 24"

"eventid": "u185DDD121346C5A207A4536DE7ABC707E9186C18"

"type": "TRIGGER"}

},

{"EVENT": {

"userdeviceid":" 18"

"eventid": "1F960252B3EF9E51B2580148246090F990BA3EA2"

"type": "TRIGGER"}

},

{"EVENT": {

"userdeviceid":" 24"

"eventid": "76E4D7FE437D04A8B323EEC25427113AB911001F"

"type": "TRIGGER"}

}

]

}

"do": {

EVENT": {

"userdeviceid": "25"

"eventid": "7719316A8D71BE5EEBCD0B2E78B4702BAA696781"

}

}

}

Code 6: Policy JSON Example

21

policy therefore starts a countdown according to its time interval (the default time being 60 seconds).
As events occur they notify their parent node. As a node becomes true it noti�es its parent. If the root
node becomes true, it tells the policy which executes and resets the child nodes to false. If the time
interval passes before the when is satis�ed then the policy does not run and its child nodes are reset.

In the case of an and or or node, a listener is registered for each child node, whereas a then node
registers a listener only for its �rst child. If an or node has a child whose trigger/condition becomes
true, its child nodes will stop listening until the policy is reset. If a child of a then becomes satis�ed, it
will stop listening for that child and instead start listening for the next child. By listening only for what
is relevant, the policy server can run e�ciently and reduce the number of event listeners required.

4.5 Sample Policies

This section will give some sample policies that could be expressed in the Homer policy language:

Lighting

• When front gates detect a vehicle entering do turn on driveway lights and turn on front door
lights

• When front door is unlocked and hall is dark do turn on hall lights

• When living room is occupied and living room light level falls below 60% do turn on the side
lamp

• When time is 10:30pm and Mary has work the next day and Mary is not in bed do dim the
living room lights to 50%

� includes two scenarios:

∗ Maryhas work the next day, which is de�ned by: when day is Sunday � Thursday and
Mary's calendar event tomorrow is `work'.

∗ Maryis not in bed, which is de�ned by: when left-side of bed is unoccupied.

Heating

• WhenMary is getting up orMary is going to bed do keep temperature in bedroom to comfortable
house temperature

� includes two scenarios:

∗ Mary is getting up, which is de�ned by: when time is between (time is one hour before
Mary's calendar's �rst event of the day) and (time is Mary's calendar's �rst event of the
day).

∗ Mary is going to bed, which is de�ned by: when (Mary has work the next day and
time is between 21:30 and 2230) or (Mary does not have work the next day and time is
between 22:30 and 2330).

• When movement detected in a room do keep temperature in room to comfortable house temper-
ature

Music

• When music is playing anywhere and telephone rings do reduce music volume by 80%

22

Security/Safety

• When �re alarm is activated and no one is home do send SMS to Claire saying `The �re alarm was
activated but no one is home! Calling your next door neighbour.' and call next door neighbour
saying `Please help, the Smith's home's �re alarm was activated but they are not home!'

� includes one scenario:

∗ No one is home, which is de�ned by: when no movement detected for more than 1 hour
and all beds are unoccupied.

• When movement is detected outside and time is between 2300 and 0600 and house in sleep mode
do turn on outside light and turn on outside security camera

Kitchen

• When left side of bed becomes unoccupied and time is after 0630 do turn on the co�ee machine

• When SMS received from Mary saying `turn on the oven' do turn on the oven

Bedroom

• When the television in the living room is turned o� and time is after 9:30pm do turn on the
electric blanket in master bedroom and send SMS to Mary saying `Electric blanket has been turned
on!'

• When time is between 0500 and 1200 and Mary is in bed and diary has an event in an hour do
activate Mary's alarm clock

Living Room

• When living room unoccupied for 5 minutes do turn o� the television and speakers.

5 Home Interface

The home system needs to be made usable by the home occupant. There are two main parts that
need accounted for: the �rst being the management of the home and its devices (how do users access
and control their home?), the second being the creation/con�guration/management of home rules and
policies (how do users automate tasks, then manage and recon�gure such tasks, within their home?).

