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Abstract

The Bayesian network (BN) formalism is a powerful representation for encoding

domains characterised by uncertainty. However, before it can be used it must first

be constructed, which is a major challenge for any real-life problem. There are two

broad approaches, namely the hand-crafted approach, which relies on a human

expert, and the data-driven approach, which relies on data. The former approach

is useful, however issues such as human bias can introduce errors into the model.

We have conducted a literature review of the expert-driven approach, and we

have cherry-picked a number of common methods, and engineered a framework

to assist non-BN experts with expert-driven construction of BNs. The latter

construction approach uses algorithms to construct the model from a data set.

However, construction from data is provably NP-hard [45]. To solve this problem,

approximate, heuristic algorithms have been proposed; in particular, algorithms

that assume an order between the nodes, therefore reducing the search space.

However, traditionally, this approach relies on an expert providing the order

among the variables — an expert may not always be available, or may be unable

to provide the order. Nevertheless, if a good order is available, these order-

based algorithms have demonstrated good performance. More recent approaches

attempt to “learn” a good order then use the order-based algorithm to discover

the structure. To eliminate the need for order information during construction, we
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propose a search in the entire space of Bayesian network structures — we present

a novel approach for carrying out this task, and we demonstrate its performance

against existing algorithms that search in the entire space and the space of orders.

Finally, we employ the hand-crafting framework to construct models for the task

of diagnosis in a “real-life” medical domain, dementia diagnosis. We collect real

dementia data from clinical practice, and we apply the data-driven algorithms

developed to assess the concordance between the reference models developed by

hand and the models derived from real clinical data.
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Chapter 1

Introduction

1.1 Introduction

Bayesian networks (BN) are a powerful framework for representing and reason-

ing about problems characterised by uncertainty. They are composed of two

parts: 1) a qualitative part, which is responsible for expressing complex proba-

bilistic relationships among several random variables; and 2) a quantitative part,

which encodes the probabilistic uncertainty between the relationships. One of

the reasons that the framework has gained popularity in recent years is due

to its intuitive comprehensibility and transparency; humans can easily interpret

relationships between variables from the model structure, and the outcome of

probabilistic inference is explained graphically.

Before the potential value of a BN can be realised, it must first be constructed.

Traditionally, BNs are hand-crafted using human-supplied expert knowledge.

However, extracting expert information from human experts is a complex pro-

cess, and it is fraught with many challenges, particularly during elicitation of

probabilities. One gap in current literature is a concise framework for novices
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seeking to develop BNs using expert knowledge, which guides them through the

construction process and provides tools to assist with the elicitation task.

The alternative to the hand-crafted approach is to discover the BN structure and

probability distributions from a data set — the so-called data-driven approach.

This is particularly useful when there is no domain expert available to provide

the structure or the probabilities, when the problem is too complex to be solved

entirely by hand, or when domain expert time is limited. However, this approach

is no “silver bullet”. The primary drawback is that this construction approach is

proven to be NP-hard [45]. Because of this, exact methods for BN construction

are not realistic, and therefore approximate heuristic methods are in general more

superior.

Bayesian networks are well suited to health decision support problems as they

can be used for classification and to represent symptom-disease relationships. In

addition, since BNs are built upon rigorous probability theory, they are capable

of supporting probabilistic inference with incomplete information, thus providing

health professionals with a platform to perform inference and reasoning.

This thesis is about BN construction using both the hand-crafted approach and

the data-driven approach, with emphasis on building the structure, and, in addi-

tion, the application of BNs to dementia diagnosis.

1.2 Problem description

Bayesian networks (BN) gained their popularity due to their inherent ability

to efficiently represent and reason about problems characterised by uncertainty.

However, as mentioned in Section 1.1, the BN model must first be constructed
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either by hand using expert knowledge, or derived automatically from a data set

of cases. Both approaches are complex and present significant challenges.

Under the hand-crafted approach, vital information must be elicited from the

domain expert, such as the problem variables and their relations, and, more

importantly, the probability distributions that characterise the uncertainty of

the relations. There are many pieces of research literature on specific aspects

of BN construction, such as probability elicitation from experts (see Chapter

4). However, there is a lack of joined-up documentation covering the overall

construction process for real-life applications.

The data-driven approach is a popular alternative to the hand-crated approach;

it relies less on human experts, as it attempts to construct the BN model auto-

matically from data. However, this approach has its own challenges, primarily

due to the computational complexity of discovering the model, and it assumes

the availability of data.

A common approach to addressing the issue of complexity involves imposing an

order among the variables. Such an order has the property that a node Xi can

only have node Xj as a parent node if in the ordering node Xj comes before node

Xi in the order, therefore reducing the number of potential networks structure to

be evaluated. However, the question arises “where does the order come from?”.

In general, the answer is: “from a domain expert”. As mentioned above, it is not

always practical for an expert to provide all the required information (the entire

order). Moreover, Singh [249] notes that the quality of the resulting network

structure is very sensitive to the supplied order.

However, in situations where a “good” order is available, algorithms have been

developed which find good BN structures, such as Cooper and Herskovits K2
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algorithm [51]. In addition, algorithms have been developed that attempt to

learn a “good” order first, then discover the BN structure from the order, such

as [262, 126, 154, 232]. For example, Larra˜naga et al. [154] employs a Genetic

Algorithm (GA) to search for an optimal order, then enters the order as input to

the K2 algorithm which provides a quantitative score of the quality of the order

(described in more detail in Section 7.4.2.1).

Another set of data-driven BN construction algorithms are those that are not

constrained by such an order. These algorithms can be prohibitively expensive,

particularly those algorithms that operate on a single solution at a time. On

the other hand, however, population-based stochastic search heuristics operate

on a number of candidate solutions in parallel, and appear to be promising alter-

natives, as they are well suited to exploring massive, high-dimensional complex

search spaces, which are representative of the BN discovery problem.

Nevertheless, once the BN model is constructed, it provides domain users, in this

case health profressionals, with a useful tool to support their decision making

process.

1.3 Research objectives

The goal of this thesis is to investigate and review approaches for BN construction,

identify development opportunities and implement improved solutions, and in

doing so:

• provide practical guidance on BN construction when only expert knowledge

is available
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• develop a new algorithm that addresses some of the issues with the existing

data-driven approaches

• demonstrate how BNs can be applied to real-world problems, such as health

decision making (e.g. dementia diagnosis), using the construction tech-

niques presented

Bayesian network construction

• Investigate in detail the two approaches for BN construction.

• Create a practical framework for hand-crafting BNs in real-life domains,

and illustrate the use of the framework in hand-crafting BNs for a real-life

problem.

• Review existing data-driven approaches and investigate development oppor-

tunities that: 1) suppress the requirement to specify an order among the

nodes up-front; and 2) search the space unrestricted by an order efficiently;

and 3) do not rely on expensive validation and repair operators.

• Compare the performance of the new algorithm with new and existing al-

gorithms that appear in the literature.

• Compare the construction approaches and the models derived by each ap-

proach.

These objectives are achieved through 1) reviewing the two approaches for BN

construction, and developing a concise set of processes and tools, which are tested

during the development of BN models for a real-life problem; 2) identification of
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issues with existing data-driven methods, and development of new algorithms to

address some of the issues; 3) empirical evaluation of the performance of the new

algorithm against existing approaches; and 4) finally, a comparison of the two

construction approaches and the derived models.

Application in health decision support

• Investigate whether BNs can be constructed for dementia diagnosis, and

demonstrate how they can be constructed through implementation of suit-

able diagnostic models.

• Investigate the performance of the diagnostic models:

– Hand-crafted models - the classification accuracy with respect to real

life clinical data.

– Data-driven models - the structure of the models with respect to the

reference, hand-crafted models.

These objectives are realised through hand-crafted construction of BN models

for dementia diagnosis in clinical practice using only information supplied by

a domain expert. Furthermore, using real-life clinical data, we demonstrate the

classification accuracy of the models developed using only expert knowledge, and,

in addition, illustrate the variations in the models derived from data in compar-

ison to the expert-developed models.

1.4 Summary of contributions

The main contributions of this thesis are listed below.
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Framework for hand-crafting BNs using expert knowledge Construct-

ing BNs using information elicited from a domain expert is fraught with chal-

lenges. One issues concerns the overall process for constructing the networks.

Another issues relates to bias, which arises from the innate cognitive processes

that humans use during elicitation tasks, particularly probability elicitation. This

makes the approach unattractive to lay users who merely want to make use of

the benefits of BNs. To address these issues, we have composed a framework

using a range of methods from the literature to support the hand-crafted BN

construction approach.

Bayesian network models for dementia diagnosis In Chapter 3 we present

the case for dementia diagnosis decision support, and we propose the BN formal-

ism as the underlying decision engine. The hand-crafted construction approach

is employed initially, as no data is available. This also serves to demonstrate the

tools and methods for hand-crafting real-life BN models, which are described in

detail in Chapter 4.

Dementia data set Dementia syndrome and pathology data for 164 patients,

organised into a coherent database.

New search algorithm for BN construction, and comparison with exist-

ing techniques Exact methods for BN construction from data are, in general,

not computationally tractable (see Section 7.1), therefore approximate methods

are used as an alternative. Heuristic algorithms are typically proposed for the

problem of BN construction from data, however the problem remains computa-

tionally complex. Some of the existing algorithms require an order among the
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variables to reduce the size of the search space, however it is known that this

order-based approach impacts on the quality of resulting structures, and the or-

der may need to be specified by an expert (who may not always be available).

However, order-based algorithms such as the K2 (see Section 7.4.1.1) are known

to find good BN structure when a good order is supplied. To that end, two-tiered

algorithms emerged that seek to: 1) discover a good order then 2) input the good

order into an order-based search algorithm. The drawback of early implemen-

tations of this two-tiered paradigm is the overhead in repeatedly searching for

good orders with one algorithm and then evaluating the order with another. To

address these issues we have derived a new algorithm for BN construction from

data.

Comparison of approaches and techniques for BN model construction

Compare the two construction approaches as well as the models derived by each

approach. Like many approaches in Computing Science (and other domains),

there is no single best approach to BN construction. We provide an empirical

evaluation of the construction approaches, as well as a discussion on the pros and

cons — this adds value by empowering others to decide on the best approach for

their problems.

1.5 Thesis organisation

This thesis is divided into five parts. Part I introduces the core topics of the thesis:

Bayesian networks (BN) and dementia diagnosis. Part II and Part III give a full

treatment of the two BN construction approaches, with application to dementia

diagnosis. Part IV is concerned with comparing both the models derived using
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each approach and the construction techniques associated with each approach.

Finally, we conclude in Part V.

Part I sets the scene for the whole thesis by introducing the two core themes,

namely Bayesian networks (BN) and dementia diagnosis. The motivation for

a decision support tool to assist with dementia diagnosis in clinical practice is

discussed, and we propose the BN methodology as the decision support engine.

Chapter 2 reviews Bayesian networks. It includes an overview of the value of

BNs in problems characterised by uncertainty, as well as the underlying

theory, which is centered on factorising the full joint probability distribu-

tion into a set of set of local, compact conditional distributions. Notation

commonly used to describe BN structures is included, as it is referred to in

subsequent chapters. The last part of the chapter introduces the notion of

BN construction. Finally, a number of examples are provided where BNs

have been applied to “real-world” problems.

Chapter 3 reviews the application area, namely dementia diagnosis in clinical

practice. It includes an introduction to the dementia syndrome, as well as

a brief overview of the causal pathologies investigated in this research. The

impact of dementia on the individual, family and carers is described. In

building a case for a decisions support, we highlight some of the pitfalls and

barriers in dementia diagnosis that currently exist in clinical practice.

Part II focuses on the first approach to BN construction: the hand-crafted ap-

proach. The concept of the hand-crafted approach is provided first followed by

a detailed description of current methods to support model construction under

this approach. The details of two novel hand-crafted BN models (for dementia
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diagnosis) are presented to illustrate how the tools and methods are used. There-

after, we present the results of applying clinical data from clinical practice to the

models in order to evaluate their classification accuracy.

Chapter 4 explains the expert-driven approach to BN construction. It relies on

eliciting from human experts qualitative information to create the structure,

and quantitative information to furnish the local probability distributions.

In this chapter we offer a generic process that facilitates model construction

and tools for probability elicitation. Issues with eliciting probabilities from

humans are well known. We identify these issues and provide a framework

using methods from the literature to assist with the task. We feel that it is

important to offer a framework to support the construction process because

the overall BN construction process is complex, and there is no single one

approach suitable for use by BN novices wanting to develop BN models

for real-life problems. Note that methods described in this chapter are not

specific to BN construction; they can be applied to other decision support

techniques, particularly those underpinned by probabilistic information.

Chapter 5 illustrates how the development process and construction framework

described in Chapter 4 can be used to hand-craft BN models for real-life

problems. An example is provided from the medical domain — dementia

diagnosis.

Chapter 6 evaluates and demonstrates the validity of the models developed

through experimentation. A number of performance measures are defined

that seek to measure classification accuracy of the diagnostic models against

real life clinical data.
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Part III is concerned with the second approach to BN construction, namely model

discovery from data. This approach does not rely solely on human expert knowl-

edge, but instead uses data to discover the BN model. However, the approach still

has its own challenges, the primary challenge being the size of the search space.

The data-driven concept and its issues are described. A new set of algorithms

are proposed for BN discovery from data, and their performance is evaluated.

Chapter 7 reviews the data-driven approach and reviews the most important

previous research in the field. The methods for “learning” from data are

categorised into methods that use conditional independence test and search

and score methods, where the BN problem is expressed as an optimisation

problem. This research focuses on search and score methods. The chal-

lenges and issues associated with this approach are reviewed, and a new

algorithm is proposed to address some of these issues.

Chapter 8 explains the development of new algorithms for BN discovery from

data, which are based on the binary variant of Particle Swarm Optimisation

(PSO). The development of the algorithms takes into account several issues

faced by existing algorithms in previous research. These issues include

removing the need to supply an order among the variables as input to

the algorithm, as well as removing the need to employ expensive repair

and validation operators when a search in the entire space of solutions is

conducted.

Chapter 9 demonstrates empirically the performance of the new binary PSO

algorithms for BN discovery from data. Additionally, the chapter shows

that binary PSO can be used for BN discovery from data and that some

13



of the issues with existing algorithms can be addressed using this approach

— in particular, our approach does not require order information to derive

a ‘good’ model. In addition, for some of the problem data sets used, we

demonstrate that our technique outperforms (with statistical significance)

the defined metrics in comparison to other algorithms in the literature. For

the purpose of comparing approaches and derived models, experimentation

is conducted using the dementia clinical data.

Part IV, composed of Chapter 10, pulls together the hand-crafted approach and

the data-driven approach. In part II and Part III, two approaches are presented

for BN construction. In this chapter we compare the differences in the models

derived by each approach, and then we evaluate the two approaches against each

other.

Finally, Chapter 11 makes up Part V. This chapter concludes and provides

a summary of the research conducted, major contributions of this thesis, and

makes recommendations on future work.
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Chapter 2

Bayesian networks

This chapter introduces and reviews Bayesian networks (BNs). We begin by

introducing the BN concept in Section 2.1, followed by a description of the theory

of BNs in Section 2.3. Formal mathematical notation used to describe and qualify

BNs is defined in Section 2.2. To harness the power of BNs in both representation

of probabilistic knowledge and inference, they must first be constructed. The

notion of BN construction is introduced in Section 2.4, and an overview of real-

world BN applications is provided in Section 2.5.

2.1 Introduction

A BN enables intuitive representation of complex domains that are characterised

by uncertainty. In addition, the BN framework supports probabilistic reasoning,

in particular computation of posterior probabilities based on available evidence.

In other words a BN model enables inference of future uncertain events based on

prior related known events.
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Jensen [132] provides a more formal definition of a BN, which is composed of 4

elements:

1. A set of nodes, or vertices, that represent the domain variables. Nodes

represent discrete or continuous variables1. Associated with each node is a

set of exhaustive, mutually exclusive states (or values).

2. A set of directed edges, referred to as connecting arrows or arcs, which

represent dependency relationships between the variables [193]. The nodes,

together with the edges form the structure of the BN model.

3. The edges between variables must respect Directed Acyclic Graph (DAG)

conditions. In other words, all the edges in the graph are ‘directed’ (in that

they point in a specific direction from one node to another) and the edges

do not form ‘cycles’. In this context, a cycle is defined as a path from a

node, say Xi, back to itself. These two criterion are referred to as DAG

constraints.

4. A set of local probability tables, one table per variable, which quantita-

tively encodes the strength of each dependency relation. On one hand, a

variable’s local probability is unconditioned if the variable has no parents,

hence captures the prior probability distribution of the variable. However,

if, on the other hand, a variable has one or more parent(s) then the local

distribution across the states of the variable is conditioned on all possible

values of the parent set.

The overall architecture of a BN model, in terms of Jensen’s four components

listed above, is composed of two features:

1This research focuses on discrete variables.
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1. A qualitative feature, typically referred to as the network structure, which

represents the domain variables2and the dependency relationships among

them. Together, these components constitute a visual representation of the

domain in terms of the variables and their interactions.

2. A quantitative feature, which encodes a set of local probability distributions

that captures the uncertainty of the domain, characterising the impact that

a variable or sets of variables have on other variables [50, 27, 216].

(a) Weather model structure (b) Weather model probabilities

Figure 2.1: Basic ‘wet grass’ BN model, adapted from [234, pp 510]. The BN
structure, nodes and states are shown in (a); corresponding probability distribu-
tions for each node are shown in (b). Models created using Netica [2]

As can be seen from the example BN shown in Figure 2.1 (a), the weather BN

model is composed of 4 variables: ‘Weather’, ‘Sprinkler’, ‘Rain’ and ‘Wet grass’.

The ‘Weather’ node represents the possible outcomes of observations of the sky:

sunny, cloudy and raining. Given the dependency relations shown in Figure 2.1

(a), it is clear that weather observations directly influence the probability of rain,

2We define a ‘variable’ as a single, identifiable entity of the domain which has 2 or more
discrete attributes. Each variable is represented by a node in the BN structure.
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as well as the probability that the sprinkler is on or off. Together, the nodes

‘Sprinkler’ and ‘Rain’ influence the state of the grass.

Interpreting a BN model may be likened to genealogy in that a parent-child rela-

tionship exists when there is an edge from one node to a dependent other node.

For example, in Figure 2.1 (a), node ‘Weather’ is a parent of node ‘Sprinkler’, and

node ‘Sprinkler’ is a child of node ‘Weather’. This concept can be extended fur-

ther to include ancestral-descendent relationships. For example, node ‘Weather’

is the ancestor of node ‘Wet grass’, and node ‘Wet grass’ is a descendent of node

‘Weather’.

Associated with each node in the BN model is a probability table, as shown in

Figure 2.1 (b). The probability that a node in the BN model is in a particular

state is described by its conditional probability table. Independent nodes capture

only the probability distribution across each state of the variable. On the other

hand, dependent nodes have conditional probability tables that reflect the way

in which the node is affected by the state of other related parent nodes.

2.2 Notation

In this section we introduce notation used by Kjrulff and Madsen [147], Lucas et

al. [218] and Cooper and Herskovits [51] to describe BN models. This notation

will be used throughout the thesis. In order to assist understanding, the Weather

BN model described in Section 2.1 above has been annotated in Figure 2.2 to

show the notation described in this section.

A BN model, Bs, is defined as a pair (G, θ), where G is a directed acyclic graph

(DAG) G = (V,E), and θ is a set of local conditional probability distributions
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Figure 2.2: Factorisation of Weather BN model (with notation).

that quantify the relations between the variables. The set of vertices V, which

may be discrete or continuous, represents the nodes in the BN model, and each

node represents a random variable Xi in the problem domain. In Figure 2.2,

four nodes are shown which correspond to the weather problem described in

Section 2.1. The probabilistic dependency relations that connect the variables

are represented by the set of edges, E; these are depicted as arrows between the

nodes in Figure 2.2.

Associated with each node Xi is a set of mutually exclusive events (states, or

values), where the total number of states represented by a node Xi is denoted

as ri. The vector x = (x1, . . . , xri
) denotes these ri feasible instances. This can

be seen in Figure 2.2, where each node has a number of states; for example, the

Weather node has ri = 3 states: ‘sunny’, ‘cloudy’ and ‘raining’. The term Xk
i is

used to refer to a node Xi being in its k-th state.
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An edge, Ei, is an ordered pair (Xi, Xj) ∈ V, which denotes a directed depen-

dency link from node Xi ∈ V to node Xj ∈ V. Given the edge (Xi, Xj), node

Xi is said to be a parent of node Xj and Xj a child of Xi, intuitively denoted

as Xi → Xj. The set of parents belonging to a node Xi in a BN model Bs is

denoted as πBs
i , where π1,Bs

i , . . . , πqi,Bs

i denotes the values of πBs
i , and where qi

denotes the number of possible different configurations of the parents of Xi, as

shown in Figure 2.2. A specific parent configuration is denoted as ji.

Each node’s probability distribution is captured in a (conditional) probability

table, which is denoted by θi. Examples of such probability tables are shown in

Figure 2.1(b). A row in the table captures the probability distribution across the

states of Xi for each configuration of the parents of node Xi. In other words, the

table records the probability P of a variable (Xi) being in each of its kth states

for each of the jth unique parent configurations, which is denoted as θijk; this is

shown in Figure 2.2. More formally:

P (Xk
i |π

j
i , θi) = θXk

i |paj
i
≡ θijk

2.3 Theory

Having introduced the concept of BNs in Section 2.1, we now turn our attention

to the theory that underpins BNs. We start by giving an introduction to the

full joint probability distribution model (FJPD) in Section 2.3.1. The FJPD is

a simple model for representing probabilistic knowledge; however, the approach

is limiting as it requires probabilities for each and every possible combination of

the variables.
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A BN is a graphical representation that expresses the FJPD more compactly.

This is achieved by factorising the FJPD into a set of compact and concise local

distributions. The underlying theory is described in Section 2.3.2.