Homer provides an HTTP based API that allows external entities to manage the home system. This
supports any application that can make HTTP calls with JSON objects. For security, authentication
uses an application key and a secret key. This openness makes it easy to write new applications for
the home, using di�erent styles and technical approaches. For example, web-based, iPhone and iPad
applications have been written.

The web-based application uses the Google Web Toolkit (http://code.google.com/webtoolkit)
to expose devices activities within the home, browsable by location or device type.

The iPhone application shown in Figure 9 makes it possible to browse devices by location or type.
The current state of a device can then be viewed, its history of past events is available, and the device
can be asked to perform selected actions. A live Twitter feed is also available for all events within the
home.

23

Figure 9: iPhone Application for Homer (two screenshots)

5.1 iPad for Homer

iPad for Homer allows users not only to create and manage the rules within the home, but also to control
and manage the home. Generally, end-users feel comfortable controlling the home, whereas they tend
to fear the prospect of programming it. They desire the ability to have such rules that can be easily
modi�ed and adapted, however they do not like the idea of having to program them. Given what is
available with other home automation packages I do not blame them! iPad for Homer brings together
controlling and programming the home in one sleek and simple interface. By blending the programming
aspects into the control aspects the user should be less likely to both notice, or fear, the programming
parts. The other positive of bringing these aspects together is that the user does not necessarily have
to make a conscious decision to program the home by opening a new piece of software or accessing the
`advanced control' parts of the home interface. Instead, the user is able to apply rules to any object
(person, location, device, etc.) which they may currently be viewing/controlling.

Users think about problems in di�erent ways, so obviously we need to provide users with di�ering
means of programming logically equivalent rules for the home. (For example: �turn on the co�ee machine
when I get up� and �when I get up turn on the co�ee machine�). This also applies to viewing rules. For this
reason I have tightly integrated the rules with the home management user interface. This interface deals
with people, time, locations, devices and rules. Each aspect can be viewed, controlled, and programmed
through the same interface. By doing this the user is able to easily add rules to whatever component of
their house they want to, and in whatever way they think about the problem.

iPad for Homer is still in development; currently the application can only support the writing and
saving of policices.

5.2 Policies

Users think about the home in di�erent ways, so they must be allowed to de�ne logically equivalent
policies in ways that suit them. For example, a device-oriented policy might say `turn on the co�ee
machine when I get up, while a situation-oriented view might say `when I get up turn on the co�ee
machine'. Alternative perspectives like these can also be applied to viewing policies. Policies are tightly
integrated with the home management user interface. The interface re�ects perspectives such as people,
time, locations, devices and rules. Each perspective can be viewed, controlled, and programmed through
the same interface. Users can therefore easily view existing policies. They can also de�ne new policies
for whatever aspects of the home they wish, and in whatever way they think about these.

Since users will vary in their technical abilities, they can choose di�erent capability levels. These
expose or hide various aspects of the underlying policy language. The three levels are as follows:

24

• Simple (`I'm a little scared'): This o�ers basic capabilities such that triggers and conditions can
be combined only with and, and actions are simple lists. An example would be: when trigger1
and trigger2 do action1 and action2.

• Intermediate (`I'd like to give it a go'): This adds the capability to use or with triggers and
conditions. An example would be: when condition1 or trigger1 do action1.

• Advanced (`let me do everything'): This adds the capability to combine triggers and conditions
with then, include an associated time interval and use conditions in actions. An example would
be: when trigger1 then (condition1 or trigger2) (occur within 2 minutes) do action1 and (if
condition1 then do action 2).

Figure 10 gives an example of editing a policy at the medium level. The user gives the policy a name for
future reference, specifying when the policy is triggered and what to do. Each element can be edited,
reordered or removed within the current section, and can also be moved in and out of subsections for
grouping. Choosing new elements can be done in multiple ways (from di�erent perspectives) to support
di�erent user views. For example, an element that describes when the front door opens can be found
through Locations (Home > Hall > Front Door > opens), Devices (Doors > Front Door > opens) or
People (Someone > opens front door). These distinctions are irrelevant when saving and displaying
policies, so the user can easily view the same logic from di�erent perspectives.