2.3.1 Joint probability representation

Representation of probabilistic knowledge of a domain X = X1, . . . , Xn can be

achieved by defining the full joint probability distribution (FJPD) across the set

of domain variables, where the FJPD is defined as P (X) = P (X1, . . . , Xn). In

other words, the FJPD is the probability of all combinations as defined by the

values of all the variables [10]. An example of a domain consisting of 3 binary

variables, {X, Y, Z}, is given in Table 2.1.

X Y Z P (X, Y, Z)
¬X ¬Y ¬Z P (0.005)
¬X ¬Y Z P (0.030)
¬X Y ¬Z P (0.150)
¬X Y Z P (0.350)
X ¬Y ¬Z P (0.400)
X ¬Y Z P (0.030)
X Y ¬Z P (0.020)
X Y Z P (0.015)

Table 2.1: Full joint probability distribution for 3 binary variables.

The FJPD approach for representing probabilistic knowledge and reasoning therein,

is limiting. Pearl [216, pp 78] notes three limitations:

1. An arbitrary set of n binary variables requires a probability table consisting

of 2n probabilities, where n is the number of domain variables — clearly,

the number of probabilities required grows exponentially in n. Despite to-

day’s advances in memory capacity, such a representation raises significant

computation challenges for any real-world application, notwithstanding the
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complexities associated with evaluating inference queries on large probabil-

ity distributions.

2. The complexity inherent in the FJPD approach is counter intuitive to the

heuristic generally adopted by humans. Humans base probabilistic judge-

ments on a small number of propositions, especially conditional statements

such as the likelihood of a disease given a set of symptoms, as opposed to

a complex conjunction of all possible propositions.

3. The mechanism used by the FJPD to represent probabilistic knowledge and

perform probabilistic inference lacks psychological meaningfulness. While

a pure numerical representation can produce coherent probability measures

for each propositional sentence, it often leads to computations that a human

reasoner would not use.

By introducing conditional independence assumptions, the complexity of the

FJPD representation can be reduced and the issues presented above addressed.

The reduction in complexity is achieved by factorising the FJPD into a set of

direct probability distributions. The factorisation process is described in detail

in Section 2.3.2.

2.3.2 Factorisation of the joint probability

In Section 2.3.1, we define a full joint probability distribution for a domain, X,

as P (X) = P (X1, . . . , Xn). A BN structure (Bs) for X represents a set of con-

ditional (in)dependence relationships between the variables in X. Accordingly,

the structure Bs for X provides a compact, concise, graphical factorisation of the

joint probability distribution P (X) [61].
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Factorisation of the joint probability model is achieved using the following algo-

rithm:

1. Apply an ordering to the variables, such that Xi is a candidate parent of

Xj if Xi appears before Xj in the order.

2. Apply the chain rule of probability to factorise the joint probability into a

set of conditionally independent probabilities. Therefore, each distribution

in the chain corresponds to P (Xi|parents(Xi)). In other words, P (Xi) is

dependent only on the values of its local parents.

3. For each variable in the chain (derived in step 2), prune the parents by

making conditional independence assumptions — see Section 2.3.2.1.

The chain rule of probability, in the general case, is defined as [216]:

P (X) = P (X1, . . . , Xn)

= P (X1)P (X2|X1) . . . P (Xi|X1, . . . , Xi−1) . . . P (Xn|X1, . . . , Xn−1)

= P (Xi|π(Xi))

(2.1)

This process is more easily understood by way of an example. Consider the

variables in the weather problem, described in Section 2.1, above.

Assuming that an order (C, S,R,W ) has been applied to the variables, then

variable C (the current weather) can be a parent of any variable following C in

the list. In the same way, S can be a parent of R and W . However, S cannot be
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a parent of C, nor R be a parent of S or C, and so on. Using the order specified,

the full, joint distribution over the variables in the domain, P (X), is defined as

P (X) = P (C, S,R,W ).

Using Equation 2.1, the local factorised distributions for the weather model are

defined as:

P (X) = P (C, S, R, W )

= P (C) × P (S|C) × P (R|C, S) × P (W |C, S, R) (2.2)

The parent set of each variable in the factorised joint probability distribution can

be simplified by making conditional independence assumptions of the form:

Xi ⊥⊥ Xk | Xj , in other words, Xi is conditionally independent of Xk given that

the value of Xj is known. The parents of the factorised distributions P (R|C, S)

and P (W |C, S,R) are simplified given the conditional independence relations

shown in Figure 2.1, thus the final distribution is defined as:

P (X) = P (C, S, R, W )

= P (C) × P (S|C) × P (R|C) × P (W |S, C) (2.3)

The third term in Equation 2.2, P (R|C, S), is simplified because the assump-

tion is made that R is independent of S given its parents C, written as R ⊥⊥

S | C. Therefore the parent, S, is pruned, which results in the local distribution

P (R|C, S) = P (R|C). Similarly, the last term in Equation 2.2, P (W |C, S, R),

can be simplified to P (W |S, C) by applying the conditional independence as-

sumptions W ⊥⊥ C | S, R.
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Such simplification (or pruning) requires an understanding of the semantics of the

particular BN at hand, as well as an understanding of conditional independence

in the context of BNs. We provide a description in Section 2.3.2.1.

In the general case, the factorised joint probability distribution for a BN model

is defined as:

P (X) = P (X1, . . . , Xn)

= P (X1)P (X2|X1) . . . P (Xi|X1, . . . , Xi−1) . . . P (Xn|X1, . . . , Xn−1)

= P (X1)P (X2|π2) . . . P (Xi|πi) . . . P (Xn|πn)

=
n∏

i=1

P (Xi|πi) (2.4)

where n is the number of variables in the domain, and πi denotes the set of

parents belonging to node Xi in the BN structure.

In this section we have shown how the FJPD can be represented more compactly

by factorisation into local joint distributions. The benefit of the factorisation is

realised in the reduction in the number of probabilities required. The savings in

the number of probabilities required can be substantial. For n binary variables,

the FJPD requires O(2n) probabilities; however, the factorised model requires

only O(n2k), where k is the maximum number of parents feeding into a node

[190].

2.3.2.1 Conditional independence in Bayesian networks

Factorisation of the full joint probability distribution is achieved by application

of the chain rule of probability — see Section 2.3.2. If conditional independence
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(a) Dependent (b) Independent (c) Conditional indepen-
dence

Figure 2.3: Dependency, independency and conditional independence relations
(a), (b) and (c)

(CI) assumptions are made, then the factorised probability distribution can be

simplified further.

Conditional independence is closely coupled with the notion of information rele-

vance, which is central to BNs. Information relevance allows successful capture

of intuition about how variables interact with each other and, in the BN arena,

is captured through devices known as dependence and conditional independence.

These devices capture the way in which information at one node changes in re-

sponse to new information presented at other nodes. For example, a proposition

Y is said to be dependent on X if knowing the value of X helps predict the value

of Y . In keeping with the weather example described above in Section 2.1, know-

ing that there are clouds in the sky (X) has a direct impact on the probability

that the sprinkler (Y ) is on. That is to say: P (Y |X) 6= P (Y ), shown in Figure

2.3(a).

The converse of dependence is independence, which implies that knowing the

value of one variable has no impact on the value of another variable. For example,

knowing that the sprinkler (X) is on does not have any impact on the probability

that the car will not start (Y ). Therefore P (Y |X) = P (Y ). This is shown

graphically in Figure 2.3(b).

Given the respective tests P (Y |X) 6= P (Y ) and P (Y |X) = P (Y ), then determi-

nation of dependent and independent relations is trivial.

26



By extending the concept of independence, conditional independence relations

can be formed. This is a relation in which a third node renders information at

another node useless. In other words: A proposition X is said to be independent

of Y , given information Z. For example, as shown in Figure 2.3(c), once Z is

known, the probability of X will not be affected by discovery of Y, hence X and

Y are conditionally independent if Z is known. More formally: P (Z|X,Y ) =

P (Z|Y ).

Determination of conditional independence relationships is an important task to

accomplish as it enables pruning of parents in the local factorised probability dis-

tributions, as discussed in Section 2.3.2. However, it is more complex to evaluate

conditional independent relations.

Pearl’s d-separation (direction-dependent separation) criterion [216, pp 116] is

used to evaluate conditional independence relations. The three possible config-

urations of variables shown in Figure 2.4 constitute the basic building blocks

of BNs [131], and they are used by Pearl’s d-separation criterion to determine

whether conditional independence relations hold.

The three configurations are as follows:

(a) Serial (b) Diverging (c) Converging

Figure 2.4: Families of edge connections in a BN structure (a), (b) and (c)

Serial connection Information about X provides relevant information about

the probability of Y , and knowledge at Y provides relevant information

about Z. However, if the state of Y is known, then information about X
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provides no additional information about Z. It is said that Y ‘blocks’ infor-

mation flow X from Z. For example: an observation of cloudy weather (X)

would increase the belief about rain (Y ), which, in turn, would increase the

probability of the grass being wet (Z). However, knowing that it is raining

(Y ), a weather observation of cloud (X) is irrelevant to the probability that

the grass is wet (Z).

Diverging connection Information about the state of X impacts on the proba-

bility of Z through Y . However, if information is known about Y , then any

new information about X does not impact on Z. It is said that Y blocks

information flowing from X to Z. Therefore, information can flow between

the variables unless the state of Y is known. For example: If the current

weather conditions are raining (Y), and then discover that the grass is wet

(X), realising that the grass is wet (X) does not provide any additional

information to the ‘rain’ node (Z).

Converging connection Information about X does not provide relevant infor-

mation about Z unless information about Y is known — Y depends on both

X and Z. In other words, information may be transmitted from X to Z

only if information about the state of Y or one of its descendants is known.

For example: If information about the state of the lawn (Y ) is available,

then knowing the state of the sprinkler (X) will modify the probability of

rain. In other words, knowing that the lawn is wet and that the sprinkler

is on changes the belief that the lawn was made wet by the rain. However,

if information about the state of the lawn is unavailable, observing rainfall

does not impact the belief that the sprinkler is on. Converging connections

in BN are important as they represent a common reasoning pattern known
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as ‘explaining away’. In other words, Y has two causes, X and Z; if you

know the state of Y , then knowing the state of X will change the probability

of the other cause, Z.

A test of conditional independence is achieved by applying Pearl’s d-separation

criteria to the three basic node configurations described above. For example, two

nodes (X) and (Z) are d-separated, and hence independent, if there exists an

intermediate variable Y such that either:

• The connection between X and Y is serial or diverging and the value of Y

is known

• The connection between X and Y is converging and Y and its descendants

are known.

2.4 Construction

As mentioned in Section 2.1, a BN model is composed of two parts — 1) a qual-

itative structure; and 2) quantitative probabilities — which together provide an

efficient platform for modelling relationships and executing probabilistic infer-

ence. However, the BN model must first be built, thus the problem concerning

construction of the network remains. The BN structure and probabilities could

be provided by either a domain expert or induced automatically from data.

The topic of BN construction, specifically the structure, is central to this research.

The expert driven approach to BN learning is treated in part II of this thesis,

and structure learning from data is treated in part III.
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2.5 Applications

The idea of graphical models for representing uncertainty can be traced back to

the 1921’s when Sewal Wright establish a method for representing causal models

for the analysis of crop failure [283]. This time period was ruled by hard data

and quantitative analysis, therefore the method did not receive buy-in from the

statistics community [216, 131]. During the 1960’s, statisticians began to re-

alise that the decomposition properties of statistical tables is best expressed in

graphical terms, which reignited research around methods for representing and

reasoning with problems characterised by uncertainty.

As research evolved, efficient mechanisms for representing, encoding, storing and

manipulating probabilistic information were realised, and BNs emerged. Bayesian

networks have a presence in many diverse domains, including both academic re-

search and industry. A common use of BNs is to provide decision support for

problems characterised by uncertainty. This may be explained by their natural

ability to graphically model uncertain domains, and provision a rigorous prob-

abilistic reasoning [111]. Examples of real-life applications include: ecology

[177, 173, 7], bioinformatics [81], sociology [9] and transport [248, 34]. Other

applications include aquaculture [98], learning and development [92] and geol-

ogy [228]. Bayesian networks have gained an increasing popularity in the medical

domain, especially in handling the uncertain knowledge involved in establishing

diagnoses of disease [218]. Examples include monitoring of patients in intensive

care [11], medical decision support in breast cancer diagnosis [146, 58], radiology

[28], therapeutics [200] and biomedical informatics [270].
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2.6 Summary

In this chapter we have described the fundamental core concepts of Bayesian

networks. It started by giving a basic overview of the BN framework, and then

moved to the more theoretical aspects of the framework. The reader’s attention is

drawn to the value of BNs in problems characterised by uncertainty, noting that

their graphical structure of dependency relations makes interpretation easier, and

the conditional probability tables enable efficient probabilistic inference. In order

to realise the potential of BNs, they must first be constructed, thus we introduce

the notion of BN construction techniques, which is a major theme of our research.

This thesis investigates the application of BNs for the purpose of dementia diag-

nosis. Now that we have presented the background to BNs, the topic of dementia

is explored in the following chapter.
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Chapter 3

Decision support for dementia

3.1 Introduction

Dementia is the application area of choice in this research. The purpose of this

chapter is to introduce dementia and, by understanding the complexity of the

diagnostic problem and analysing current diagnostic practice, justify the need for

dementia decision support. In addition, this chapter explores current dementia

diagnosis clinical practice, which, through identification of gaps, provides moti-

vation for a new approach.

This chapter is organised as follows: a description of dementia is provided in

Section 3.2, and the impact that a diagnosis of dementia has on the individual,

family and carers, as well as wider implications, is provided in Section 3.3. We

provide an overview of current diagnostic clinical practice in Section 3.4. In

addition, we highlight gaps and issues in dementia diagnosis in clinical practice,

which provides motivation for a decision support tool in dementia diagnosis, as

described in Section 3.4.1.2. Treatment management aspects of dementia are

discussed in Section 3.5. A summary of the chapter is provided in Section 3.7.
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3.2 What is dementia?

Cognitive changes Behavioural changes Emotional changes Physical changes
• Short term memory
impairment
• Language disorder -
receptive and expres-
sive dysphasia
• Preservation of
thoughts and actions,
accompanied by repet-
itive speech
• Fragmented thought
process - speech be-
comes disordered
• Persecutory ideas
and delusions

• Social withdrawal
• Difficulty in carrying
out purposeful tasks -
activities of daily living
• Socially inappropri-
ate behaviour and self
neglect
• Wandering and rest-
lessness
• Aggression and vio-
lence

• Shallowness of mood
• Lack of emotional re-
sponsiveness and con-
sideration for others
• Irritability and hos-
tility

• Weight loss
• Malnutrition
• Incontinence
• Emergence of primi-
tive reflexes

Table 3.1: Selection of common, clinical features associated with dementia.
Adapted from [66].

Dementia is a syndrome characterised by the presence of multiple acquired cogni-

tive deficits, which typically progress in severity over time. The term dementia is

accurately reserved for conditions considered irreversible. A number of different

pathologies can lead to the syndrome of dementia, either singly, or in combina-

tion. The most common pathologies leading to dementia are more prevalent in

aged populations. A selection of clinical features most commonly associated with

dementia are summarised in Table 3.1.

In older people, Alzheimer’s Disease and a variety of cerebrovascular related de-

mentias — collectively often referred to as “vascular dementia” — are by far

the most common dementia causing pathologies [195, pp 1]. Other pathologies

that cause a significant care burden, although less common, include dementia

with Lewy Bodies (DLB), the linked dementia of Parkinson’s Disease, and a

range of primary neurodegenerative conditions affecting the frontal and temporal

lobes (“frontotemporal dementias”). A number of rarer dementia processes in-

cluding Creutzfeldt-Jakob Disease (CJD), Huntington’s Disease, and extremely
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Disease Clinical features
AD • Memory impairment

• Cognitive decline from a previous higher level of functioning
• Deficits in 2 or more areas of cognition
• Cognitive deficits of sufficient magnitude to interfere with occupational and/or social function-
ing
• Onset between ages 40 and 90, most often after age 65
• Absence of systemic disorder or other brain disease that in and of themselves could account
for the progressive deficits in memory and cognition

VaD • Memory impairment
• Cognitive decline from a previous higher level of functioning
• Deficits in 2 or more areas of cognition
• Cognitive deficits of sufficient magnitude to interfere with occupational and/or social function-
ing
• Cognitive deficits not due to physical effects of stroke alone
• Cerebrovascular disease
• Relevant cerebrovascular disease by brain imaging

DLB • Cognitive decline from a previous higher level of functioning
• Cognitive deficits of sufficient magnitude to interfere with occupational and/or social function-
ing
• Prominent or persistent memory impairment may not occur in early stages, but usually evident
with progression
• Cognitive decline from a previous higher level of functioning
• Two of the following: a) fluctuating cognition with pronounced variations in attention and
alertness b) recurrent visual hallucinations, typically well formed and detailed c) spontaneous
motor features of Parkinsonism
• Repeated falls

FTD • Behavioural disorder, such as early loss of personal and social awareness, early sign of
disinhibition and hyperorality
• Affective symptoms, such as depression, anxiety, excessive sentimentality and bizarre somatic
preoccupation
• Speech disorder, such as progressive reduction of speech and stereotypy of speech
• Spatial orientation and praxis preserved
• Physical decline, such as early primitive reflexes, early incontinence, rigidity, tremor and low
and labile blood pressure

Table 3.2: Summary of common clinical features associated with AD, VaD, DLB
and FTD.

infrequent neurological disorders are also occasionally encountered, as are demen-

tias associated with abuse of alcohol, and with Human Immunodeficiency Virus

(HIV). This thesis focuses on the four most common dementias associated with

aged populations: Alzheimer’s disease (AD), Vascular dementia (VaD), dementia

with Lewy bodies (DLB) and Fronto-temporal dementia (FTD). The core clinical

features associated with each disease are summarised in Table 3.2.
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3.3 Impact of dementia

The dementia syndrome can affect people of any age, but it is most common in

older people. In a recent study conducted by Knapp et al. [148], the prevalence

of dementia in the year 2005 was reported as 1 in 14 people over 65 and 1 in

six people over 80. Overall, the number of people with dementia in the United

Kingdom (UK) in the year 2005 was 683,597, 1.1% of the entire UK population,

which is expected to rise to 1,735,087, 2.7% of the entire UK. This rise is due to

the overall aging population.

A diagnosis of dementia has far reaching consequences for the individual, close rel-

atives and carers. In the case of the individual, a diagnosis is often preceded with

a period of frustration, which is initiated by the realisation of a decline in ability

to function in daily life. In addition to frustration, Behavioural and Psychologi-

cal Symptoms of Dementia (BPSD) , summarised in Table 3.3, begin to emerge

as the disease progresses [14, 86]. Frequently, especially when severe, BPSD

manifestations are disturbing to family members and other caregivers [151], and

can pose significant danger and distress to the individual, sometimes requiring

institutionalisation [71] [205, pp 67].

Notwithstanding the effect dementia has on the individual, family and carers,

there is significant cost implication with regards to healthcare services. The

dementia UK study [148] estimates that the cost of formal care agencies as well

as the financial value of unpaid informal care provided by family and friends

amounts to £17.03 billion, an average of £25,472 per person cared for per year.

It is expected that costs will increase as the number of people with dementia is
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BPSD symptom Desciption
Wandering
Restlessness
Delusion Beliefs that are not true - insisting that people are trying to inflict

harm
Hallucinations Seeing false visions or hearing false voices
Agitation/Aggression Refusal to cooperate, refusal to receive assistance or violent behaviour
Depression/Dysphoria Periods of sadness, low spirt
Anxiety Nervous, worried or frightened behaviour for no apparent reason
Elation/Euphoria Persistent, excessive and abnormally good mood. Finds humour when

others do not
Apathy/Indifference Loss of interest in surrounding environment, difficult to engage in

conversation or chores
Disinhibition Act impulsively without thinking, says things not usually said in pub-

lic
Iritability/Lability Easily irritated, impatient, easily disturbed and moods change rapidly

for no specific reason
Aberrant Motor Be-
haviour

Pace, repetitive actions (opening/closing doors)

Night behaviour disor-
der

Sleep and night time behaviour disorder

Eating disorder Appetite and eating disorder

Table 3.3: Summary of common behavioural and psychological symptoms of
dementia.

set to increase, and more service provisions will be required as the number of

people with dementia grows.

3.4 Dementia diagnosis in clinical practice

Diagnosis of the common dementias of old age are principally operationally de-

fined on the basis of their differing constellations of symptoms and neuropsy-

chological profiles. In doing so, clinicians use a variety of sources of evidence

in the reasoning process, which include evidence-based clinical guidelines, often

supplemented by individual consultations.

Clinical guidelines, developed by domain-specific experts, identify, summarize

and evaluate the state of the art in medical evidence and current data about

prevention, diagnosis, prognosis, therapy, management, risk, benefit and cost-

effectiveness, and, in addition, address practical issues. Furthermore, clinical
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guidelines define important questions related to clinical practice, and identify

possible decision options and their outcomes, thus guiding the clinician’s deci-

sions. The overriding objective of clinical guidelines is to standardise medical

care, raise quality of care, reduce risk and achieve a balance between cost and

medical parameters [196]. Clinical guidelines alone do not replace the knowledge

and skills of the clinician ultimately responsible for patients; it is the responsi-

bility of the clinician to make judgements and decisions in consultation with the

patient, or where appropriate, close relatives or carers.

The Diagnostic and Statistical Manual (DSM), currently in its 4th edition [4], lists

different categories of mental disorder and the criteria for diagnosing them. The

mental disorders Section of the International Classification of Diseases, version

10 (ICD-10), is another commonly-used guide which provides codes to classify

diseases and a wide variety of signs, symptoms and abnormal findings. Every

health condition can be assigned to a unique category and given a code. The

ICD-10 guidelines are essentially “a statistical classification of diseases and other

health problems, to serve a wide variety of needs for mortality and health-care

data [211]”; the DSM, on the other hand, is essentially a classification of the

disorders seen and treated in clinical practice. Other specific dementia-related

clinical guidelines are listed below.

• Alzheimer’s disease: NINDS-ADRDA, McKhann et al. [175].

• Vascular dementia:

– NINDS-AIREN, Román et al. [231]

– Hachinski Ischaemic Scale [102]

• Dementia with Lewy Bodies: Criteria proposed by McKeith [174].
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• Frontotemporal dementia: Criteria proposed by The Lund and Manchester

Groups [167].

• Scottish Intercollegiate Guidelines Network (SIGN) provide guidance on

interventions for the management of behavioural and psychological aspects

of dementia [195].

The clinical diagnosis of dementia should be based on a standardised system such

as ICD-10 or DSM-IV [205, pp 23]. Furthermore, a careful, methodical and de-

tailed history is an important part of the clinical assessment of someone with

suspected dementia [105]. Due to the nature of the syndrome, however, consul-

tation with the aim of obtaining detailed history information from the patient

alone may be impractical, therefore, independent history should be obtained from

close relatives or caregivers where available. In particular, BPSD related disor-

ders are best known by relatives or carers, and can be detected during informant

consultation.

In progressive degenerative dementias, during the very early stages cognitive

deficits are usually subtle and their manifestations, though representing change

from pre-morbid function in an individual, may remain within the normal range

for the general population. This presents considerable challenges to early diagno-

sis. Cognitive screening and regular monitoring may be of assistance in tracking

deterioration in cognitive and functioning abilities. Nevertheless, early diagnosis

and categorisation of dementia-causing pathology is of value in planning treat-

ment and, in some cases, initiating specific drug intervention.

Accordingly, a diagnosis of dementia can be formed by evaluation of the clinical

syndrome based on diagnostic criteria, history and examination, paying particular
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attention to mode of onset, course of progression, pattern of cognitive impairment

and presence of non-cognitive symptoms. Additionally, screening investigations,

and, where appropriate, additional more specialised investigations, such as neu-

ropsychological testing [237, 15] imaging [251, 133], blood tests [105, pp 25]

and systemic investigations [105, pp 29] may be required.

There are a number of laboratory investigations which can assist in the diagnostic

process, although, as yet, no definitive laboratory test for the common demen-

tia causing pathologies is available. Histological evaluation ante mortem is not

ethically justifiable.

Preliminary diagnostic studies have demonstrated the potential role of cere-

brospinal fluid (CSF) in investigating dementia [137, 107], an invasive inves-

tigation made possible by lumbar puncture. In particular, studies have shown

that specific biomarkers in CSF, specifically reduced levels of CSF β-amyloid

and raised levels of CSF tau, can differentiate patients with AD from patients

with other dementias as well as from people without dementia [273]. How-

ever, the Scottish Intercollegiate Guidelines Network (SIGN), established in 1993

by the medical Royal Colleges to develop evidence based national guidelines for

NHS Scotland, does not advocate routine use of CSF markers in the diagnosis of

dementia, although other countries may recommend routine CSF investigation.

The justification for such invasive investigations may increase as more effective

treatment options become available for some of the common dementia types.

Genetic testing can provide information relating to possible “genetic faults” (mu-

tations) that could lead to early onset and late onset dementias, however, such

testing is in its infancy, and it is not used routinely in clinical practice. Further-

more, genetic testing has far reaching implications for the individual [113]. Thus
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far, three genes have been identified as possible causes of the rare early onset (age

≤ 65) familial AD, namely the amyloid precursor protein (APP) gene on chro-

mosome 21, the presenilin-1 (PS-1) gene on chromosome 14, and the presenilin-2

(PS-2) gene on chromosome 1 [105, pp 45]. The APP gene affects the production

of the protein amyloid; it has been shown that an accumulation of abnormally

folded amyloid in the brain has been linked to AD [108]. On the other hand, re-

cent observations have identified a gene thought to be associated with late onset,

sporadic AD [168, 110], namely the apolipoprotein ε gene (Apoε) on chromosome

19. The Apoε gene has three alleles, ε2, ε3 and ε4. The ε4 mutation of the Apoε

gene increases the risk of developing AD [67, 153]. Nevertheless, many people

with AD do not have the ε4 mutation and many people with the ε4 mutation do

not have AD. Everyone has two copies of the APOε gene, one copy inherited from

each parent. Those carrying two APOε4 genes have the most risk of developing

AD. It should be noted, however, that although carriers of two Apoε4 genes have

been linked to increased chance of developing AD, Apoε4 is not causative of AD

[105, pp 47] [106], and, in addition, not all people with two Apoε4 genes will

develop the disease [37]. The utility, therefore, in Apoε testing relates to the

hypothesis that Apoε4 is not a predictor of AD, rather, if AD is going to happen,

Apoε4 may affect when the pathology is likely to develop [67].

Integrated Care Pathways (ICP) are instruments that outline anticipated mul-

tidisciplinary care, placed in an appropriate time-frame, to help a patient with

a specific condition or set of symptoms move progressively through a clinical

journey [181]. Moreover, ICPs can be used as a vehicle to incorporate local

and national guidelines into everyday practice, manage clinical risk, meet the

requirements of clinical governance and reduce unnecessary variations in patient
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care and outcomes [31]. There is no “single model”, however, as variations from

the pathway may occur as clinical freedom is exercised to meet the needs of the

individual patient within the constraints of the local service provision [181]. Fur-

thermore, the ICP is not a prescriptive, step-by-step set of instructions, rather,

it is a set of appropriate, evidence-based activities and interventions for a specific

user group. The Kingshill Research Centre, UK, have developed an integrated

care pathway for dementia [192]; it consists of five stages, listed below.

1. Recognition

2. Assessment

3. Management

4. Review

5. Coping with change

In addition to the Kingshill Research Centre ICP, the NHS Quality Improvement

Scotland (NHS QIS) board developed an ICP [240], released in draft form in

April 2007, which covers five mental health areas, including dementia. Each

of the stages contained within the Kingshill Research Centre ICP, listed above,

include the evidence available for that part of the care process, and a flowchart

identifying best practice.

In keeping with the theme of dementia diagnosis, an abstract description of the

identification and assessment of dementia by the primary care team and expert

team is provided in Section 3.4.1.1 and Section 3.4.2. The remaining three stages,

whilst playing an important role in the holistic view of dementia care, are not

within the scope of this thesis.
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3.4.1 Primary care patient journey

In the first instance of health concern, the affected individual or a carer usually

presents to a Primary Care clinician — the General Practitioner (GP) — thus,

the GP and the wider primary care (PC) team are the initial point of contact

[21]. Therefore, the GPs and the wider PC team play an important role in the

diagnosis of dementia [68].

With regard to their role in diagnosis, the GP and the PC team perform a variety

of functions, however, the primary judgements are: identify people suspected of

having a dementing illness; determine the significance of the illness; exclude non-

dementia pathologies, such as hypothyroidism and B12 deficiency; and exclude

overlapping conditions, such as depression, acute confusional state and psychotic

symptoms. In doing so, the GP conducts a number of investigations, including:

physical examination; background history; cognitive screening tests, such as the

Mini-Mental Status Examination (MMSE) [87] and the clock-drawing test [23];

and blood investigations [267]. If dementia is suspected, or if the diagnosis

is unclear, the GP may choose to refer onward for more specialist diagnostic

assessment at secondary care level, which can include specialist investigations

such as neuropsychological evaluation [252].

Since no one single patient journey model exists, an abstract, graphical patient

journey, including judgements described above, is shown in Figure 3.1. A com-

prehensive discussion on integrated care pathway models for dementia care can

be found in [240, 192, 69].
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Memory or other cognitive complaints

History from patient and reliable informant

Suspected depression Suspected delirium

Antidepressant therapy Medical emergency

Mental status assessment and detailed physical examination

Laboratory work-up

Reassessment or referral to specialist

Benign memory loss Dementia

VaD FTDDLBAD Other

Figure 3.1: Schematic of the diagnosis of dementia in primary care. Source: [93,
pp 36]

3.4.1.1 Issues and barriers in primary diagnosis of dementia

The importance of early diagnosis in facilitating better management and quality

of life for the affected individual and carers is well documented. An early diagnosis

can have the effect of “reducing uncertainty about and coming to terms with

the diagnosis, excluding remedial causes (however rare), planning support and

avoiding crises ” [129]. Early administration of anti-dementia drugs has many

therapeutic effects, including improved memory, as well as boosting cognition,

leading to increased participation in a range of activities of daily living [230, 261],

and delaying institutionalisation [95] — Section 3.5. Other benefits of early
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diagnosis include introducing the individual and carers to appropriate agencies

and support networks that provide respite care, and carer groups. Such support

groups have the capacity to improve carer quality of life by relieving the disabling

psychological distress that carers may experience, reduce carer burnout and delay

institutionalisation [284, 184], as described in Section 3.3.

Since the primary care team, in particular the GP, is the first point of contact

for people with dementia and their families, “they have a pivotal role in both

establishing a diagnosis of dementia and in ongoing support and intervention”

[129]. However, despite the benefits to be gained from early identification and

diagnosis of dementia, as mentioned above, there is substantial literature which

documents the difficulty GPs and the primary care team have in fulfilling this

role. For example, Downs [72] and Gauthier [93, pp 32] note that GPs are gen-

erally unaware of people with dementia in their practice, and that dementia cases

are identified following a medical or carer crisis, by which time the disease has

progressed. Additionally, once individuals are identified as suspected dementia

cases, the primary care team face a number of barriers. Some of these barriers

include: difficulty differentiating normal ageing from symptoms of dementia [30];

difficulty in diagnosing due to uncertain aetiology and patholophysiology, com-

pounded by the fact that symptoms are highly variable and non-specific [176];

lack of training to respond to the needs of people with dementia and their fami-

lies [129, 182]; lack of confidence in diagnosing dementia [264]; concerns about

the impact of the diagnosis on the patient [259, 220]; and lack of time [129].

These barriers pose a significant challenge to dementia care, however, literature

suggests that GPs remain committed to facilitating early diagnosis of dementia

[182]. It should be noted, however, that this study focused only on East Kent,
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England, UK, therefore, a wider study is required to determine whether this trend

continues across other UK regions, but anecdotally likely to do so.

The interested reader is directed to [130, 264, 129, 72, 182, 88] for a compre-

hensive discussion on the issues and barriers of dementia diagnosis in primary

care.

3.4.1.2 The need for dementia decision support in primary care

The diagnosis of dementia should include the use of standardised clinical guide-

lines, for example, SIGN [195, 93]. However, Stoppe et al. [258] report wide

gaps between guidance provided in clinical guidelines and practice in primary

care, which may be explained by the fact that guidelines alone have limited effect

in changing clinical practice [83, 101]. Gaps occurring between guidance pro-

vided in guidelines and clinical practice, combined with the issues highlighted in

Section 3.4.1.1, may contribute towards underdiagnosis or misdiagnosis.

As described in Section 3.4.1.1, the main issues relating to dementia diagnosis at

the primary care level include: lack of dementia specific training; confidence in

forming a diagnosis of dementia; difficulty in differentiating normal ageing from

symptoms of dementia; and time. The issue relating to dementia specific training

for primary care practitioners is historical, and well documented. However, in a

survey of Irish GPs conducted by Cahill et al. [30], the appetite of GPs to attend

dementia specific training courses appears to be increasing. Other educational

packages have been introduced in recent years, such as the North of England

evidence-based guidelines development project: guideline for the primary care

management of dementia [80], and, more recently the SIGN guidelines discussed

in Section 3.4.

45



The complexity surrounding dementia diagnosis and associated issues suggests

that a decision support system, which is easy and quick to use, encodes spe-

cialised, expert knowledge from an Old Age Psychiatrist, clinical guidelines and

a robust diagnostic inference engine, could assist physicians in forming a diag-

nosis of the dementia syndrome, and classification of the underlying pathology.

Such a system could provide real benefits to patients and carers, and, since it

is an innovative approach [63], which seeks to reduce time and assist the diag-

nostic task, it may gain widespread adoption by GPs. In addition, the system

could be useful clinically for some patients when early intervention therapies are

developed.

Existing approaches which seek to provide decision support for dementia are

surveyed in Section 3.6.

3.4.2 Expert team patient journey

When the GP is unsure about the diagnosis, or the diagnosis is complicated,

a patient may be referred to a specialist psychiatric service known as the expert

team. Other people requiring referral include, but are not limited to, those where:

there is associated psychopathology such as depression or psychosis; there is

dangerous or severely disturbed behaviour such as violence, wandering or sexual

disinhibition; or severe carer strain — see Section 3.3.

Different styles and models of service have been developed, however, guidance

from government and the Royal Colleges has encouraged broadly similar levels

and patterns of provision. Although there is no one single patient journey model

for specialist care, good practice guidelines exist, such as: the Audit Commission’s

report Forget Me Not [48], which outlines Integrated Care Pathways (ICP) and
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services for older people with dementia; and Forgetful but Not Forgotten [205],

a report produced by the Royal College of Psychiatrists which outlines good

practice and ICP in old age psychiatry services working with people with dementia

and their carers. Both documents include diagnostic assessment and investigation

guidance.

The expert team deals with many aspects, stages and varieties of psychiatric

disorder arising in old age, especially all stages of dementia, including care for

people with severe dementia. Two primary roles provided by the expert team

include detailed diagnostic investigations, and management of dementia. The

core team typically consists of a consultant Old Age Psychiatrist and commu-

nity psychiatric nurses. Other specialists from geriatric medicine, neurology and

psychology, may also contribute to the assessment of dementia.

3.5 Treatment management

Early diagnosis and categorisation of dementia-causing pathology has high value

in treatment management, especially in cases which require specific drug inter-

vention [72]. In addition, once an individual has a positive diagnosis of dementia

they have access to a package of care, which spans health care services, social ser-

vices and voluntary services [239, 238]. It should be noted, however, that within

the UK the actual services that an individual gains access to vary [148, Ch.

4 and Ch. 5]. Furthermore, pharmacological treatment available to individuals

with dementia varies significantly depending on geographic location [134].

Cognitive decline, functional decline and social decline are the three cardinal fea-

tures of dementia. Cognitive decline affects the individual’s ability to remember,
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understand, communicate and reason. For some individuals, cognitive symptoms

can be managed pharmacologically using agents which seek to boost cognition,

the so-called cognitive enhancers or anti-dementia drugs. The National Institute

for Health and Clinical Excellence, NICE, provided guidance on the use of these

drugs in clinical practice — NICE-86 [197, Ch.7].

The neurotransmitter, acetylcholine (Ach), is important in the chemical basis of

a number of cognitive processes including memory, thought and judgement [13].

A hallmark of AD is lower than normal level of acetylcholine in the brain, due in

part to malfunction and deterioration of neurons that release Ach [217]. Ach is

broken down naturally by an enzyme known as acetylcholinesterase (AChE). In

‘normal’ brains, however, cognition is not affected as the production and release

of Ach is greater than the rate at which AchE operates. AChE activity does

reduce with age [120], however, the main issue is the balance between Ach

production, release, and breakdown. A simple example: if AchE activity is faster

than the rate at which Ach is produced and release, or, if Ach production and

release is substantially diminished, even if AchE activity is not, then the result is

cholinergic dysfunction, as there is not enough Ach to stimulate Ach receptors,

thus leading to cognitive and memory impairment. The role of pharmacological

agents, specifically cholinesterase inhibitors, therefore, is to slow the rate at which

AchE enzymes break down Ach released from remaining, undamaged neurons.

This results in a boost in cognition and memory.

In the UK, Aricept R©(donepezil HCL), Exelon R©(rivastigmine tartrate), and

Reminyl R©(galantamine), cognitive enhancers which target the cholinergic neu-

rotransmitter system, are licensed for use in the symptomatic treatment of mild

to moderately severe AD [197, pp 185]. Memantine (Ebixa) is another cognitive
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enhancer licensed for moderate to severe AD in the UK; however, it works differ-

ently to that of the acetylcholinesterase inhibitors. Glutamate is a neurotrans-

mitter involved in learning and memory, however, it is believed that abnormally

elevated amounts of glutamate may lead to cell death, which has been observed

in patients with AD. By targeting the glutamatergic neurotransmitter system,

memantine seeks to boost cognition by protecting neurons against elevated lev-

els of glutamate. The potential for combination therapy is being explored, and

preliminary data suggest that memantine in combination with aricept is superior

to aricept alone in the treatment of moderate to severe AD [260]. However,

whether doctors will prescribe both drugs together routinely in clinical practice,

especially on the NHS, is unclear.

In the UK, rivastigmine is the only pharmacological therapeutic agent licensed

for the symptomatic treatment of people with VaD, DLB and FTD, although

there are no studies on the use of acetylcholinesterase inhibitors or memantine

for the treatment of FTD [195, pp 186].

In the year 2005, NICE reviewed their guidance on the management of early-

stage and late-stage dementia, and, on the basis of a cost-benefit analysis, NICE

ruled that donepezil, rivastigmine and galantamine should only be used to treat

Alzheimer’s once it has progressed to its moderate stages [195]. NICE has

also ruled that memantine should be used only in clinical studies of people with

moderately severe to severe AD. The review sparked a heated debate between

Alzheimer’s campaigners, drug companies and NICE, as campaigners argue that

patients in the early stages of Alzheimer’s should also have access to the drugs.

Patients already prescribed the drugs will continue to receive them in accordance

with clinical guideline criteria.
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As a result of biological change in the brain due to progression of the disease

process, non-cognitive features, or BPSD, may emerge — see Section 3.3. Phar-

macological interventions may be instituted to help manage behavioural and psy-

chological symptoms, particularly in cases “where the disturbance is acute, severe

and/or life-threatening [205, 67]”. The “Forgetful but not Forgotten” report

[205, 67], however, recommends that non-pharmacological approaches should be

the management of choice in the first instance. Non-pharmacological approaches

to treating people with dementia adjunct to pharmacological intervention ap-

pear in the literature, including aromatherapy, reminiscence therapy, validation

therapy and music therapy. Note, however, this area of dementia treatment is

under-researched and requires further review [282, 271, 118].

3.6 Dementia decision support and the Bayesian

network value proposition

As mentioned in Section 3.4.1.1, the first port of call for health concern is usually

the Primary Care (PC) clinician — the General Practitioner (GP) — thus, the

GP and the wider PC team have a key role at the initial point of contact, and

therefore have a crucial role in the diagnosis of dementia [68]. It is the view of

the The Audit Commission in their Forget Me Not [48] report, however, that

more needs done in general practice to diagnose dementia in its early stages. The

view from general practice, however, is that a number of barriers are preventing

accurate and timely identification of dementia, meaning that the individual in

some cases may not obtain an accurate or timely diagnosis, nor will they be

referred to the appropriate secondary level, expert care team [208]. Barriers

50



including under-resource and lack of training [264, 209], combined with the

complexity associated with dementia diagnosis. These barriers are some of the

key drivers that motivate the development of tools for dementia decision support,

particularly in primary care.

Iliffe et al. [128] identified that primary care physicians are under-equipped to

diagnose and manage the complexities associated with dementia diagnosis. To

address this, they proposed a computer decision support (CDSS) tool to assist

physicians in clinical practice with dementia diagnosis. The system prompts the

user with questions to consider in deciding whether a diagnosis can be made, or

whether specialist referral is required. The decision engine platform is a decision

tree, hand-crafted and validated by a multi-disciplinary team of health profes-

sionals, and is based on clinical guidelines for dementia diagnosis. The completed

CDSS is integrated into two GPs Patient Information Systems, and is deployed

in some clinical practice centres. Iliffe et al. demonstrated that: 1) it is possi-

ble to construct a model for dementia diagnosis based on decision trees; and 2)

the CDSS appeared useful in routine practice, although commented that further

evaluation is required in primary care clinical practice.

The benefit of the approach proposed by Iliffe et al. is that the decision engine

is graphical and transparent in its diagnostic output. In addition, the system

appears to cover a range of issues relating to dementia diagnosis, and not just

identification of the syndrome and disease. For example, multiple system modules

support diagnostic reviews, management of dementia, and carer needs assessment.

The primary drawback with this proposition, however, is that it does not appear

to cater for co-existing pathologies. In addition, British electronic medical record

disease classification codes are used to code output, which provides categorical
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values such as ’dementia likely’ — there is no probabilistic output generated by

this system. Furthermore, the diagnostic output is textual, thus the user does

not benefit from the full explanation capability of a graphical model.

Another computer-based clinical decision support system is that proposed by

Lindgren [164]. The system implements clinical guidelines for diagnosis of a

range of cognitive diseases, including dementia. The system is driven by clinical

guidelines, DSM-IV [4] (see Section 3.4), and applies if-then rules to a knowl-

edge base to support diagnostic reasoning. The scope of the system is wide,

and it covers many aspects of the differential diagnosis. For example, the tool

includes screening tools for cognitive deficiencies, behavioural and psychologi-

cal symptoms, functional dysfunctions, complex laboratory findings, neurological

function and physical assessment.

In text-book cases of dementia, the system provides a categorisation of the types

of pathologies that meet the guideline criteria, given the evidence presented.

However, in atypical cases, where the system is unsure of the diagnosis, the

system presents all the evidence to the physician, then the physician attempts

to infer a diagnosis based on the evidence presented. This may be a potential

drawback.

Other dementia decision support systems exist, including that proposed by Her-

rero [119]. However, this system focuses specifically on diagnosis of Alzheimer’s

disease, and it does not consider the other old-age dementia pathologies. Other

computer-driven tools, which are not typically used in primary care clinical, are

listed below.

• Mani et al. [170] and Shankle et al. [243, 241], who proposed a number

of machine learning based algorithms for problems in dementia decision
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support. For example, in [242], Shankle et al. apply rule-based approaches

and decision-trees to electronic medical records to differentiate between the

onset of Alzheimer’s disease (AD) and vascular dementia (VaD).

• de Figueiredo et al [65] applied a neural network to Single Photon Emission

with Computed Tomography (SPECT) brain image data with the purpose

of classifying individuals into: cognitively normal, demented, Alzheimer’s

disease or vascular dementia.