For advanced users, two buttons allow saving the current set of triggers and conditions (the when
clause/scenario) and the current set of actions (the do clause). As an example of a scenario, in the
sample policy in Figure 10 it would be possible save the last three terms of the when clause as `someone
left the house'. This would then simplify the current policy and enable that scenario to be used in
another policy (accessed as People > Someone > left the house). Saving the action list similarly o�ers a
form of high-level actuator fusion. This time, a group of actions associated with an entity can be given
a friendly name for use in other policies.

6 Conclusion

Smart homes need to be both controlled and programmed by anyone within the home. Having reviewed
thouroughly the current state of the art of end-user programming and user interfaces for home systems,
I believe there is still no single solution which o�ers a means of both controlling and programming the
home that users like. I feel that Homer for iPad can �ll this gap in both research and the commercial
market, and can also provide a solution which is suitable for all users within the healthy active older
generations or younger people.

6.1 Summary

Home automation and telecare have been introduced. It has been argued that a common technical ap-
proach can support both of these, the main di�erences being in the speci�c components and services. The
challenges to be met include achieving acceptability, usability, interoperability and automated support.
The background to home systems has been discussed in the areas of standard, platforms, automation
and interfaces.

The Homer system supports both home automation and telecare. The Homer philosophy is to make
home control visible to users and manageable in simple ways. A Homer component embodies some
underlying device technology. Homer services provide common capabilities to components. A distinction
is made between system device types (that re�ect particular technologies) and user device types (that
re�ect how the user wishes to treat devices in the home). Devices are supported in categories such
as communication, environment, home automation, telecare and user interface. The Homer framework
mediates between components and the rest of the system. Component events can be mapped by event
logic to/from higher-level events used at policy level. Users can de�ne policies for how they wish the home
to react to di�erent situations. At a higher level, goals de�ne high-level objectives that are optimally
realised through policies. User-friendly interfaces allow the home to be managed through interfaces such
as the iPad.

25

Figure 10: Rule De�nition Screen on iPad

26

6.2 Evaluation

The Homer system represents mature work on a number of aspects:

• Service platforms are not new. Homer is based on the widely accepted OSGi framework, and so can
take advantage of the stability and maturity of this as an infrastructure. To that extent, Homer
has a similar basis to several other approaches such as Atlas and Saphire described in [7].

• Component architectures are also not new. However, Homer is unusual in o�ering an architecture
that is well integrated with policy-based management (which has previously seen little use in the
home). In particular, Homer components support the kinds of capabilities that make them easy to
use in policies.

• The Homer policy language is broadly similar to other rule-based approaches such as Drools and
Ponder discussed in [7]. A key di�erence is that policies for the home need to be usable by ordinary
users, and need to re�ect the kinds of control required for home automation and telecare. Homer
thus supports distinctive forms of policies that are not found in other rule-based languages.

6.3 The Future

There are possible improvements that could be made in Homer. It would be desirable to integrate more
seamlessly the Homer iPad application with the principles of policy con�icts and event logic. Although
both of these aspects of Homer may be too complicated for the typical user, it could still be bene�cial
to o�er a more integrated platform for these rules and logic to be written and to copy the notion of
di�erent user levels, to allow more novice users access to such rules. It could also be argued as desirable
that all the device behaviour for an installation of Homer is made visible to the user instead of some of
it being hidden at a lower level.

Writing policies is extremely di�cult to make simple for users. However, added various help tech-
niques to Homer could help make writing policies within Homer even simpler. Some ideas include the
notion of the user learning what is possible as they start to write policies: slowly introducing new features
and teaching the user about them with an example as and when the user is showing they are comfortable
with the current set of features. Template policies could be included within the application so the user
could simple walk through the policy and �ll in the gaps, helping the user understand the policy format
and how to create rules. There could be the concept of sharing policies with other users through a pub-
lic gallery of policies which could be rated, discussed and made easily accessible. These policies could
be easily tested (through a simulation of the home or maybe demonstrated in by the home itself) and
saved by the user if so desired. This could help inspire users to be more creative and show them what
is possible. A �nal idea is the idea that some people are motivated by competition and achievements,
so Homer could integrate various awards, achievements and levels for the user as they successfully use
the application for di�erent tasks (e.g. write your �rst policy, write your �rst policy involving a then
statement, write your �rst 10 policies, save your �rst when clause and use it in more than one policy).