• French et al. [89] proposed artificial neural networks (ANNs) for differen-

tiating patients with Alzheimer disease from healthy control subjects and

for staging the degree of dementia.

The approaches by Mani, Shankle and de Figueiredo are propositions that pro-

duce encouraging results. However, the inputs that the models require are more

aligned to specialist investigations environments that are conducted at secondary

level care, therefore have negligible utility in the primary care setting. Secondly,

these approaches generally focus on the Alzheimer’s disease and vascular de-

mentia, and not dementia with lewy bodies or frontotemporal dementia. The

same can be said for the neural network model developed by French et al. Note,

however, that the ANN results were very promising: the model correctly dis-

criminated between the control subjects and patients with dementia in 91.1%

of the cases. However, ANNs do not have have the high level of explanation

transparency that is required in clinical practice.

Bayesian networks have been applied to many different domains (see Section 2.5.

With regard to medicine, however, they are a natural choice [99] and have been

widely used as decision support engines. A non-exclusive list includes breast can-
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cer diagnosis [29, 36, 146], risk assessment of Mental Retardation for a particular

pregnancy or infant [171], the diagnosis of muscle and nerve disease through anal-

ysis of bio-electrical signals (electromyography) [6] acute abdominal pain [263],

anesthesia [11], clinical pathology [103, 138] and pulmonary embolism assisted

diagnosis [166]. The popularity of BNs across various areas of medicine is due

to their inherent ability to model problems characterised by uncertainty in a way

that is very intuitive to medical practitioners, notwithstanding their support for

reasoning through probabilistic inference [218].

Domains that are generally characterised by uncertainty, and can be modelled

loosely on a ‘cause-effect’ basis can benefit from the maximum value proposi-

tion offered by BN. The graphical structure of the BN model loosely represents

cause-effect relations, and the probability tables capture the quantitative belief

about the impact that one variable has on another. Therefore, the BN paradigm

offers a natural way to represent the uncertainties involved in medicine when

dealing with diagnosis, prognostic prediction and treatment selection. In addi-

tion, BN formalism is not categorically mutually exclusive; rather, the output is a

probability distribution across each node. This means that the user still obtains

an output in situations where very little information is available or where input

evidence is atypical.

3.7 Summary

This Chapter provided necessary background on dementia, the wider impact of

dementia, diagnosis of dementia in clinical practice and treatment options. The

review highlighted issues and barriers faced by clinicians in determining a diag-
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nosis of dementia, specifically in primary care. A brief overview of treatment

options for the pathologies considered in this research are presented. Pharmaco-

logical treatment is the treatment option of choice, however non-pharmacological

approaches are sometimes used adjunct. Nevertheless, the challenge of determin-

ing a diagnosis of dementia remains.

A number of decision support systems for the general area of dementia diagnosis

have been proposed. Some of the systems focused either specifically on identifying

the presence of the dementia syndrome or on differentiating Alzheimer’s disease

from vascular dementia. Other approaches provide a very detailed offerings that

encompass a wide variety of tests and investigations. Note that all these tests

and investigations may not be available in primary clinical practice in the U.K.

In addition, previous offerings do not appear to provide probabilistic output, and

there are varying degrees of transparency in terms of output in terms of how

the decision was made. This is unfortunate, as these two properties are common

place in medical decision making. To that end, we propose BN for clinical decision

support for dementia syndrome and dementia pathology diagnosis.

In this thesis we propose BN for dementia diagnosis. One of the central themes

is concerned with how BNs are constructed. In the next Part of this thesis, we

explore methods for constructing BNs. We begin in the next chapter with the

first of the construction approaches, namely the hand-crafted approach.
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Part II

Expert-driven Bayesian network

construction
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Chapter 4

Methods for expert-driven BN

construction

4.1 Introduction

The benefits of using BNs for problems characterised by uncertainty are well

documented [216, 218, 132]. However, BN construction is a non-trivial, time-

consuming task, as it requires gathering often complex domain specific informa-

tion and expert knowledge into a coherent, easy to understand form. Therefore,

a structured mechanism for capturing all relevant knowledge for each of the con-

stituent parts of a BN is required. Elicitation literature is plentiful, however it

tends to focus on specific construction tasks [157].

In Chapter 2, we introduced the notion of BN construction; the purpose of this

chapter is to describe in detail a range of methods to support the first of these

construction approaches — the hand-crafted approach. These methods form a

concise framework that can be used as practical guidance for those who wish to

apply BN but are unsure of where to start. In addition, we highlight the issues
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that often arise during construction, including the drawbacks of the methods pro-

posed. References to literature on specific aspects of BN construction, including

judgement and elicitation, are provided throughout. Furthermore, this chapter

serves to introduce the techniques used to hand-craft BN models for dementia

decision support, which is the application domain that this research focuses on.

This chapter is organised in six sections. The overarching process for BN con-

struction is described in Section 4.2, and the main construction components in-

volved are identified. Each of these construction components, namely variables

and states, identification of network structure, and numerical probabilities, are

described in Section 4.3, 4.4 and 4.5, respectively. Finally, a summary is provided

in Section 4.6.

4.2 Construction processes

In general, there are two roles in the hand-crafted BN construction process: firstly,

a BN expert, who guides the model building task, often referred to as the mod-

eler ; and secondly, a domain expert whose role it is to supply the modeler with

specialist domain knowledge. The number of BN modelers and domain experts

required varies depending on the size and complexity of the problem at hand.

Financial costs also play a role in dictating the number of people involved in

the construction process. Despite resource constraints, the modeler’s primary

objective is to capture the problem solving techniques of the domain expert and

translate these into a BN model. This is achieved by synthesising domain knowl-

edge collected from various sources, and incorporating this information into the

BN model in terms of variables, relations and probabilities.
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Before the construction task commences, it is recommended that the modeler

becomes familiar with the problem domain, and that the domain expert become

familiar with the very basic concepts of BNs, if only to aid communication be-

tween them — see Section 4.5.2.2. Once this is established, model construction

can proceed. A generic process model for constructing BNs is described in Section

4.2.1.

4.2.1 Generic process model

It is widely accepted that there are three important steps in constructing a BN:

understanding the problem at hand and selecting the most appropriate domain

variables (step 1); determining the graphical structure, that is the relationships

among variables (step 2); and specifying of the numerical probabilities (step 3) —

each of these steps are treated in Sections 4.3, 4.4 and 4.5 respectively. In order

to ensure model accuracy, information required at each step must be acquired in

a structured, methodical way. To that end, we recommend the following generic

construction process, which is shown graphically in Figure 4.1. The specific

construction process is defined as four phases: the initiation phase, in which the

problem is investigated and understood; the development phase, in which the

model is constructed; model validation, and its ability to solve the problem at

hand, is determined during a number of iterated verification/validation phases;

and finally, the model enters the maintenance phase, where the BN model is

tuned over time.

The primary purpose of the initiation phase (step 1) is to decide what to model. In

this step, the purpose of the BN model is specified, and the scope with regards to
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Step 2:

Define a set of

potential domain

variables

Step 1:

Establish problem

and boundaries

Step 3:

Define model

structure

Step 4:

Expert peer review

Step 5:

Probability elicitation

Step 6:

Verification

Step 8:

Fine tune numerical

probabilities over time

Step 7:

Expert peer review

Figure 4.1: A generic Bayesian network construction process diagram.

what variables are to be included in the model is demarcated. Once the problem

is defined, the construction/development phase (step 2, step 3 and step 5) can

commence. Variables deemed important for the problem domain are identified in

step 2 (define a set of potential domain variables). In addition, the range of any

continuous variables are defined and the states of discrete variables are specified.

Next, the graphical structure is identified in step 3 (define model structure).

Steps 1 through 3 lead to the basic model, which, when complete, enters a phase

of verification and validation. Verification and validation is carried out by the

construction team during development, however a more rigorous and independent

review is conducted by independent experts (step 4, expert peer review). Clearly,

this is dependent on the availability of multiple domain experts who are willing

to peer review the model. If agreement cannot be reached, or if discrepancies in

the model are identified, the process loops back to step 2 and the process repeats

until a resolution is agreed. Once the first phase of validation and verification

is complete, the process enters the second phase of development, which involves

numerical probability elicitation (step 5, probability elicitation), followed by a
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further verification phase. In step 6 (verification), the model goes through a

series of user-defined scenarios to satisfy extremity and boundary tests, followed

by independent expert vetting (step 7, expert peer review). By the nature of step

6 and 7, a further development phase of refinement/redefinition of the model may

be required; a feedback loop allows repeated development and enhancement of

the model based on feedback reviews. In the final maintenance phase (step 8),

the numerical probabilities are finely tuned over time.

It is clear from Figure 4.1 that BN construction is an iterative process; such an

approach is beneficial as it allows the model to evolve and improve. However, in

our experience of constructing BNs with a domain expert, it is easy to become

embroiled in increasing detail and complexity with each iteration. Hence, it is

worth spending time in step 1 to clearly define the purpose, requirements and

scope of the model, and actively prevent scope creep at each iteration. Internal

validation/verification within the development team can assist this process, as the

process ensures that the model conforms to the initial specification as per step

1, and that model accuracy is preserved. Where available, external validation

and verification in the form of independent peer-review focus groups is recom-

mended, as it encourages feedback and evaluation of the model independent of

the development team. Although independent expert feedback is important, and

often valued by the development team, it is ultimately the development team

that makes the final decision on what changes are included or rejected.

A comprehensive discussion on alternative development process strategies, in-

cluding the the spiral development model [19] and the waterfall development

model [233], which are based on principles found in Software Engineering, can be

found in [149, pp225–230] and [204, 222, 173, 268, 157, 169]
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4.3 Defining network variables/nodes and states

The variables of a domain have a direct, one to one mapping onto nodes in a

BN model. Therefore, each node can represent either a continuous variable or a

discrete variable. A continuous variable is one that take any value (sometimes

infinite) between any two points on a scale. For example, height, weight, and

age are examples of variables that are, in general, continuous in nature. On

the other hand, a discrete variable may take on only a finite number of distinct

values. For example, discrete nodes in a BN might represent the outcome of a

medical test result. The values taken on by a discrete variable are referred to as

states. For example, a variable representing a medical test may have states {pass,

fail}. Discrete variables are easy to model, however continuous variables present a

greater challenge, particularly during probability elicitation and in inference [96]

and [216, pp 345]. It is common, therefore, to transform (or discretise) those

variables whose natural form is continuous into a discrete range by creating states

to represent sub-ranges of the original continuous range. We use only discrete

nodes in this research.

Nodes in the BN model serve different functions, and they can capture different

types of information. There are three common types of nodes: first, nodes which

represent an outcome, or hypothesis, which provides the user with values of in-

terest — these nodes are the so called query or target node; second, information

nodes that provide “input” to the model — the so called evidence node — whose

state can be observed; and third, intermediate nodes, which summarise the effect

of a subset of parent nodes on a child node.
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Figure 4.2: The simple BN model to predict whether the grass is wet, including
a description of nodes and their states.

Nodes can represent a range of different data types; some common data types

include: binary nodes, which take on binary values, for example absent, present;

multinomial nodes that take on two or more values, for example, {small, medium,

large}; and integral nodes, for example, a node no claims might represent the a

person’s no claims discount, which can take on possible values 0 to 60.

An example of different node roles and different types of information that a node

can capture is shown in Figure 4.2. This simple weather model attempts to pre-

dict whether the grass is wet or dry based on observations of the weather. The

root node Weather is a multinomial evidence node, as it represent the current

observable weather, and it has values {Sunny, Cloudy and Raining}. The inter-

mediate nodes Sprinkler and Rain, as well as the query node Wet grass are all

boolean nodes, and they take on values {On, Off }, {True,False} and {Wet,Dry}

respectively.

Practical guidance on defining the nodes and their states is provided in Section

4.3.1.
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Figure 4.3: The process of variable/node and state identification.

4.3.1 Guidance on defining BN nodes and their states

Defining the nodes of the BN model and the values that each state can take on

is generally one of the easier tasks in the construction process [173]. Despite

the apparent simplicity, however, the task should be approached with caution,

as modelling errors can be introduced inadvertently. This section provides some

practical guidance on variable/node and value identification as introduced in

Section 4.3. A simple process flow to guide variable/node and value identification

is shown in Figure 4.3; detailed descriptions of each step in the process model are

given below.

Step 1: Identification of variables and their purpose

• Bayesian network construction is incremental

It is rarely possible to elicit every single variable and corresponding values

in one step. Therefore, it is recommended that the number of variables

of the problem domain is limited in the early stages. Considering only a

limited number of variables in the initial stages has the added benefit of

focusing the elicitation team to determine only the most important “key”

variables. In doing so, the most important variables, which are central to

meeting the requirements of the model are identified at the outset.
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• A causal interpretation, where appropriate, can be advantageous in identi-

fying key variables. For example, identifying “query” variables first, then

work backwards to identify the possible causal “input” or “evidence” vari-

ables [149, pp231].

• It should be noted that the type of node is not fixed; as the model evolves,

the interpretation or meaning of a node may change depending on how it

is to be used.

Step 2: Identify variable states and their values

• The states, or values that a node can take on should adequately represent

the level of detail required by the model. As mentioned in Section 4.3, a

number of different node data types are available. It is important to balance

granularity with efficiency.

• Values of discrete variables must be exhaustive and mutually exclusive [28],

which means that each variable must account for all possible cases (states)

and each case must fit into one and only one state [131]. For example,

consider a possible initial design decision to encode a query node labelled

Pathology that represents four dementia causing pathologies, with states:

AD, VaD, DLB and FTD (see Section 3.2). This initial modelling choice

does not satisfy the exhaustive property, as it does not allow for the possi-

bility of another pathological cause of the dementia syndrome, for example,

the rare CJD pathology. This can be solved by adding a further state

{other}. The addition of this fifth state (“other”) does not alone fully solve

the problem, though, as the mutually exclusive property is not upheld; tak-

ing these as exclusive would imply that the patient can only suffer from
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one of these diseases. However, evidence from clinical practice shows that

co-existing pathologies are common in clinical practice, such as Alzheimer’s

disease with vascular dementia. From a modelling perspective, it is possible

to create a single diagnostic variable with all possible pathologies (singly

and in combination); however, it would lead to a complex model, which

requires an unmanageable number of probabilities. A potential solution to

this problem is to split the pathology node into four distinct boolean vari-

ables for each pathology of interest, for example: AD {present, absent},

VaD {present, absent}, DLB {present, absent}, and FTD {present, ab-

sent}. If the model is to account for a potential other unknown pathology,

a node Other {present, absent} may be added to the model.

Step 3: Discretisation

• It is theoretically possible, although practically challenging, to incorporate

continuous nodes in a discrete BN model. Recall from Section 4.3 that the

simplest approach is to discretise the continuous variable. Discretisation

can be achieved manually, however, pre-defined user discretisation intervals

may result in inaccurate predictions, especially in complex models [84].

Alternatively, software tools, such as Weka [3] and Netica [2], provide

automatic discretisation functions. In any case, care must be taken to

ensure that information loss is minimised during the discretisation process.

It is important to appreciate the trade-off between model complexity and model

accuracy. Clearly, models with many variables and many states leads to highly

accurate and detailed models that describe the domain in granular detail. Such
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complexity, however, can lead to significant challenges during parameter assess-

ment (further details are provided in Section 4.5). Therefore, the modeler and the

domain expert should be aware of the complexity required to solve the problem

at hand, and strike an appropriate balance between model complexity and model

accuracy, ensuring that unnecessary complexity is omitted from the model.

4.4 Defining network structure

Once the variables of a problem domain are decided, the next stage is to define

the relationships between variables. The relationships, however, must satisfy the

conditions and definition of a BN, given earlier in Section 2.1, namely directed

acyclic graph conditions. One approach to defining relationships is based on

causal relationship analysis. The expert must identify variables that, when the

state is changed, causes a related variable to take a particular state or prevents it

from taking one of its states. The modeler can assist the expert by asking direct

questions relating to causes and effect; for example: questions that begin with

“What are the causes of ...?”, “What is the effect of X on Y?”, “Is there anything

that can prevent...?” and “Are X and Y possible explanations for Z?”.

An alternative approach to modelling the structure is related to the theory of

BNs, introduced in Section 2.3.2.1, namely (in)dependency analysis. This is sim-

ilar to the causal relationship analysis approach in that the expert is expected

to specify whether a variable has an impact on the belief about another related

variable. This approach seeks to explore whether variables are directly depen-

dent or whether they are dependent only through other variables (conditionally

dependent). The d-separation criterion, which is described in Section 2.3.2.1, can
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be used to enable this analysis. In addition, expert questioning can assist; for

questions that begin with “Does knowing...” are useful

When establishing relationships between variables, the modeler and expert must

be cognisant to BNs susceptibility to the curse of dimensionality, as mentioned

in Section 4.3.1. In the context of BNs, the problem of combinatorial explosion

manifests itself in the rapid growth in the number of conditional probabilities

required. Assuming all nodes have only two states (binary node), as the number

of parents for node Xi increase, the number of conditional probabilities increases

exponentially (2n+1). Table 4.1 illustrates the impact on a binary node’s con-

ditional probability table as more binary parent nodes are added. Clearly, the

severity of the problem is particularly acute when the network consists of multi-

nomial nodes. In some cases multinomial nodes cannot be avoided, as the model

may require a large number of states in order to adequately represent the level

of granularity required to solve the problem at hand (see step 2, Section 4.3.1).

Number of parents Number of parameters

1 4
2 8
3 16
4 32
5 64
10 2048
15 65536
20 2097152
30 2147483648
40 2.19902 × 1012

50 2.2518 × 1015

Table 4.1: Number of conditional probabilities required for a binary node with
varying numbers of binary parents

Unnecessarily large and unwieldy conditional probability tables (CPTs) present

significant challenges for the domain expert (see Section 4.5.5.1). Therefore, it

is desirable to keep the number of parent nodes to a minimum, which can be

achieved by applying a maximum upper bound on the number of parents that
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a node can have. In addition, the CPTs can be reduced by selecting only the

most important ‘high-impact’ parent nodes, at least initially [149, pp230], then

expand as necessary in future revisions, is advisable. Sensitivity analysis can

assist in determining high impact nodes (see Section 4.5.5.1).

Software support, such as MATILDA [20], is available to assist modelers in

defining network structure as well as structure performance analysis. So far, this

chapter has focused on the use of expert knowledge to develop the structure.

Note, however, that the alternative approach to BN construction involves auto-

matically inducing the structure objectively from data [51, 198, 225]. This is the

second approach to BN construction, and it is given a full treatment in Part III.

4.5 Quantifying network probabilities

Finally, once the model structure is complete, the probability distributions, which

describe the uncertainty of the domain, are elicited. Each probability distribution

encodes the probability that a node will be in one of its states based on obser-

vations collected at other nodes. Root nodes — that is, nodes with no edges

feeding in — have a marginal probability distribution. Nodes with parents —

nodes with edges feeding in, the so called child nodes — have probability tables

that are conditioned on all possible combinations of the states of the parent set.

In the basic wet grass model is shown in Figure 4.4 (a), the Weather node is the

only root node. The Sprinkler, Rain and Wet grass nodes are all child nodes.

The Sprinkler node and Rain node are parents of the Wet grass node. Each

and every child node has a probability table conditioned on all combinations of

parent nodes. The underlying probability distributions for each node in the wet
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grass model are shown graphically in Figure 4.4 (b). For example, the probabil-

ity distribution of the intermediate/query node, Sprinkler, is dependent on the

observed node, Weather.

Quantification of the probabilities to specify the uncertainty of the domain is

often regarded as a major obstacle in BN construction [131, pp47], and often

raises the question, particularly by BN novices, “Where do the numbers come

from?” [75].

(a) Basic weather BN model. (b) Probabilities for weather BN model.

Figure 4.4: The wet grass BN model (a) and its probability distributions and
from data (b).

On one hand, probability may be interpreted as a statistic of the relative fre-

quency of trials in which a favourable event occurs as the number of trials ap-

proaches infinity, the so-called frequentist interpretation, or objective probability.

For example, it is possible to determine the probability of a fair coin landing on

heads by tossing it a large number of times. The key point here is that frequen-

tist approach to probability elicitation requires repeated trials. On the other

hand, probability may be interpreted as representing an individual’s “degree of

belief” in the occurrence of a particular uncertain event, a so called subjective

probability. For example, a domain expert may be asked “what is the chance
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that it will rain tomorrow?”, and reply “I believe that there is a 20% chance

that it will rain tomorrow”. Where the experiment that generated the data can

be repeated several times, or where data is available, then frequency counts can

be calculated (see Section 4.5.1). However, furnishing all BN parameters using

frequentist methods is untenable in many domains, as the cost associated with

completing every experiment many times usually outweighs the benefit of the

model, notwithstanding the fact that that it may not be possible to repeat a

specific event a sufficient number of times. Therefore, subjective probabilities,

discussed in Section 4.5.2, provide a useful alternative in BN parameterisation —

this is a major benefit of the BN formalism.

The purpose of this section is to answer the question “where do the numbers

come from?”. In doing so, three common sources of probabilistic information,

which a domain expert can use to furnish the numerical probabilities of the BN

model, are introduced. In situations where a data set is available, probabilities

can be estimated from frequency counts, see Section 4.5.1. However, in situations

where data is not available, or the probabilities are not obtainable algorithmically,

probabilistic parameters can be elicited subjectively from domain experts (see

Section 4.5.2 or extracted from domain literature (see Section 4.5.3). Combining

information sources is described in Section 4.5.4. A generic process for probability

elicitation and practical guidance on quantifying BN probabilities is provided in

Section 4.5.5.

4.5.1 Data-driven parameter elicitation

Thus far, the discussion has been based on the pure hand-crafted approach, where

all information is provided by the domain expert. However, in domains where
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data is voluminous, it is possible to calculate the parameters of the model directly

from the data. Assuming data is available, parameter learning algorithms can be

applied to determine the probabilistic parameters of the model. In the simplest

case, automatic parameter assessment is characterised by a simple counting exer-

cise where subsets of instances of the data that satisfy the conditions specified by

the relationships in the model are enumerated to provide frequency counts[187].

In situations where data is not abundant, and necessary information can not be

provided by an expert, a data collection study could be instituted in order to

collect samples of data pertinent to the variables and states of the defined model.

4.5.1.1 Guidance on data-driven parameter elicitation

The availability of domain data can prove useful in calculating probabilistic pa-

rameters automatically; however, consideration must be given to the following:

1. If an existing data set is to be used, it must contain variables and values

that appear in the model. Alternatively, a mapping must exist to transform

the variables and values in the data set to those that feature in the model

without excessive loss of information.

2. The accuracy of the probabilistic parameters obtained from the data set

is dependent on the accuracy of the data collection strategy. In addition,

confounding factors that relate to health-care policy may have an impact

on the quality of data collected. To that end, biases in the data set will lead

to incorrect parameters, which do not accurately reflect the true probability

distribution, and may impact on the performance of the model.
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3. The data set must be comprehensive to achieve reliable probability assess-

ments, as insufficient samples may result in nonexistent or small probability

distributions. In addition, there is a side issue closely related to reliability,

which is concerned with incomplete data, and is commonly associated with

real-life retrospective data sets. Druzdzel and van der Gaag [75] note that

missing values, in many cases, are due to error or omission. Furthermore,

the authors provide evidence that suggests that data collectors selectively

choose which variables they collect data from. In new data collection stud-

ies, data collection participants should collect data from all variables in

accordance with the protocol.

Numerous algorithms exist which automatically compute the required probabil-

ities for a given BN model and a given data set. These algorithms can be cate-

gorised into algorithms that require the data set to be complete, such as [26, 253],

and algorithms that have the ability to estimate probabilistic parameters when

the data set is incomplete, such as [227, 56, 8, 160].

If suitable probability distributions cannot be computed using an objective mech-

anism, for example, if the volume of data is insufficient, or if no mapping exists to

transform the variables and values in the data set to those in the model, then sub-

jective probabilities, discussed next in Section 4.5.2, may provide an attractive

alternative.

4.5.2 Expert-driven parameter elicitation

In expert-driven parameter elicitation, the required probability distributions are

derived from the domain expert in the form of subjective probabilities. Such
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elicitation is valuable, as practical field knowledge can be obtained, which is

especially useful for eliciting rare, complex or poorly understood phenomena.

However, probability elicitation from experts is a difficult task to accomplish.

In particular, availability and cost, as well as statistical and psychological issues

associated with human expert probability elicitation, such as inconsistent [186]

and incoherent probabilities probabilities and human bias, make the approach

impractical [75] and [207, pp 3]. The issue of human bias is discussed further

in Section 4.5.2.1, and protocols that incorporate psychological theory to prevent

human bias, are described in Section 4.5.2.2.

4.5.2.1 Issues in expert-driven elicitation

Expert probability elicitation is complex and non-trivial. Experts do not maintain

a list of the required probability information in their memory; rather, the expert

forms a judgement using knowledge currently available in memory [207, pp 4].

Therefore, in forming their judgement, the expert tends to use information that

is most recent, or information that has strongest associations with the required

probability . This ad-hoc, or “rule of thumb” approach in forming probabilities is

referred to as a heuristic, however, such an approach leads to bias in the expert’s

judgement [226].

Much of the literature on probability judgement and bias stems from the work of

Tversky and Kahneman [265]; the two most common types of bias are cognitive

bias and motivational bias. Cognitive bias manifests itself in the way in which

humans process information, and it occurs when experts’ estimates fail to follow

normative statistical or logical rules, thus drastically skewing reliability. On the

other hand, motivational biases reflect an individual’s personal motivation, which
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is often driven by human needs [152]. For example, the desire for a positive self-

image or social pressure. Bayesian network modelers and domain experts must

be aware of, and deal with, both types of bias.

Many different types of heuristic are used during complex processes such as prob-

ability elicitation — see [136] for a comprehensive coverage of heuristics and

associated biases. We draw the reader’s attention to the common heuristics and

associated biases.

1. Overconfidence. In this context, the term ’overconfident’ relates to the

human tendency to provide exaggerated probabilities for extreme events,

that is probabilities close to 0 or 1. However, we are less likely to be

overconfident about probability assessments that are mid-range [272, 275].

2. Representativeness/Base-rate neglect. The representativeness heuristic de-

scribes the process where the expert uses the similarity of two events to

estimate the degree to which one event is representative of the other. Tver-

sky and Kahneman [136, pp84–98] provide a classic example: A group of

subjects are presented with the following description of a person whom they

know to come from a population of 70 lawyers and 30 engineers: “Dick is

a 30 year old man. He is married with no children. A man of high ability

and high motivation, he promises to be quite successful in his field. He is

well liked by his colleagues.” The description provides no information with

respect to Dick’s profession. However, when subjects were asked to indicate

the probability of Dick being an engineer, the subjects gave a median prob-

ability estimate of 0.5. Instead, the answer should have been 0.3. Clearly,

the subjects ignored the base-rate and judged the description as equally

representative of an engineer or a lawyer, leading to base-rate neglect bias.
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3. Anchoring and adjustment. In several situations, people assesses probabil-

ities by choosing an initial value (anchor), and then adjusting up or down

from the anchor value [24]. For example, consider the following questions:

“Is the percentage of European countries in the United Nations greater or

less than 70%? What is the exact percent?”. Answer: less, 60%. “Is the

percentage of European countries in the United Nations greater or less than

20%? What is the exact percent?”. Answer: more, 35%. The anchoring

and adjustment heuristic can result in bias, as people often misjudge the

increase or decrease from the anchor value, resulting in anchoring bias.

4. Availability. Assessing probabilities based on the ease with which occur-

rences can be brought to mind. The rational is that frequent events are

more available in memory, and therefore an event that is easily brought to

mind will yield a high probability. However, attributing higher than jus-

tifiable probabilities can lead to misleading indicators with regards to the

frequency with which certain events occur [265].

Elicitation protocols, described in more detail in Section 4.5.2.2, can be of assis-

tance in managing human bias.

4.5.2.2 Elicitation protocols

In general, cognitive biases such as those described in 4.5.2.1 can, to some extent,

be suppressed by making the expert aware of their existence [188, pp158]. To

that end, elicitation protocols that incorporate cognitive psychology theory have

been developed. Although there is no one single protocol, as different elicitation

approaches are required in different contexts, a few have gained wide spread

acceptance.
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Figure 4.5: Five phase elicitation protocol - adapted from [188]

Three common protocols are the Morgan and Henrion protocol [188], the Stan-

ford / Stanford Research Institute (SRI) [179] protocol and the Wallsten / En-

vironmental Protection Agency (EPA) [275] protocol. The Morgan and Henrion

and Stanford/SRI are composed of five phases, as shown in Figure 4.5. The

Wallsten/EPA has an extra phase at the beginning, which requires the expert to

read a document prior to the elicitation task, which outlines the objectives of the

elicitation process and highlights the cognitive biases that can occur.

The five stages of the Morgan and Henrion process are as follows:

1. Selecting and motivating the expert: Establishing Rapport. It can be dif-

ficult to find a domain expert as they are a scarce commodity, and their

time is often charged at premium rates, as alluded to in Section 4.5.2 above.

However, once an expert is found, they must be introduced to the task. The

purpose of this step is for the elicitor to establish rapport with the expert,

and to provide the expert with the context in which their judgments will

be used. A key part of this step requires the elicitor and expert to discuss
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methodologies commonly used in expert judgement and probability assess-

ment, and inform the expert of the potential problems and limitations of

expert elicitation. In addition, the modeler may include an explanation of

the types of judgement heuristics, and explain that the role of an elicita-

tion protocol is to provide a structured guide with a view to obtaining good

quality and accurate information.

2. Defining and structuring the uncertain quantities: In this phase, the elicitor

seeks to arrive at an unambiguous definition of the quantity to be assessed

by identifying the possible range of outcomes and selecting an appropriate

measurement scale. In promoting reliable judgements, quantities and scales

should be stated in a form with which the expert is most comfortable. For

example, the choice of units should be one with which the expert is most

comfortable.

3. Training/conditioning the expert: Get the expert to think about all evi-

dence. Part of the purpose of the conditioning phase is to allow the expert

to become familiar with the concept of probability assessment. In an at-

tempt to reduce bias during the elicitation process, the expert is briefed on

common heuristics and biases (described above). As part of an exercise in

becoming accustomed to providing probabilities, the expert may be asked

to provide probability assessments for a given domain problem for which

known objective frequencies are available. Once the expert has provided

all the probabilities, feedback on the true frequencies are presented. This

serves as a preparatory training exercise for the expert, and gives them an

opportunity to calibrate their responses in the format required.
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4. Encode the probability distributions: Quantifying the Experts Judgment.

Quantification of the subjective probability distributions, which best re-

flects the expert’s beliefs about the possible range of outcomes and their

likelihood for each value of each variable, is carried out in the quantification

phase.

5. Verifying: Checking the consistency of the elicited distributions. Once the

probabilities are provided, it is important to verify that they are coherent,

that is, they all conform to the rules of probability theory (sum to 1); such

checks begin during the encoding phase. Also, where possible, the proba-

bilities should calibrate to known observed frequencies, and they should be

reliable. However, it is not always possible to verify that the probabilities

conform to reality; however, it is possible to test whether the probabilities

are reliable. Reliability testing is concerned with determining whether the

expert would provide the same estimates when asked for the same probabil-

ities again. However, given the often large number of probabilities required

for a BN, it may be impossible to ask the expert to review every probability

value a second time. A more tangible reliability test may involve showing

the expert probability distributions for a given variable with different con-

ditioning contexts of the parent nodes. The expert would be asked to check

whether the relationships for these different contexts are acceptable, and

probability adjustments can be made for each discrepancy found.

4.5.2.3 Guidance on expert-driven parameter elicitation

Assessment of the numerical probabilities from a human expert is considered one

of the more challenging approaches in quantifying BN probabilities, largely due
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to the psychological issues associated with human judgement and elicitation. To

that end, it is recommended that an elicitation protocol, as described in Section

4.5.2.2, is employed in order to prepare the expert and thus reduce bias. Other,

more general guidance on BN quantification is provided in 4.5.5.

The interested reader is directed to Chapter 7 of Morgan and Henrion [188,

141–171] for a detailed discussion on protocols and processes to support expert

probability elicitation. Furthermore, an in-depth evaluation and comparison of

expert probability assessment techniques applied to real-life problems can be

found in Monti and Carenini[186]. Walls and Quigley [274] provide an excellent,

sound framework for the elicitation of subjective judgements.

4.5.3 Parameter elicitation using domain literature

A further source of information for network quantification, in addition to data

and domain experts, is domain literature. Many domains, especially medicine,

have an established body of published literature in the form of peer reviewed

journals and textbooks, which includes statistical information on specific domain

topics. Amongst other things, statistical information, and information on the

causal relationships between the domain variables, may be found in domain lit-

erature. The central problem with this approach, however, is concerned with

incomplete information. For example, in medical domains, literature often re-

ports conditional probabilities of the presence of a symptom given a disorder,

that is P (Symptom|Disease = T ); however, the probabilities of the symptoms

occurring when the disease is not present, P (Symptom|Disease = F ), are not

always reported, and are often simply not known because of the difficulties of

measuring, thus additional information from other sources may be required.
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4.5.4 Combining sources of probabilistic information

When probability information from a single source is insufficient, the modeler

and the expert may turn to alternative sources in order to fill the gaps. However,

caution must be exercised as the characteristics of the population from which

the probability information is collected can vary from source to source. Druzdzel

and Dı́ez [74] report the ramifications of combining different sources of proba-

bility information. Strict adherence to a single source of probability information,

however, is not always possible in practice. For example, medicine is driven by

a culture of evidence-based practice, which generates multiple sources of medi-

cal information. However, literature does not always provide all the information

required — see Section 4.5.3. Therefore, the assumption of a single source of

information is restrictive, as valuable information is often available in sources.

Fortunately, processes for parameterising BNs, which combines information from

different sources have evolved. Pollino et al. [222] and Woodberry et al. [280]

provide a procedure for combining probabilistic information obtained from do-

main experts with probabilistic information found in data. Druzdzel and Dı́ez

[73, 74] provide criteria and guidelines for deciding when different sources of data

can be combined safely, as well as methods to facilitate mixtures of different

information sources.

4.5.5 Guidance on quantifying network probabilities

Guidance on specific sources of probability information have been addressed in

respective sections above. There are, however, two, wider, practical issues that

BN modelers should be aware of. These issues are concerned with the quantity

of probabilities required to furnish the model, and the impact that poor quality
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probabilities have on the model. These two issues are treated in Section 4.5.5.1

and Section 4.5.5.2 respectively.

In addition to elicitation protocol literature, there is an plethora of literature on

obtaining the actual numerical probabilities which quantify BNs. The interested

reader is referred to some of the most frequently cited literature, which is prac-

tical, comprehensive and accessible, such as [75, 159, 123, 186, 226, 24, 207].

O’Hagan et al. [206] provide a comprehensive text on uncertain judgments and

eliciting experts’ probabilities.

4.5.5.1 Quantity of probabilities

As mentioned in Section 4.4, the number of probabilities that a node requires is

exponential in the number of parent variables. For example, a binary child node

with n binary parents requires 2n+1 probabilities. Although, in cases where a

binary child node has entirely binary parents, the expert only needs to specify

2n+1

2
probabilities, that is one probability per case, as the remainder of the dis-

tribution for each case can be computed automatically (1 − P (X|parents(X))).

In the case of multinomial nodes, however, that is nodes with > 2 states, the

problem becomes severe, and in some cases, leads to an intractable number of

probabilities. This problem is generally regarded as a major obstacle of the BN

paradigm [131, 47]. Fortunately, there are techniques for modifying the structure

of the network, which prevent large and unwieldy conditional probability tables.

One such method is known as divorcing, and involves separating parents and

introducing intermediate variables [194]. For example, consider the well known

Asia/chest clinic BN model, shown in Figure 4.6. All nodes are binary. In Figure

4.6(a), the child node XRay (XR) has parents Tuberculosis (TB) and Lung can-
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cer (CA). Similarly, the child node Dyspnea (DY) shares the nodes TB and CA,

with an additional parent, Bronchitis (BR). Therefore, the required probability

distributions for XR and DY are P (XR|TB, CA) and P (DY |TB, CA, BR) re-

spectively. In this example, 8 probability values are required for P (XR|TB, CA),

and 16 probability values are required for P (DY |TB, CA,BR). In total, the

model requires 40 probabilities. This number can be reduced by introducing an

intermediate node, Tuberculosis or cancer (TBorCA), which divorces TB and CA

from the other parent BR of DY [149], shown graphically in 4.6(b). This reduces

the required number of probabilities: 4 probabilities for P (XR|TB, CA) and 8

probabilities for P (DY |TB, CA, BR), which is a total saving of 4 probabilities.

Clearly, 4 probabilities is no overwhelming saving. However, this example serves

to demonstrate the concept of divorcing, and it should be noted that larger, more

impressive savings are observed in BN models that contain multinomial nodes.

(a) Asia BN before divorcing. (b) Asia BN after divorcing.

Figure 4.6: The Asia BN model before (a) and after divorceing (b).

Another method, which is tailored to the elicitation of a large number of con-

ditional probabilities in the shortest possible time, is that of van der Gaag et

al. [268]. In this approach, sensitivity analyses is performed iteratively on the

model as it develops. In general, sensitivity analysis is a technique for studying

the effects of systematically varying a model’s parameters on its predictions [55].

In the context of BNs, sensitivity analysis provides a mechanism to survey the
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most influential nodes in the BN model by varying the assessment for one of the

network’s probabilities while keeping all other assessments fixed. The method

proposed by van der Gaag et al [268] begins with eliciting approximate initial

assessments from domain experts using a probability scale. Thereafter, sensitiv-

ity analysis is conducted to survey the most influential as well as redundant nodes

in the model, followed by refinement of influential probabilities using conventual

elicitation methods. This process is carried out incrementally until there is no

improvement in the model’s output. Additionally, sensitivity analysis can be used

to refine the network structure, as it allows a survey of influential and redundant

nodes. After consultation with an expert, redundant nodes can be removed thus

reducing the number of entries in the conditional probability table.

4.5.5.2 Quality of probabilities

Discussion thus far has focused on methods to obtain the actual numerical proba-

bilities from human experts — we have not qualified how accurate the judgements

need to be. In this section, we comment on the extent to which the quality (or

accuracy) of the probabilities obtained from experts influence the model, and the

impact that inaccuracies have on model output.

As described in Section 4.5.5.1, sensitivity analysis can be applied to the model

in order to determine the extent to which the inaccuracies in the probabilities

influence the output of the model, which allows the modeler and the expert to

carry out fine-tuning. However, it has been claimed by Pradhan et al. [224]

that the behaviour of the network “can be highly insensitive to inaccuracies” in

the quality of the majority of probabilities. This implies, therefore, that such

fine-tuning is not required, thus networks can be assigned tentative, rough prob-
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ability assessments and still display reasonable behaviour. Henrion et al. [116]

investigated this claim empirically. In their research, random noise was injected

into the numerical probabilities of a BN, whose purpose is to diagnose liver and

bile diseases. The results of Henrion et al [116] concur with Pradhan et al. [224].

They observed that the BN model was insensitive to imprecision in the numerical

probabilities. It is noteworthy, however, that this is an under-researched area,

and it appears that the behaviour observed by Henrion et al. is problem depen-

dent, as Coupé et al. [55] report large effects on model output in their congenital

heart disease BN model when the probability distributions are varied. Since the

available evidence is limited, we recommend that the techniques introduced and

the guidance provided throughout Section 4.5 is used to initialise, develop and

fine-tune the network probabilities. In addition, the model should be validated

at regular intervals, and, if an expert is available, feedback on the model output

should be sought.

4.6 Summary

The expert-driven approach to BN construction is a valuable and a useful way

to incorporate domain specific knowledge into a model. It may prove difficult,

however, to get a domain expert in the first place. Moreover, issues relating to

human elicitation and judgement may lead to inaccuracies in the model, such as

bias, and discretisation may lead to information loss around the distribution to

be captured. When an expert is available, however, the limitations in defining the

network structure and quantifying the network can be addressed through careful

modelling and appropriate use of methods, procedures and protocols.
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This chapter reviewed techniques for constructing BNs using the expert-driven

approach, and it has highlighted the challenges and issues in using the hand-

crafted approach. The chapter reviewed literature on methods for establishing

nodes and their states, expressing the structure and relationships between nodes

and methods to facilitate probabilistic elicitation. The best nuggets from the lit-

erature for each of these components has been cherry-picked to form a framework

to assist a non-BN expert with the construction of a BN model.

In the next chapter we demonstrate how the framework can be applied to a

real-life problem, specifically construction of BN models for dementia diagnosis.
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Chapter 5

Constructing BN for dementia

5.1 Introduction

This part of the thesis (Part II) is concerned with the expert-driven approach to

Bayesian network (BN) construction with an application in decision support for

dementia diagnosis. The expert-driven approach is described in detail in Chapter

4; dementia, and its diagnosis in clinical practice, is treated in detail in Chapter

3. In this chapter, we describe the implementation of BNs for use in dementia

diagnosis decision support, and in doing so demonstrate how the expert-driven

BN approach is used in a real-life problem.

The remainder of this section is concerned with providing a brief background to

the case study, as well as defining the objectives and scope. The process, which

facilitates building the models in this case study, is set out in Section 5.2; the

actual construction tasks are described in Section 5.3. Section 5.4 and Section

5.5 deal with model structure construction and Section 5.6 describes network

quantification.
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5.1.1 Problem background and description

In the first instance of health concern, the affected individual or a carer usually

presents to a primary care clinician — the General Practitioner (GP) — thus,

the GP and the wider primary care team (PCT) are the initial point of contact.

Therefore, the GPs and the wider PCT play an important role in the identification

and diagnosis of dementia. However, there are a number of well documented

challenges associated with dementia diagnosis at the primary care level — see

Section 3.4.1.1 for an overview. To that end, we propose a decision support tool

for dementia diagnosis to assist with diagnosis at the primary care level.

In this research, we propose the BN paradigm as a technique to provide decision

support in dementia diagnosis at the primary care level. As mentioned in Section

3.2, dementia is a syndrome, which is characterised by an underlying disease

process. Therefore, we have developed two BNs models, namely DemNet and

PathNet, for dementia syndrome diagnosis and dementia pathology diagnosis,

respectively.

5.1.2 Objectives

The primary objective of this case study is to develop BN models for a real-

world application — dementia diagnosis decision support. Specifically, models

are required to support: 1) dementia syndrome diagnosis; 2) dementia pathology

diagnosis, specifically Alzheimer’s disease, vascular dementia, dementia with lewy

bodies and frontotemporal dementia; and 3) classification of diseases both singly

and in combination. As mentioned in Section 4.1, the primary issues that a lay

person faces when implementing BNs relate to elements of the BN model and how
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they fit together (i.e. construction) — that is, how to define the variables and the

relationships among them, and in the words of Druzdzel and van der Gaag “Where

Do the Numbers Come From?” [75] in order to furnish the probability tables. In

this chapter, we hand-craft BN models for dementia diagnosis, demonstrating the

construction process as well as the construction methods described in Chapter 4.

5.2 The model building process

The process to develop and quantify the BN models was iterative, and was un-

dertaken at Kildean Hospital, Stirling, which was convenient for the expert. The

development process stages are outlined in this section.

5.2.1 Structure building process

The part of the process responsible for building the model structure was developed

through a series of workshops. The workshops consisted of a member of the

research project team and our clinical lead, Dr. Richard Coles, Community

Mental Health Team Elderly (CMHTE), Kildean Hospital, Stirling. Dr. Coles

is a consultant in Old Age Psychiatry with many years experience in dementia

diagnosis, and is considered an expert in his field for the elicitation process. The

workshops were carried out in the style of an interview, where the expert was

asked a number of questions relating to how dementia is diagnosed in clinical

practice, and the diagnostic variables considered pertinent for use in a primary

care setting.