Finally, full user trials should be conducted with Homer to fully explore how users interact and live
with such an application.

Acknowledgments

Claire Maternaghan is supported by the Scottish Informatics and Computer Science Alliance, the Univer-
sity of Stirling, and the MATCH project (Scottish Funding Council, grant HR04016). Claire is grateful
to her supervisor Ken Turner for his support, ideas and experience that makes Homer possible.

27

References

[1] Alan F. Blackwell and Rob Hague. AutoHAN: An architecture for programming the home. In Proc.

Symp. on Human Centric Computing Languages and Environments, pages 150�157. ACM Press,
New York, USA, September 2001.

[2] Scott Davido�, Min Kyung Lee, Charles Yiu, John Zimmerman, and Anind K Dey. Principles of
Smart Home Control. UbiComp 2006: Ubiquitous Computing, pages 19�34, 2006.

[3] Anind K. Dey, Ra�ay Hamid, Chris Beckmann, Ian Li, and Daniel Hsu. A CAPpella: Programming
by demonstration of context-aware applications. In Proc. Conf. on Human Factors in Computing

Systems, pages 33�40. ACM Press, New York, USA, April 2004.

[4] Krzysztof Gajos, Harold Fox, and Howard Shrobe. End user empowerment in human centered
pervasive computing. In Friedemann Mattern and Mahmoud Naghshineh, editors, Proc. 1st Int.
Conf. on Pervasive Computing, number 2414 in Lecture Notes in Computer Science, pages 134�140.
Springer, Berlin, Germany, August 2002.

[5] Leonid A. Gavrilov and Patrick Heuveline. Aging of population. In Paul Demeny and Geo�rey
McNicoll, editors, The Encyclopedia of Population, pages 27�50. MacMillan, London, UK, January
2003.

[6] Mirko Knoll, Torben Weis, Andreas Ulbrich, and Alexander Brändle. Scripting your home. In Proc.

Symp. on Human Centric Computing Languages and Environments, number 3987 in Lecture Notes
in Computer Science, pages 274�288. Springer, Berlin, Germany, May 2006.

[7] Claire Maternaghan. End of Year Report: Year 1.

[8] Claire Maternaghan. End of Year Report: Year 1, 2009.

[9] M. W. Newman, A. Elliott, and T. F. Smith. Providing an integrated user experience of networked
media, devices, and services through end-user composition. In Proc. Symp. on Human Centric

Computing Languages and Environments, number 5013 in Lecture Notes in Computer Science,
pages 213�227. Springer, Berlin, Germany, May 2008.

[10] Tom Rodden, Andy Crabtree, Terry Hemmings, Boriana Kolevaand Jan Humble, Karl-Petter
RAkesson, and Pär Hansson. Con�guring the ubiquitous home. In Proc. 6th Int. Conf. on The

Design of Cooperative Systems, pages 215�230. IOS Press, Amsterdam, Netherlands, May 2004.

[11] Timothy Sohn and Anind K. Dey. iCAP: An informal tool for interactive prototyping of context-
aware applications. In Proc. Int. Conf. on Human Factors in Computing Systems, pages 974�975.
ACM Press, New York, USA, April 2003.

[12] Khai N. Truong, Elaine M. Huang, and Gregory D. Abowd. Camp: A magnetic poetry interface
for end-user programming of capture applications for the home. In Nigel Davies, Elizabeth Mynatt,
and Itiro Siio, editors, Proc. Ubiquitous Computing, number 3205 in Lecture Notes in Computer
Science, pages 143�160. Springer, Berlin, Germany, September 2004.

[13] Kenneth J Turner. Device Services for The Home. In NOTERE-10, pages 41�48. IEEE, May 2010.

28