At the outset, it was decided that the frequency of the workshops would be

weekly to enable us to plan in detail the steps to achieve construction of the
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models. The reason that the workshops were not more frequent was due to time

constraints associated with having only a single expert providing information,

combined with the expert’s busy clinical caseload. We set out a plan and agreed

that model structure build be carried out across three phases of workshops: 1)

variable identification; 2) initial structure; 3) refined structure. In addition, we

agreed that the first phase be carried out over four, one hour workshops, and

the remaining two phases over six one hour workshops. It was felt that one hour

would is long enough to capture chunks of information and prevent expert fatigue.

In the initial planning sessions, we agreed that the three structure build phases be

run sequentially, allowing an incremental development. An additional one hour

workshop for independent peer review was scheduled in the middle of each phase.

A team consisting of four CMHTE nurses specialising in dementia, and an Old

Age Psychiatrist independent of the model build, carried out the reviews, and

feedback was fed forward into subsequent workshops.

It was explained to the expert in the initial model build workshop that the aim was

to develop a graphical model representing the key factors relevant for dementia

diagnosis in a primary care environment. The expert was shown the well known

Asia Chest Clinic BN model to demonstrate the components of a BN and what

was required from him. In addition, the expert was introduced to the Netica [2]

BN modelling software, which we used during the sessions to build the models.

Control of Netica was the responsibility of one of the research team members,

and not the clinician. However, the clinician was provided with scrap paper for

rough working.

Throughout the model build, particularly phase one, the expert was asked to

justify the selected variables and the links between them. The reason for this
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justification was to ensure that the models remained realistic and appropriate for

use in a primary care environment.

The process concerning variable selection and the way in which the variables are

connected for both models is described in detail in Sections 5.4 and 5.5.

5.2.2 Parameter elicitation process

As described in Section 2.1 (page 15), the BN consists of both a qualitative

(structure) part and a quantitative (parameters) part. Quantification of BNs

requires eliciting information to furnish the conditional probability tables for all

combinations of parent nodes feeding into a child node, as well as the probability

tables for nodes with no parents. This information was also provided by our

clinical collaborator, Dr. Coles.

Similar to the structure specification process outlined above in Section 5.2.3,

workshops were planned to elicit the probabilities for the models. More than

twenty one hour workshops spread over a three month period were required to

quantify the BN models. This included two one hour validation sessions, where

the independent panel tested the model on a number of real life cases from clinical

practice.

A two phased approach was proposed for quantification. In the first phase, the

research project team demonstrated how to furnish the probability for the exam-

ple Asia Chest Clinic BN model; the second phase was concerned with the expert

providing the necessary probabilities. The probabilities specified by the expert

were entered into the Netica [2] software tool. The details of the quantification

task are given in Section 5.6.
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5.2.3 Wider peer review

An initial workshops was set up in June 2004 to socialise the idea of a decision

support tool for dementia diagnosis, and gain feedback from a wide clinical au-

dience. The workshop was set up by our clinical lead, and it consisted of a team

of multidisciplinary medical professionals specialising in dementia diagnosis and

dementia care. The panel consisted of a Neuropsychologist, six Community Psy-

chiatric Nurses (CPNs), an Occupational Therapist (OT), two consultants in Old

Age Psychiatry and a General Practitioner (GP). The purpose of this session was

to gauge the appetite and usefulness of such a decision support tool, and gain

feedback to shape the development of the models. Feedback was positive and

encouraging, and comments were taken on board during the model build phases.

A further workshop was set up to include potential end users, namely primary care

health professionals (GPs and GP practice nurses). The purpose of this workshop

was to drill deeper into the requirements of the model, and the sorts of variables

that would be suitable for a primary care setting. Feedback from the primary care

workshop concluded that a decision support tool for dementia diagnosis in the

primary care setting would be useful, and the diagnostic variables proposed were

realistic for the primary care environment. One common point raised by workshop

participants was that, due to time restrictions, GPs may be unable to use the tool

during consultation, but would perhaps use the system post-consultation as part

of the diagnostic checks prior to a follow-up visits. Additionally, it was suggested

that the tool may be more appropriate and more beneficial to other primary care

clinicians during their consultations, for example, GP practice nurses.

In addition to socialising the concept with medical professionals in — once the

initial models were available — the proposition was written up in the form of a
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paper, and presented at the Health-care Computing Conference in 2005 [213].

In addition, once the final models were more mature in the development cycle,

they were presented at an annual dementia conference in 2007 [212] for wider

peer review.

5.2.4 Issues with this approach

From the number of workshops required to construct these models, and the re-

sources required for peer review of the models, not to mention hand specification

of the probabilities, this approach to BN construction is extremely labour inten-

sive. It relies on a dedicated team to construct the model, with a heavy reliance

on a domain expert to provide the knowledge required to accurate model the

domain.

5.3 Constructing the models

The BN construction process is composed of three steps (see Section 4.2.1), and,

as depicted in Figure 4.1, the construction process is iterative. Firstly, the struc-

ture of the model is identified (see Section 5.4), which is achieved by selecting

the most appropriate domain variables, defining the relationships between the

variables are defined (see Section 5.5), and then the structure is validated. There-

after, the probability distributions for each of the relationships are quantified (see

Section 5.6).

With regard to construction of BN models for dementia diagnosis, the construc-

tion process begins by surveying dementia diagnosis in clinical practice, and then
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identifying the key diagnostic and causal variables. Thereafter, variables suit-

able for use in the primary care setting are selected, and then the corresponding

nodes are connected as per their prescribed dependency relationships. Finally, the

model is quantified. Expert knowledge regarding the pathophysiological mech-

anisms of dementia, including clinical experience and information drawn from

medical literature (diagnostic clinical criteria), is used to guide the entire con-

struction process.

As mentioned in Section 5.1.1, two models are proposed for dementia diagnosis:

DemNet is the BN model responsible for providing decision support in diagnosing

the dementia syndrome; PathNet is the BN model responsible for classifying the

underlying dementia causing pathology. The decision to separate the models was

motivated by the fact that the models fulfil different purposes, in addition to

simplifying the construction process.

5.4 Identification of variables/Nodes and states

The purpose of this step is to identify outcome variables and causal factors in

dementia syndrome diagnosis that are used in clinical practice. In particular,

the focus is on those variables suitable for use in the primary care setting. With

regards to the BN construction process model shown graphically in Figure 4.1,

variable identification corresponds to step 2.

Variable identification process is carried out with a domain expert, and clinical

guidelines are used to ensure that standard clinical criteria for dementia syndrome

diagnosis is included in the model. In addition to identifying potential variables
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for inclusion in the BN model, the variable identification task allows the modeler

to understand better the process and variables involved in dementia diagnosis.

Identification of the diagnostic variables in dementia syndrome and pathology

diagnosis is guided by identifying query variables then working backwards to

identify the evidence variables (input variables), as described in Section 4.3.1. In

doing so, the diagnostic variables are first subdividing into ‘query’ (or predictor)

groupings — the query groupings being the outcome variables that are useful

to the user. Thereafter, the evidence variables that lead to each of the query

variables are identified. In addition to identification of the domain variables, the

possible states that each variable can take on are listed alongside. Nodes that

are naturally continuous are discretised.

The variable identification process, carried out over a number of workshops with

the domain expert, is responsible for producing a list of candidate variables and

their possible states. Variables deemed suitable for use in a dementia decision

support tool, particularly in the primary care setting, are selected for use in the

diagnostic model.

5.4.1 DemNet variables/Nodes

In the case of DemNet, four query variables of interest are identified: current

functioning (CF), global severity (GS), and the class variable, dementia (DEM).

Additionally, a total of eight evidence variables are selected. The selected evi-

dence variables and query variables translate to nodes in the BN, and are con-

nected together in accordance with their respective dependencies to form the

structure of the model. A list of the nodes selected for use in the model is pro-

vided in Table 5.1. Variables that have too many discrete states, such as age,
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Node States Description
Current functioning nodes

Global PADL (PADL) Unimpaired, Mild, Severe Global Personal Activity of Daily Living
Global DADL (DADL) Unimpaired, Mild, Severe Global Domestic Activity of Daily Living
Current functioning (CF) Unimpaired, Mild, Severe Overall assessment assessment of daily func-

tioning
Global severity nodes

Cognitive impairment
(CI)

Level 1 (21 − 30)
Level 2 (11 − 20)
Level 3 (0 − 10)
Level 4: undetermined

Result of cognitive (MMSE) test

Clock drawing (CDT) Pass, Fail Result of clock drawing test
Subtle functioning (SF) Unimpaired, Possibly, Def-

initely
Assessment of subtle functioning

Global severity (GS) Unimpaired, Possibly, Def-
initely

Overall assessment of impairment

Clinical history nodes
Age (AG) Level 1 (< 65)

Level 2 (65 − 74)
Level 3 (75 − 84)
Level 4 (> 84)

Age in years

Duration (DR) Short, Medium, Long Duration of symptoms
Clear progression (CP) Yes, No Steady progression of decline

Class node
Dementia (DEM) True, False Class node.

Table 5.1: Definitions of DemNet’s nodes and their states

are regrouped into wider ranges. The actual ranges are denoted in the “states”

column by (·).

An individual’s ability to function in daily life, which is summarised by the CF

node, is characterised by their ability to carry out personal and domestic tasks.

Personal activities of daily living include tasks such as dressing, eating, ambulat-

ing and hygiene. Examples of daily domestic tasks are shopping, housekeeping,

finance management, food preparation and transportation. The overall global

degree of impairment in personal and domestic functioning is captured by the

PADL node and DADL node in the model. When impairment in CF is detected,

ascertaining the reason for impairment can assist in determining the underlying

cause. Acute losses, however, often signal cognitive impairment or some other

underlying disease process.

The GS node represents the global severity of impairment, and is obtained by

aggregating the degree of impairment in current functioning, cognition and subtle

functioning. Additionally, the clock drawing test is used as a screening tool for
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cognitive impairment, particularly in differentiating normal aging from dementia

related cognitive impairment. These ‘evidence’ nodes, which are used to pre-

dict global severity, are consistent with clinical guidelines for dementia diagnosis.

Cognitive impairment is represented by the CI node; it represents a cognitive

screening instrument for assessing cognitive function. In this research, the Mini-

Mental Status Examination (MMSE) [87] is used as the cognitive screening test

of choice, as it provides a superficial assessment of language, visuoperceptual

function and memory, and it is widely used in primary care clinical practice.

It should be noted that other cognitive impairment screening instruments exist

[22], such as the abbreviated mental test score (AMTS) [121], General Practi-

tioner Assessment of Cognition (GPCOG) and Mini-Cog. In general, the MMSE

is scored in the range from 0 points to a maximum of 30 points, although the

maximum attainable score is adjusted in some specific situations, for example, if

the patient is blind. A numerically high MMSE score indicates unimpaired cog-

nition, and a numerically low MMSE score indicates impaired cognition. In order

to keep the number of parameters low, the range of the MMSE score has been

condensed. The clock drawing test, which attempts to differentiate cognitively

normal older adults from those with at least mild dementia, is represented by the

CDT node. Note, however, that Nishiwaki et al. [199] and Powlishta et al. [223]

have demonstrated empirically that the clock drawing test on its own does not ap-

pear to be effective in detecting very mild dementia related cognitive impairment.

However, Brodaty [23] demonstrates that the clock drawing test, when combined

with the MMSE, is useful in screening for mild dementia. The interested reader

is directed to Woodford and George [281] for a comprehensive review of cogni-

tive assessment tools. Evidence of subtle changes in cognition, which impact on

global severity, are captured by the subtle functioning (SF) node. For example,
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progressive difficulty in balancing a cheque book, when previously this was a task

carried out quickly and accurately.

Patient history variables are represented by the age (AG), duration of symptoms

(DR) and clear progression in symptoms (CP) nodes, which are consistent with

clinical guidelines on dementia diagnosis and clinical experience.

Other query and evidence variables were considered, such as neuroimaging and

complex blood tests, however, these were not deemed appropriate for the primary

care setting.

5.4.2 PathNet variables/Nodes

As noted in Section 3.2, the term dementia is accurately reserved for condi-

tions considered irreversible. A number of different pathologies can lead to the

syndrome of dementia, either singly, or in combination. Four dementia caus-

ing pathologies considered in this research, which are most commonly associated

with later life, are Alzheimer’s disease (AD), vascular dementia (VaD), dementia

of lewy body type (DLB) and frontotemporal dementia (FTD). These outcomes

are captured in the diagnostic model; a ‘dementia other’ (Other) variable is added

to represent other pathologies that are not considered in the model.

A wide variety of risk factors are associated with each of the pathologies con-

sidered in this research. However, only the ‘high-impact’ risk factor variables

are selected, as large numbers of evidence nodes (risk factor variables) present

significant challenges when quantifying the relationships (see Section 5.5). Addi-

tionally, the network must contain only those variables deemed appropriate for

use in the primary care setting. Therefore, variables relating to neuroimaging
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Node States Description
Clinical evidence nodes (risk factors)

Age (AG) Level 1 (< 65)
Level 2 (65 − 74)
Level 3 (75 − 84)
Level 4 (> 84)

Age in years

Clock drawing test (CDT) Pass, Fail Result of clock drawing test
Hachinski (HI) Unimpaired, Mild, Se-

vere
Instrument to distinguish between AD and VaD

Memory impairment (MI) Impaired, Not im-
paired

Level of memory impairment

Psychosis (PS) Yes, Equivocal, No Loss of contact with reality, including delusions
and hallucinations

Tremors (TR) Present, Absent Presence of rhythmic involuntary movements
Disease process nodes

Alzheimer’s disease (AD) True, False Class disease
Vascular dementia (VaD) True, False Class disease
Dementia with lewy bodies (DLB) True, False Class disease
Frontotemporal dementia (FTD) True, False Class disease
Other(Other) True, False Class disease

Table 5.2: Definitions of PathNet’s nodes and their states

and complex neuropsychiatric batteries are not included, as they are not realistic

in the primary care setting. Such diagnostic variables are typically used at the

secondary care level during expert-led differential diagnosis.

The query variables (AD, VaD, DLB and FTD), and the selected evidence vari-

ables, listed in in Table 5.2, translate to nodes in the BN, and are connected

together in accordance with their respective dependencies to form the structure

of the model.

Six evidence nodes are selected for inclusion in the PathNet BN model, namely

Age (AG), Clock drawing (CDT), Hachinski (HI), Memory impairment (MI),

Psychosis (PS) and Tremors (TR). The AG and CDT nodes are identical to

those in DemNet 5.4.1. If DemNet and PathNet are being used together, it is

permissible to carry over the AG and CDT values from DemNet to PathNet.

However, if there is a time lapse between the use of DemNet and PathNet, then

the CDT may need to be carried out again, as deterioration due to the underlying

pathology may lead to changes in the outcome of the CDT score.

The Hachinski (HI) node represents the outcome of a neuropsychiatric test,

namely the Hachinski ischaemic scale (HIS) [102]. The HIS test is used in this
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research as it is a simple clinical tool used to differentiate between dementia caus-

ing pathologies on the basis of their differing neuropsychological profiles [214]

(see Section 3.4). In clinical practice, the Hachinski test is most commonly used

to identify a potential mixed dementia (AD and VaD), or differentiate between

VaD and AD. The test is composed of thirteen clinical finding, which attract

either one or two points if the finding is present. The sum of all points provides

the ischemic score. The minimum score is zero, and the maximum attainable

score is 18. Scores are interpreted as follows: > 7, VaD; 4 - 7, borderline mixed;

and < 4, primary degenerative dementia (AD). Since eighteen distinct states is

too many to model, the range has been reclassified into the three aforementioned

intervals.

Impaired connection to reality, auditory or visual hallucinations and delusions are

classic ‘psychotic’ symptoms associated with dementia. However, the underlying

cause of psychotic episodes should be investigated. For example, not all delusions

are psychotic, as they may be explained by impaired memory, or a deluded belief

of theft may be explained by impaired memory. Any evidence of psychosis is

recorded by the PS node in the network.

The structure of the PathNet BN model is described and shown graphically in

Section 5.5.2. below.

5.5 Building the network structure

The nodes selected for inclusion in the respective models, identified in Section

5.4.1 and Section 5.4.2, are connected using arrows to form the BN structure that

depicts the relationships between them. Two techniques are available for doing

100



this: firstly, the manual approach, which involves the use of a domain expert; and

secondly, the automatic approach, which requires data and a learning algorithm.

In this part (Part II), we focus on the former; a full treatment of the latter, the

automatic approach, is provided in Part (III).

The BN structure building process corresponds to step 3 in the construction pro-

cess model, shown graphically in Figure 4.1. In this approach, the BN structure

is constructed using expert knowledge as well as domain literature. A number

of workshops with the domain expert were held to facilitate this part of the con-

struction process. The Netica [2] BN modelling software tool was used during the

workshops, as it made manipulation of the models easy, and assisted in managing

progressive versions of the models.

In this case study, causal relationship analysis (see Section 4.4) was used as the

primary modelling concept. Information relating to the causal dependencies in

dementia diagnosis was provided by the expert, and was used to provide the

dependencies (edges) between the selected nodes. For each model, structure

building began by constructing a basic BN model consisting of only the query

nodes. Future workshops were responsible for iteratively adding/removing evi-

dence nodes and adding/removing relationship edges until a suitable BN model

was obtained (see Section 4.2.1). The expert is asked a series of direct ques-

tions in deciding the nodes and edges that should be included in the model (see

Section 4.4). During each iteration of the structure building task, that is to

say adding/removing nodes and edges, great care is taken to ensure a balance be-

tween complexity and cost. A complex BN, which encodes granular levels of detail

through many multinomial nodes, each with many parents, although may lead

to a highly accurate representation of the domain and highly accurate output,
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will require a large (exponential in the number of nodes) number of probabili-

ties. This presents significant challenges if the probabilities cannot be assigned

directly from a data set, as the probabilities would need to be elicited from a

domain expert, which may be impossible. Techniques, however, exist to suppress

this problem, such as including only high impact nodes, placing an upper bound

on the number of parents and divorcing parents, as mentioned in Section 4.4 and

Section 4.5.5.1).

This approach to BN construction, namely the expert-driven approach, is highly

subjective. It relies on domain experts providing knowledge about the domain

in order to construct the BN model. Accordingly, this technique produces a con-

sensus BN model of the domain, given the experts involved in the construction

process. Therefore, other experts may produce different BN models of the same

problem. To that end, a validation phase is built into the development process

to take into account to ensure that the model aligns to common and and pop-

ular expert views. In this case study, validation is concerned with determining

whether the structure of the model is accurate, and whether it represents to the

extent possible both accepted medical literature and necessary elements of clin-

ical practice. Therefore, two validation steps are built into the model. The first

layer of validation is carried out by the development team at frequent intervals.

This layer of validation allows the development team to ensure that the model

is fit for purpose and is clinically accurate. A similar, second layer of validation

is carried out by experts not directly involved in the construction task. Modifi-

cations to the models are made until suitable agreement is met. This process of

validation and modification can be seen in the process model in Figure 4.1, step
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4; the arrows feeding into and away from step 4 depict cycles of validation and

amendment.

The two BN models developed in this research, DemNet and PathNet, are de-

scribed and shown graphically in Section 5.5.1 and Section 5.5.2, respectively.

5.5.1 DemNet structure

DemNet is a BN model developed to provide decision support for dementia syn-

drome diagnosis. By incorporating relevant clinical features, DemNet infers the

posterior probability of dementia; the model is shown graphically in Figure 5.1.

Figure 5.1: DemNet: Dementia syndrome BN

The BN network contains a total of 11 nodes; two of the nodes, namely CF

and GS, are query nodes, that is nodes whose output the user is interested in

predicting, and one node is the hypothesis node, that is the class node, Dementia.

The remainder of the nodes are evidence nodes; they collect observable clinical

evidence/information relating to the dementia syndrome.
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Current functioning (CF) is a both a query and intermediate node; it cannot

be directly observed or measured, and its outcome contributes to assessment of

global severity of impairment (GS node in the model). The CF node is influenced

by an individual’s global ability to function in activities of daily life, in particular,

ability to function in personal and domestic activities of daily living [165].

The node GS represents the global severity of dementia; it functions in the same

way to the CF node in that it cannot be directly observed or measured, and its

output provides useful information to the end user. Global severity is charac-

terised by impairment in cognition (CI and CDT nodes), deterioration in subtle

functioning (SF node) and impairment in current functioning (CF). The pres-

ence of a CI node facilitates differentiation between normal aging and a cognitive

impairment due to a dementia [12].

The hypothesis node (or class node) is the Dementia node, which, in our model,

represents the likelihood of the dementia syndrome based on clinical history find-

ings and information relating to global severity of impairment [195, pp 3–4].

5.5.2 PathNet structure

PathNet is a BN model developed to provide decision support in classifying the

underlying dementia causing pathology. Currently, there is no laboratory test

for the common age-related dementia pathologies pre-death [213]. Therefore the

utility of this model is found in the fact that it provides non-specialist medical

decision makers with a tool to reason about the underlying cause of the dementia

syndrome. By incorporating relevant clinical features, PathNet infers the poste-

rior probability of all four pathologies, based on available evidence; the model is

shown graphically in Figure 5.2.
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Figure 5.2: PathNet: Dementia pathology BN

The PathNet BN network contains a total of 11 nodes. Each of the disease pro-

cesses considered in this research are represented by a single outcome/hypothesis,

binary node (AD, VaD, DLB, FTD and Other respectively). The remainder

of the nodes are clinical evidence nodes, which collect observable clinical evi-

dence/information which helps infer the most likely underlying disease process.

A description of the nodes featured in the PathNet BN model can be found in

Table 5.2.

5.6 Quantifying network probabilities

Parameterisation of a BN is concerned with quantifying the uncertainty of the

domaim, which is achieved by specifying probability distributions for each of the

dependency relations encoded in the BN structure. In Section 4.5 we describe

two approaches to facilitate probability assessment: subjective probability assess-

ment, which requires a human, usually a domain expert, to provide subjective

‘belief’ estimates for the required probability distributions; and objective prob-

ability assessment, where the probabilities are derived from repeated observable

experiments. The subjective approach is adopted in this research. The primary
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reason for this lies with the fact that no objective clinical data was available re-

lating to the probability distributions encoded in our BN models. Therefore all

the probability distributions in both DemNet and PathNet are subjective. It is

the focus of this section to present the subjective probability elicitation process

used in this research to quantify both DemNet and PathNet.

5.6.1 The quantification process

The process of quantifying probabilities to furnish the parameters of a BN struc-

ture is widely accepted as a challenging aspect of the overall BN construction

process, especially when the mode of elicitation is subjective. Three common

challenges associated with subjective elicitation, which present significant chal-

lenges are: economic factors relating to availability of a suitable domain expert, as

well as cost; technical factors, including the psychology of probability elicitation

and judgement (see Section 4.5.2.1); and, issues associated with subjective elici-

tation when the number of probabilities required are large (see Section 4.5.5.1).

Regardless of these challenges, the subjective approach is of use, as it facilitates

network quantification when the domain is complex and little understood, or

when objective data is unobtainable. While the cost associated with hiring a

domain expert is a matter concerning the project management team, techniques

should be employed to the extent possible to manage issues with regards to the

psychology of probabilities elicitation, such as bias, as well as techniques to min-

imise the number of probabilities required (see Section 4.5.2.3).

Throughout the development of DemNet and PathNet BN models, the team re-

mained mindful of the aforementioned challenges. Guidance provided throughout

Chapter 4 is used in addressing the challenges as they arise. From a structural

106



perspective, an upper bound on the number of parents was imposed to reduce

the number of probabilities required — see Section 4.4). To further reduce the

number of probabilities, only those ‘high-impact’ parents were chosen, and node

divorcing was used where appropriate — see Section 4.5.5.1. In addition, the

number of states defined in multinomial nodes was scrutinised to ensure that as

few as possible states were used, whilst retaining a number of states sufficient to

provide the level of granularity required. As a result, DemNet requires 395 prob-

abilities, and PathNet requires 526 probabilities; therefore the expert is required

to specify a total of 921 probabilities.

From a quantification perspective, with regards to subjectively eliciting the prob-

abilities required, a protocol is used to assist in suppressing biased judgements,

as advocated in Section 4.5.2.3. The quantification protocol adopted in this re-

search, and the actual quantification task, is described below in Section 5.6.2 and

Section 5.6.3, respectively.

5.6.2 The quantification protocol

In this research, the protocol developed to facilitate probability quantification is

based upon the five phase SRI protocol, described in Section 4.5.2.2 and shown

graphically in Figure 4.5. However, the protocol has been refined such that it fits

better with the needs of our elicitation requirements; it consists of four phases,

each phase contains one or more steps. A description of the protocol, as well as

a corresponding graphical process flow, is provided below.

Phase 1: Document preparation In this phase, presentations and accom-

panying documentation is prepared with a view to providing the expert with
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Figure 5.3: Elicitation protocol used to quantify DemNet and PathNet

background information on elicitation, as well as information relating to the is-

sues that must be considered prior to the elicitation task. The documentation

included a description of the motivation for the elicitation exercise, a description

of the quantification task, and an explanation of what is actually is required of

the expert. Additionally, information relating to common judgement heuristics

is prepared — this is used to explicitly make the expert aware of biases and guid-

ance on how to overcome them. Bias management is discussed in more detail in
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Section 5.6.3.4. The documents prepared in this phase form the basis of step 2,

below.

Phase 2: Preparing the expert Phase 2 is concerned with establishing rap-

port with the expert/elicitation team and ensuring that the expert is adequately

briefed on the elicitation task. The documentation prepared in phase 1 (above)

is distributed. At this stage, it is important to motivate the expert to ensure

buy-in [274], which is achieved by making clear to the expert the purpose of

the elicitation task, why their judgements are required, and how the informa-

tion that they provide is used. It should be noted, however, that our domain

expert was committed to providing the necessary information, and, having par-

ticipated in previous similar research, was aware of the intrinsic value of the role

as expert. Following from the motivation step, the expert is required to provide

unambiguous quantities to furnish the probability tables. In this research, the

expert is clear on the quantities required — it is the same expert who provided

the qualitative structure. The quantities required are prescribed by the condi-

tional probability tables dictated by the structure of BN models developed. The

final step in ‘preparing the expert’ is a training workshop prior to the elicitation

exercise. The purpose of this workshop is to introduce the format of the elicita-

tion task, distribute documentation on common heuristics and potential biases,

and provide the expert with an opportunity to become familiar with the concept

of probability assessment through participation in a sample elicitation tasks. In

doing so, the expert is asked to provide probability assessments for a sample

problem for which objective measures are available, and feedback is provided to

allow the expert to calibrate their responses.
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Phase 3: The elicitation exercise It is in this phase, which consists of three

steps, that the iterative process of eliciting the actual quantities is carried out.

An iteration begins by arranging a time and place to conduct the elicitation work-

shop. In addition, the purpose and scope of the workshop is defined, that is to

say the quantities to be elicited are set out. Once the preparation is complete,

the workshop can begin with the aim of eliciting subjective probability distribu-

tions that best reflect the expert’s beliefs about the possible range of outcomes

for each variable. Techniques to encode judgements as probabilities are discussed

in Section 5.6.3. A BN development tool, namely Netica [2], is proposed so that

the probabilities can be entered directly into the model. Once the workshop has

taken place, a process of internal validation is initiated — the expert is expected

to test the model and amend simple discrepancies as they arise. More complex

discrepancies are added to the “issues log”, and are reviewed at the next elicita-

tion workshop. Once a complete version of the model is available, a verification

workshop consisting of experts independent of the development team is set up

to test the output of the model on a set of well-known scenarios. If agreement

cannot be reached, or, if discrepancies in the model are identified, a feedback

loop allows repeated development until a resolution is agreed.

Phase 4: Maintenance phase The final phase is concerned with fine-tuning

the probabilities over time.

5.6.3 Carrying out the quantification exercise

Thus far discussion has focused on the overall process for quantifying the BNs;

the following sections are concerned with methods for encoding judgements as
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probabilities. Common judgement methods are introduced in Section 5.6.3.2; the

approach adopted in this research is described in Section 5.6.3.3, and techniques

used to detect and manage bias are described in Section 5.6.3.4.

5.6.3.1 Quantification methods

There are many methods to support expression of probabilities from experts. A

plethora of methods is provided in [272, 49, 188, 206]. The most common meth-

ods, however, can be classified into one of two categories, namely direct methods

and indirect methods. With direct methods, the expert is simply asked to directly

express their degree of belief in the occurrence of an event numerically. This may

be a probability, a frequency or an odds ratio. Cooke [49] and van der Gaag et al.

[269] note that people find words easier to express than numbers when express-

ing probabilities, as numerical probabilities can induce discomfort and resistance

among experts not used to it [272], and, in addition, such direct methods can

lead to bias — see Section 4.5.2.1. To that end, a number of indirect elicitation

methods have emerged. With these methods, the expert is asked not for a direct

value, rather, the expert is asked for a decision from which their degree of belief is

inferred, thus alleviating the requirement to provide probabilities explicitly [188].

Examples of such methods include probability scales, frequency formats, gamble

methods and probability wheels. See [188, 97] for further details.

5.6.3.2 Quantification method adopted

During elicitation preparation discussions with our expert, it was decided that

direct probability elicitation would be used, as the expert had previous experience

in doing so. However, since some time had lapsed since his last elicitation task,
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it was felt that assistance in specifying the required probabilities was required.

One suitably attractive method, which was adopted in our research, is that de-

veloped by van der Gaag et al. [269]. In their method, elicitation from experts

involves transcribing probabilities as fragments of text and using a scale with

both numerical and verbal anchors for marking assessments. Experts are asked

to unambiguously mark the scale with their assessment for a particular event.

The intuition is found in the fact that the scale allows the experts to specify as-

sessments in terms of visual proportions rather than in terms of precise numbers.

Fragments of text are used to explain the the desired event for which a proba-

bility is required; these fragments are displayed adjacent to the probability scale.

To assist the expert with small, rare events, the text fragments are expressed in

terms of likelihood, rather than frequencies. The expert is required to indicate

assessments for all conditional probabilities pertaining to a single variable given

a single conditioning context on the same scale.

Once the probabilities are available, they are entered directly into the model

maintained by the BN development software tool. The software tool used, Netica

[2], efficiently displays conditional probability tables that describe compactly the

probability distribution over the states of a selected node. This is useful, as it

allows the expert to obtain a snap-shot view of the distribution for all possible

events. In addition, the expert can use the conditional probability table to view

previously supplied values and compare them with different events.
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5.6.3.3 The quantification exercise

Complete with an elicitation protocol (Section 5.6.2) and a method for eliciting

the required probabilities (Section 5.6.3.2), and, having discussed the orientation

documentation with the expert, the elicitation exercise could proceed.

The elicitation workshops were conducted at the expert’s site as per prior ar-

rangement, and were conducted as informal, face-to-face interviews.

In the first and second elicitation workshops, the initial work-up to the elicitation

exercise took place, that is to say ‘preparing the expert’, as described in Section

5.6.2. In addition, a plan was set out regarding the order or elicitation for each

component. It was decided that DemNet would be quantified first, followed

by PathNet, as the structure of DemNet was complete first. With regards to

DemNet, it was decided that the order of elicitation be: evidence nodes, current

functioning, global severity, followed by the outcome node, dementia. Evidence

nodes were chosen first as they are not conditioned, thus they provide the expert

with a simple warm-up in providing the required probabilities. The remainder

of the order was dictated by the sequential dependencies that exist among the

nodes. In the case of PathNet, all evidence node were quantified first, followed

by the outcome nodes.

Once the expert was prepared and the implementation plan was complete, the

first of the probability capture workshops took place. Each workshop begins with

a brief overview of the purpose and scope of the particular workshop, followed

by the elicitation exercise. Workshops were scheduled to last no longer than one

hour so as to minimise expert fatigue.
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5.6.3.4 Managing bias

Various factors in the elicitation process can give rise to bias, and, therefore,

result in ill-conceived and inaccurate probabilities. To that end, potential biases

in the techniques being used should be identified to the extent possible [226],

although some bias occurs only during the elicitation task. We controlled bias in

each of our elicitation tasks by using the protocol Meyer and Booker [180].

• Anticipate likely biases in the elicitation process defined

• Modify the elicitation process to mitigate anticipated biases

• Familiarise the expert with common elicitation processes and associated

biases

• Pro-actively monitor the elicitation process for biases

• Deal with biases as they emerge

The most common types of bias are described in Section 4.5.2.1; what is relevant

to this research, however, is that both cognitive and motivational bias are present.

In our research, the main cognitive bias requiring monitoring and countering is

anchoring bias. Anchoring bias can be demonstrated as follows: When someone is

asked to provide an estimate for a quantity or assess an uncertain event, they often

start with an ‘initial estimate’, and adjust up or down. Unfortunately, in many

cases the expert remains too close to the initial value, therefore not adjusting

sufficiently to reflect the uncertainty. This was tackled using evidence provided

by Ferrell [85], in which it is demonstrated that making an expert aware of such

issues can encourage them to reconsider the judgement. In doing so, the expert
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was asked occasionally to describe how other experts might disagree with their

response, thus forcing the expert to consider if further adjustment up or down

from the anchor point was required. Furthermore, this type of bias is more likely

to occur when the expert relies too heavily on historical data and so ineffectively

summarises expected frequencies of the events” [274]. Recognising that the

expert had participated in previous research requiring probability elicitation, the

expert was asked to discount recent events in which similar information was

required.

In addition to anchoring bias, motivational bias, which is driven by human needs,

must also be addressed. At the outset, the expert expressed concern in providing

subjective judgements for the BN models. However, it was made clear to the

expert that the aim of the elicitation exercise is to obtain subjective degrees of

belief about certain events, and was reassured that that initial responses may

differ between experts.

5.7 Summary

This chapter demonstrated how the procedures, methods and tools for hand-

crafted BN, presented in Chapter 4, can be used to successfully hand-craft BN

models for a real-life problem in health decision support. The process and tech-

niques used to define the structure and quantify the probabilities, in addition

to the methods used to address the complexities inherent in expert elicitation,

are described in detail. However, it is clear that this approach is extremely time

consuming and labour intensive, and therefore requires a significant amount of

effort, even for simplistic models where the number of nodes is less than ten.
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The following chapter evaluates the capability of the dementia BN models devel-

oped in this chapter.
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Chapter 6

Results and evaluation

The purpose of this chapter is to assess the accuracy of the hand crafted Bayesian

network (BN) models developed in Chapter 5 for predicting the posterior prob-

ability of the dementia syndrome and underlying pathology. In Section 6.1 we

define the experimental design — the data set is described in Section 6.1.1, and

the methodology and performance measures are detailed in Section 6.1.2 and

6.1.3 respectively. The experimental results are presented in Section 6.2, with a

discussion of the results and implications in Section 6.3. Finally in Section 6.4,

we summarise the chapter.

6.1 Experimental design

6.1.1 Description of the dementia data set used

Since there was no single data set in existence that contained patient information

relating to all the variables considered in our models (see Section 5.4.1 and 5.4.2),

we initiated a data collection study via our medical collaborator, Dr. Richard
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Coles. A clinical protocol detailing the data requirements was developed, and

the necessary governance process was followed. Local Research Ethics Council

(LREC) approval was granted. Community Psychiatric Nurses (CPNs) from

CMHTE agreed to collect the data, as it aligned with the diagnostic variables that

they recorded during initial assessment of patients where dementia is suspected.

Each completed record consisted of the CPNs initial assessment, as well as the

actual diagnosis provided by a CMHTE diagnosing physician.

From start to finish, the data collection study lasted one year, and obtained 164

patient records from ‘live’ clinical practice. We split the data into two sets: one

set containing only those features relevant to dementia syndrome diagnosis; and

a second set containing features relevant to pathology diagnosis. The rational

behind the partition comes from the fact that two models have been developed

for simplicity: a model for dementia syndrome diagnosis (DemNet) and a model

for dementia pathology diagnosis (PathNet).

The DemNet data set contains a single continuous variable, namely ‘AGE’. In

addition, a number of discrete variables were deemed to have too many discrete

categories, for example ‘MMSE’ (see Section 5.4.1), which has 30 categories. Our

medical collaborator, based on his clinical opinion, provided a discretisation for

‘AGE’, and a set of refined groupings for those variables with too many categories.

In the case of DemNet, the classification variable is ‘DEMENTIA’; its role is

simply to provide distribution over the presence and absence of the dementia

syndrome. With regard to PathNet, there are five binary variables, one for each

of the four possible pathologies, and a single catch all node, ’other’, for a case

that does not fit into any of the other pathologies.
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6.1.2 Experimental methodology

The BN software tool, Netica [2], is used to model the BNs constructed by the

domain expert in Chapter 5. Netica case files are generated from the partitioned

clinical data, one file for DemNet and one file for PathNet. Together, the Netica

and data sets are used to evaluate the classification accuracy of each model.

6.1.3 Performance measures

Classification accuracy is the primary metric used to assess the performance of

the diagnostic models. We define classification accuracy as the proportion of

test cases “correctly diagnosed”, where “correctly diagnosed” means that the

predicted classification of the model matches the actual outcome in the clinical

data set. To measure the classification accuracy, we employ four standard test

metrics, namely sensitivity, specificity, predictive positive value and predictive

negative value. To probe deeper into each model’s performance accuracy, we

use a performance metric commonly used in medicine to evaluate the operating

characteristics of a particular diagnostic tool [285], namely the Receiver Operator

Characteristic Curve (ROC).

6.1.3.1 Performance measures

A description of each measure is listed below.

• Sensitivity: The ability to correctly predict a positive case — also known

as the True Positive Rate (TPR). The TPR is the probability that a pos-

itive case is correctly classified, and is defined as: TP
TP+FN

, where TP is
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the number of true positives and FN is the number of false negatives.

Conversely, the False Positive Rate (FPR) is the proportion of cases pre-

dicted as positive when the actual outcome is negative, and is defined as

1 − Specificity = FN
TP+FN

.

• Specificity: The ability to correctly identify those cases who do not have

the disease, otherwise known as the True Negative Rate (TNR). The TNR

is defined as: TN
TN+FP

, where TN represents the number of true negatives

and FP the number of false positives.

• Predictive positive value (PPV +): Of all the cases predicted as positive,

the proportion of cases that were actually positive. It is defined as: TP
TP+FP

.

• Predictive negative value (PNV −): Of all the cases predicted as negative,

the proportion of cases that were actually negative. This is defined as:

TN
TN+FN

.

Together, these metrics form a visual representation of cases where the model is

confusing two classes, and can be represented as a confusion matrix. An example

of a confusion matrix is shown in Figure 6.1.

It is worth noting that a cutoff or threshold needs to be defined so that the

performance testing algorithm knows the bounds to use to classify a case as

syndrome/disease positive or syndrome/disease negative. For example, a cutoff

probability set to 0.0 would result in the model classifying all samples in the

data set as being dementia positive. On the other hand, a cutoff of 1.0 would

result in classifying all samples as dementia negative. Clearly, these extremes are

inappropriate. In our study, each model’s class label is assigned based on the

maximum likelihood state (the one with highest belief). Using this criterion, if
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Figure 6.1: Confusion matrix visualisation. Reproduced from [277].

the model predicts dementia with a probability > 0.5 for a sample case, x, then

the model classifies x as dementia present, otherwise negative.

6.1.3.2 Receiver Operating Characteristic (ROC) curve

The Receiver Operating Characteristic (ROC) curve is commonly used in medicine

as a mechanism to evaluate the diagnostic performance of classification tools

[285]. One of its benefits is that it depicts the accuracy of the predictions made

by a model in a visual manner [127, pp 185]. Using values taken from the con-

fusion matrix, the ROC graph plots the sensitivity (TPR) and 1 − specificity

(FPR) over a range of cutoff/threshold probability values (in the range 0.0 - 1.0).

In addition to the curve itself, the Area Under the Curve (AUC) is an important

performance metric. Understanding the meaning of the AUC value is important

in interpreting the impact of the performance results, therefore we offer an expla-

nation of the AUC and how its value relates to the to the classification accuracy

of the model under scrutiny.

The AUC is a measure of the probability that a model will correctly distinguish

between two observations, one positive and the other negative [215]. In other
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words, a randomly selected case from the positive diagnosis group has a predicted

value larger than that for a randomly chosen individual from the negative diagno-

sis group in x% of the time [285]. For example, an AUC = 0.5 indicates that the

discrimination ability of a model is equivalent to one where positive and negative

cases are classified randomly (a random classifier) [215]. The ROC curve for a

model that performs random classification is depicted by the 45◦ line through the

ROC graph. As the discrimination capability increases, the AUC value increases

towards a maximum of 1.0 — that is to say perfect discrimination. Visually, as

the discrimination accuracy increases, the ROC curve tends towards the upper

left hand corner of the graph; conversely, an ROC curve under the 45◦ line indi-

cates a poor classification performance, although such a model can be inverted

so that better performance is achieved.

Pearce and Ferrier [215] offer a generic, qualitative translation of AUC values

in the range 0.5 − 1.0. A model achieving AUC > 0.90 may be interpreted as

having ‘excellent’ discrimination characteristics, as the sensitivity values are high

relative to the false positive values. AUC values in the range 0.7 − 0.9 indicate

a ‘good’ level of discrimination. Values in the range 0.5 − 0.7 indicate ‘poor’ to

‘marginal’ discrimination ability, as the sensitivity rate is comparable with the

false positive rate. Clearly, this is only a guide; the interpretation of the AUC

value may change from application to application.

6.2 Experimental results and model evaluation

Using as input the clinical data set described in Section 6.1.1, we invoke the

‘test with cases’ function provided by the Netica [2] BN modelling software
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to test classification performance. The results for the two models — DemNet

and PathNet — are presented in Section 6.2.1 and Section 6.2.2 respectively. A

statistical analysis tool, SPSS [257], is used to calculate the AUC value for the

predicted-actual pairs dictated by the confusion matrix.

6.2.1 DemNet predictive accuracy

We provide classification accuracy results for the dementia syndrome diagnostic

model. In Figure 6.2, we show the full confusion matrix for a cutoff of 0.5 (see

Section 6.1.3). Table 6.1 shows the model’s ability to distinguish positive and

negative cases over a range of cutoffs, specifically those cutoffs in the range 0.0−

1.0 that produce unique sensitivity and specificity. The values listed in Table

6.1 are summarised in the ROC curve shown in Figure 6.3, and Area Under the

Curve (AUC) statistics are listed in Table 6.1.

As can be seen from the results shown in Table 6.2, DemNet, according to Pearce

and Ferrier [215], has a ‘good’ classification ability as it has an AUC value of

0.764.

Cutoff Sensitivity Specificity PV + PV −
0.0 1.0 0.0 0.8232 1.0
0.3 0.9333 0.5517 0.9065 0.6400
0.5 0.7407 0.7931 0.9434 0.3966
0.6 0.5630 0.7931 0.9268 0.2805
0.7 0.3630 0.8966 0.9423 0.2321
0.85 0.2815 0.9310 0.9500 0.2177
0.9 0.0 1.0 1.0 0.1768
1.0 0.0 1.0 1.0 0.1768

Table 6.1: DemNet performance: summary confusion matrix over cutoffs in range
0.0 − 1.0.

123



Figure 6.2: DemNet performance: confusion matrix for cut off = 0.5.
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Figure 6.3: DemNet performance: ROC curve.

Measure Value
Cutoff 0.5
Sensitivity 74.07
1−specificity 0.207
Area 0.764
Significance < 0.001
95%CI upper 0.665
95%CI lower 0.864

Table 6.2: DemNet performance: Area Under the Curve (AUC) statistics.
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6.2.2 PathNet predictive accuracy

Recall from Section 5.1.2 two of the objectives defined for the dementia disease

model: 1) diagnostic model must classify Alzheimer’s disease, vascular dementia,

dementia with lewy bodies, frontotemporal dementia and ‘other’; and 2) model

must be capable of diagnosing co-existing pathologies. We have implemented

a BN model that classifies each of the aforementioned disease processes, and

the structure of the model permits classification of co-existing disease processes.

Accordingly, we have met both objectives. However, due to a lack of clinical data,

we are unable to test the accuracy of the model on all classification tasks, namely

frontotemporal dementia, dementia with lewy bodies and co-existing pathologies.

In Sections 6.2.2.1 — 6.2.2.3, we provide the performance results of the model on

classifying Alzheimer’s disease, vascular dementia and ‘other’ dementia patholo-

gies. For each pathology, we show the full confusion matrix for a cutoff of 0.5 (see

Section 6.1.3), as well as the model’s ability to distinguish positive and negative

cases over cutoffs in the range 0.0 − 1.0, specifically those cutoffs that produce

unique sensitivity and specificity values . In addition, we show corresponding

ROC curves and Area Under the Curve (AUC) statistics.
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6.2.2.1 Alzheimer’s disease

Figure 6.4: PathNet performance: Alzheimer’s disease confusion matrix at cutoff
= 0.5.

Cutoff Sensitivity Specificity PV + PV −
0.0 1.0 0.0 0.3293 1.0
0.5 1.0 0.5 0.4909 1.0
0.7 0.8519 0.6818 0.5679 0.9036
0.8 0.6667 0.7727 0.5902 0.8252
0.85 0.3519 0.9091 0.6552 0.7407
0.9 0.0 1.0 1.0 0.6707
1.0 0.0 1.0 1.0 0.6707

Table 6.3: PathNet performance: Alzheimer’s disease — summary confusion
matrix for unique cutoffs in range 0.0 − 1.0.

Measure Value
Cutoff 0.5
Sensitivity 1.0
1−specificity 0.509
Area 0.745
Significance < 0.001
95%CI upper 0.673
95%CI lower 0.818

Table 6.4: PathNet performance: Alzheimer’s disease Area Under the Curve
(AUC) statistics.
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Figure 6.5: PathNet performance: Alzheimer’s disease ROC curve.

6.2.2.2 Vascular dementia

Figure 6.6: PathNet performance: Vascular dementia confusion matrix at cutoff
= 0.5.
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Cutoff Sensitivity Specificity PV + PV −
0.0 1.0 0.00 0.4390 1.0
0.4 0.8194 0.8152 0.7763 0.8523
0.5 0.7840 0.8440 0.7838 0.8444
0.6 0.6250 0.9022 0.8333 0.7545
0.7 0.3056 0.9674 0.8800 0.6403
0.85 0.0 1.0 1.0 0.5610
1.0 0.0 1.0 1.0 0.5610

Table 6.5: PathNet performance: Vascular dementia — summary confusion ma-
trix of unique cutoffs in range 0.0 − 1.0.
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Figure 6.7: PathNet performance: Vascular dementia ROC curve.

Measure Value
Cutoff 0.5
Sensitivity 0.784
1−specificity 0.156
Area 0.814
Significance < 0.001
95%CI upper 0.744
95%CI lower 0.884

Table 6.6: PathNet performance: Area Under the Curve (AUC) statistics, Vas-
cular dementia.

6.2.2.3 Other dementia
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Figure 6.8: PathNet performance: ‘Other pathology’ confusion matrix at cutoff
= 0.5.

Cutoff Sensitivity Specificity PV + PV −
0.0 1. 0.00 0.2256 1.0
0.3 0.6486 0.5118 0.2791 0.8333
0.5 0.4054 0.7480 0.3191 0.8120
0.85 0.1351 1.0 1.0 0.7987
1.0 0.0 1.0 1.0 0.7744

Table 6.7: PathNet performance: ‘Other pathology’ — summary confusion ma-
trix of unique cutoffs in range 0.0 − 1.0.
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Figure 6.9: PathNet performance: ‘Other pathology’ ROC curve.
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Measure Value
Cutoff 0.5
Sensitivity 0.4054
1−specificity 0.252
Area 0.577
Significance < 0.156
95%CI upper 0.469
95%CI lower 0.685

Table 6.8: PathNet performance: Area Under the Curve (AUC) summary statis-
tics, ‘Other pathology’.

6.3 Discussion

In our study, we have demonstrated empirically that the BNs developed in Chap-

ter 5 can 1) predict the likelihood of the dementia syndrome in aged populations

(65 and over); and 2) predict Alzheimer’s disease and vascular dementia. How-

ever, we are unable to evaluate the performance of the pathology model on cases

where the outcome is dementia with lewy bodies, frontotemporal or co-existing

diseases, which is a limitation of this study.

As can be seen from the confusion matrix for the dementia syndrome model,

DemNet, shown in Figure 6.2, the sensitivity (TPR) of the model is 0.7407 and

FPR (1 − specificity) is 0.2069. In other words — converting these values to

percentages — approximately 74.07% of all dementia positive cases in the data set

are correctly identified as such by the model, and 20.69% of all dementia absent

cases are incorrectly identified as positive. The frequency of negative predictions

when the actual outcome was positive, that is to say the false negative ratio

(FNR), is FN
TP+FN

= 35
100+35

≈ 26%. Since this is a tool aimed at primary care,

it is a concern that some cases may pass unidentified, therefore the model may

need tuned in order to reduce the FNR. In contrast, the 20.69% of negative cases

that are incorrectly identified as positive are less concerning.
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In Figure 6.3, the ROC curve for DemNet lies above the reference (45◦) line, which

indicates that our model performs better than one that classifies randomly. As

can be seen from the curve, a low cutoff value (for example 0.3) results in a high

sensitivity, however this comes at a cost as there is a rise in the (FPR) number

of cases predicted as positive that should have been negative. The cutoff that we

choose, namely 0.5, seems like a reasonable compromise — the sensitivity is not

as high as the 0.3 cutoff, but more importantly, the FPR rate is lower. As can

be seen from Table 6.1 and Figure 6.3, higher cutoff values seem to have a lower

FPR, but the sensitivity is poor.

A key measure of accuracy of the model is the AUC value. From Table 6.2

AUCDemNet = 0.764, with 95% confidence in the range 0.665 − 0.864. This

means that a randomly selected case from the positive diagnosis group has a

predicted value larger than that for a randomly chosen individual from the neg-

ative diagnosis group in 76.4% of the time. This result indicates that our model

has the ability to distinguish between the two diagnostic groups, namely ‘de-

mentia present’ and ‘not dementia’, much better than a model that randomly

classifies cases. More formally, let H∅ = AUCrand = 0.5 = AUCDemNet; since

AUCDemNet = 0.764 > AUCrand and p < 0.001, we can reject H∅. From a quali-

tative perspective, using the translation offered by Pearce and Ferrier [215] (see

Section 6.1.3.2), our results indicate that the model achieves a ‘good’ level of

discrimination on this class variable.

We now turn attention to the model responsible for pathology diagnosis, PathNet.

We discuss the results obtained for classification of Alzheimer’s disease, vascular

dementia and ‘other’ pathology.
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As can be seen from the confusion matrix for Alzheimer’s disease shown in Figure

6.4, the sensitivity (TPR) of the model is 1.0 and FPR (1 − specificity) is 0.5.

In other words — converting these values to percentages — 100% of Alzheimer’s

disease cases in the model were correctly predicted as positive by the model.

However, approximately 50% of all Alzheimer’s disease absent cases are incor-

rectly identified as positive. We acknowledge that the FPR is high. A possible

explanation may be that the model is trying to predict a co-existing pathology,

where Alzheimer’s disease forms one of the possible pathologies. This claim can

only be validated with data containing co-existing cases, and a modification to

the evaluation set up. Alternatively, it may be that the model requires further

tuning.

In Figure 6.5, the ROC curve for Alzheimer’s disease lies above the reference

(45◦) indicating that our model performs better than one that classifies using

a random guess strategy. A cutoff value of 0.5 leads to an excellent level of

sensitivity, however, as discussed above, the FPR in this case is high. It seems

that a more restrictive cutoff of 0.7 has a more balanced outcome.

From Table 6.4 AUCAlzheimer = 0.745, with 95% confidence in the range 0.673 −

0.818. This means that a randomly selected case from the positive Alzheimer’s

disease group has a predicted value larger than that for a randomly chosen in-

dividual from the negative diagnosis group in 74.5% of the time. This result

indicates that our model has the ability to distinguish between the two diagnos-

tic groups, namely Alzheimer’s disease present and Alzheimer’s disease absent,

much better than a model that randomly classifies cases. More formally, let

H∅ = AUCrand = 0.5 = AUCalzheimer′s; since AUCalzheimer′s = 0.745 > AUCrand

and p < 0.001, we can reject H∅. From a qualitative perspective, using the
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translation offered by Pearce and Ferrier [215] (see Section 6.1.3.2), our results

indicate that the model achieves a ‘good’ level of discrimination on this class

variable.

From the vascular dementia confusion matrix shown in Figure 6.6, the sensitivity

(TPR) of the model is 0.784 and FPR (1 − specificity) is 0.156. In other words

— converting these values to percentages — approximately 78.4% of all vascular

dementia positive cases in the data set are correctly identified as such by the

model, and 15.6% of all vascular dementia absent cases are incorrectly identified

as positive. The frequency of negative predictions when the actual outcome was

positive, that is to say the false negative ratio (FNR), is FN
TP+FN

= 14
58+14

≈ 19.4%.

Since this is a tool aimed at primary care, it may be of concern that some cases

may pass unidentified.

In Figure 6.7, the ROC curve for vascular dementia lies above the reference (45◦)

indicating that our model performs better than one that classifies using a random

guess strategy.

From Table 6.6 AUCvascular = 0.745, with 95% confidence in the range 0.673 −

0.818. This means that a randomly selected case from the positive vascular

dementia disease group has a predicted value larger than that for a randomly

chosen individual from the negative diagnosis group in 74.5% of the time. This

result indicates that our model has the ability to distinguish between the two

diagnostic groups, namely vascular dementia present and vascular dementia ab-

sent, much better than a model that randomly classifies cases. More formally, let

H∅ = AUCrand = 0.5 = AUCvascular; since AUCvascular = 0.745 > AUCrand and

p < 0.001, we can reject H∅. From a qualitative perspective, using the transla-
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tion offered by Pearce and Ferrier [215] (see Section 6.1.3.2), our results indicate

that the model achieves ‘good’ level of discrimination on this class variable.

The performance of PathNet on ‘other’ is not as good. As can be seen from the

confusion matrix shown in Figure 6.6, the sensitivity (TPR) of the model is very

low 0.4054 and the FPR (1 − specificity) is on the high side at 0.252. In other

words — converting these values to percentages — approximately 40.54% of all

‘other’ positive cases in the data set are correctly identified as such by the model,

and 25.2% of all ‘other’ absent cases are incorrectly identified as positive. The

frequency of negative predictions when the actual outcome was positive, that is

to say the false negative ratio (FNR), is FN
TP+FN

= 22
15+22

≈ 59.5%. Clearly, one

of the reasons that the TPR is so low is because the positive cases are being

incorrectly classified as negative.

In Figure 6.9, the ROC curve for ‘other’ lies (barely) above the reference (45◦),

which would indicate that our model performs better than one that classifies using

a random guess strategy. From Table 6.8 AUCother = 0.577, with 95% confidence

in the range 0.673 − 0.818. This means that a randomly selected case from the

positive ‘other’ group has a predicted value larger than that for a randomly chosen

individual from the negative ‘other’ group in 57.7% of the time. Since AUCother =

0.577 > AUCH∅ , it would appear that our model just manages to distinguish

between the two diagnostic groups, namely ‘other’ true and ‘other’ false, better

than a model that randomly classifies cases. However, after probing the results

further, it would appear that PathNet classifies the ‘other’ class variable only as

well as a random classifier. More formally, let H∅ = AUCrand = 0.5 = AUCother.

Despite the fact that AUCother = 0.577 > AUCrand, the significance is p <

0.156, therefore we can not reject H∅. From a qualitative perspective, using the
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translation offered by Pearce and Ferrier [215] (see Section 6.1.3.2), our results

indicate that the model achieves a ‘poor’ level of discrimination for this class

variable.

Despite the poor performance of PathNet on the ‘other’ class variable, our other

results are encouraging and indicate that our BN models have the potential to be

used as a decision support tool that could assist primary care clinicians during

dementia diagnosis.

6.4 Summary

This chapter described how the two dementia models developed by hand in Chap-

ter 5 are evaluated using a real-life clinical data set.

We define a number of metrics that are used to measure the diagnostic accuracy

of the models, then we demonstrate empirically the classification performance of

each model against a number of cutoffs. The classification accuracy of the mod-

els against the metrics is generally good. We recognise, however, that the model

responsible for dementia pathology diagnosis, PathNet, is stronger at identifying

Alzheimer’s disease and vascular dementia than it is at identifying the “Other”

diagnostic class. It is thought that this is due to the lack of test data repre-

senting the “Other” class variable. In addition, also due to the lack of data, it

has not been possible to empirically evaluate the model on the other diagnostic

tasks, such as dementia with lewy bodies, frontotemporal dementia or co-existing

pathologies. Nonetheless, when the models are tested by domain experts using a

small sample of cases the output appears to be inline with experts’ expectations.

Further data is required in order to provide a complete assessment of the other
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diagnostic outputs, and, in addition, the parameters of the model may require

further tuning as a result.

This part of the thesis has focused on the hand-crafted approach to BN con-

struction, and we have demonstrated how the approach is applied to a real-life

problem. The next part is concerned with the second approach which relies on

data for BN construction.
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Part III

Data-driven Bayesian network

construction
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Chapter 7

Data driven Bayesian network

construction

7.1 Introduction

In Chapter 4 we present a range of methods to support Bayesian network (BN)

construction using human expert knowledge — the so called “hand crafted” ap-

proach. As mentioned in Chapter 4, such an approach is time consuming, and

heavy emphasis is placed on human experts to provide both the dependency re-

lationships and the local probability parameters. An alternative method for BN

construction seeks to induce the structure and parameters from data. It is the

purpose of this chapter to describe the mechanics of this approach. Note that

this chapter describes only BN structure learning from data and not parameter

learning. Where necessary, we use the Netica [2] BN modelling software tool to

perform parameter learning for a given (learned) model. Note that when we refer

to BN learning in this chapter, we mean only structure learning, unless otherwise

stated.
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While the data driven approach is a popular alternative, which greatly reduces

the dependence on human experts, and in some cases increases the accuracy of

the model, it is no “silver bullet”. The primary drawback with BN learning

from data is that the number of possible structures for a given problem grows

super-exponentially with the number of variables in the problem domain, n. For

a problem consisting of n variables, Robinson [229] calculates the complexity of

the search space as O(n!2(n
2)). The number of possible BN structures for various

values of n are computed using Robinson’s formula, shown in 7.1, and listed in

Table 7.1.

f(n) =
n∑

k=1

(−1)k+1

(
n

k

)
2k(n−k)f(n − k); f(0) = 1, f(1) = 1 (7.1)

n Number of BNs
1 1.0 × 100

2 3.0 × 100

3 2.5 × 101

4 5.4 × 102

5 2.9 × 104

10 4.2 × 1018

20 2.3 × 1072

50 7.2 × 10424

100 1.1 × 101631

Table 7.1: The number of possible BNs for a given number of variables as per
Robinson’s formula.

A number of algorithms have attempted to reduce the complexity of the problem

by imposing restrictions and assumptions, however the problem remains complex

and hard [45].

Given that the number of possible structures for a given problem domain grows

super-exponentially, exact and exhaustive methods for BN learning become un-

feasible. Therefore, approximate methods based on heuristics become advanta-

geous. Many such algorithms can be found in BN learning literature, however
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the majority of these techniques can be separated into two broad categories: 1)

methods that carry out dependency analysis tests; and 2) methods that search

in a solution space and utilise a fitness metric to drive exploration of the search

space — the so called “search and score” approach.

The organisation of this chapter is as follows. In Section 7.2 we provide an in-

troduction to the dependency analysis approach. The class of algorithms that

operate using a search and score strategy, which is the basis of the algorithms de-

veloped in this research, is described in detail in Section 7.3. Existing techniques

and new techniques, which are used as a basis for comparing the algorithms de-

veloped in this research, are described in Section 7.4. Finally, we summarise this

chapter in Section 7.5.

7.2 Dependency analysis approach

Learning structure by dependency analysis is based on performing conditional

independence (CI) test on tuples of variables. Using statistical tests such as χ2

or information theoretic measures such as mutual information, these constraint

based algorithms attempt to determine whether pairs of variables are independent

or dependent given a set of conditioned variables.

The most common of the statistical approaches is the PC algorithm, developed by

Spirtes and Glymour [255]. It begins with the complete undirected graph, then

‘thins’ the graph by removing edges with zero order conditional independence

relations, then thins again with first order conditional independence relations,

and so on until an optimal BN is generated. Algorithms based on information

theoretic measures include that of Cheng et al. [40, 41] and Thomas [263].
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Singh and Valtorta [250] report three drawbacks in using CI approaches: 1)

extensive testing of independence relations is required to derive the final network

structure; 2) when condition sets are large, CI tests may become unreliable unless

an enormous volume of data is available; 3) the set of all independence statements

which hold for a given domain grows exponentially as the number of variables

grow, making CI approaches unrealistic. Nevertheless, Spirtes and Glymour [255]

have developed a CI based algorithm that yields good computational efficiency

with sparse networks and limited data.

7.3 Search and score approach

The search and score approach is an alternative offering to the dependency anal-

ysis approaches described in Section 7.2. The search and score paradigm for BN

discovery seeks to explore a search space of candidate BN structures for the one

that best represents the probabilistic dependency relationships that exist in the

data. In other words, the approach seeks to discover the probabilistic dependency

network that most likely generated the data set [51]. Under this approach, the

BN discovery problem can be viewed as an optimisation based search problem

that consists of three components:

1. Search engine: Drives exploration of the search space.

2. Search space: Defines the space of feasible solutions.

3. Scoring function: A consistent mechanism for measuring the quality of

a solution. The score or “fitness” metric allows the search algorithm to

differentiate between “good” and “bad” solutions/structures; additionally,
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the value produced by the scoring function is used to guiding the direction

of the search engine’s exploration.

In contrast to the CI based algorithms described in Section 7.2, the search and

score approaches employ a search heuristic to search the space of candidate struc-

tures (solutions) for one that maximises the score by making perturbations to the

solution. For example, edges are added or removed, then the effect is measured

using the scoring function. The search continues until an optimal solution is

found or some predefined stopping criterion is met.

We describe each of the three search and score components in more detail in the

following sections.

7.3.1 Search engines

In Section 7.1 we stated that the complexity of the search space was one of the

major challenges faced in BN discovery from data. Accordingly, many search

heuristics have been proposed. The search engines proposed in the literature can

be broadly classified into two categories: those that iteratively build upon a single

candidate solution (network structure), the so called sequential algorithms ; and,

in contrast, population algorithms that develop a collection of candidate solutions

in parallel. Clearly, the advantage of the population based approach is that a

wider area of the solution space is explored; in addition, since the population

based approaches explore groups of solutions, the chance of getting stuck in local

optima is reduced.

A selection of popular sequential and population based search algorithms are

described in more detail in Section 7.4.
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7.3.2 Search spaces

The search space defines all the possible candidate solutions. It is these candidate

solutions that the search engine explores. A common approach is to perform a

search in the space of all possible BN structures — the space of all directed

acyclic graphs (DAGs). However, recall from Section 7.1 that the cardinality of

this search space is super-exponential in the number of variables in the domain.

The primary drawback with this approach is computational inefficiency related

to redundancy in repeated analysis of equivalent directed acyclic graphs Ander-

son et al. [5]. Alternative sub-spaces exist which seek to: 1) make the search

more tractable by reducing the cardinality of the search space; and 2) reduce

redundancy.

One such alternative search space is the space of equivalence classes in which a

single solution represents those BN structures that represent the same set of con-

ditional independencies [256, 43]. Gillispie and Perlman [100] have experimented

with the space of equivalence classes, however, they did not find convincing re-

duction in the cardinality of the search space despite the high computational cost

generated by searching in this space. However, Chickering [44] has developed a

representation for the equivalence classes and a greedy search heuristic which

yields “slightly better results in less time than the same search applied to the

traditional space of DAGs”.

Another approach, which seeks to reduce the complexity of the search space, is a

search in the space of orders. In this approach an order is imposed between the

n nodes of the problem domain. In other words, a node Xj can not be a parent

of node Xi if Xi precedes Xj in the order. The maximum number of parents that
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a node can take on is
(

n−1
k

)
, where n is the number of nodes and k is an upper

bound on the number of parents that a node can take.

Many authors have proposed a search in the space of orders, as it is significantly

smaller than the space of entire network structures [262]. However, the mecha-

nism used to evaluate candidate orders may lead a high computational overhead.

For example, Larra˜naga et al. [154] uses a Genetic Algorithm (see Section 7.4.2.1)

to evolve candidate orders (solutions), then they apply the the K2 algorithm (see

Section 7.4.1.1) to evaluate each candidate order.

Although the search of BN structures is typically conducted in a single search

space, Kočka and Castelo [150] have proposed a hybrid which attempts to combine

characteristics of the entire space of DAGs with the space of equivalence classes.

7.3.3 Scoring functions

In Sections 7.3.1 and 7.3.2 we described the search engine and search space com-

ponents of the search and score methodology, which are responsible for generating

candidate BN solutions. It is the purpose of this section to introduce the mecha-

nism by which candidate BN structures are gauged for quality — it is this quality

value that search engines use to differentiate between good and poor BN solu-

tions with respect to the database of cases. Several scoring metrics have been

proposed in the literature. Note, however, that the scope of this section is to

provide necessary background with regards to the fitness metric used within this

research, and not an in-depth analysis of all the scoring metrics available.
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In this research we use a decomposable scoring function — the ‘score’ of a BN

structure given a data set is the sum of scores associated with individual families,

where a family is defined as a node and its parents:

score(bs) =
n∑

i=1

score(Xi, π(Xi)) (7.2)

The basic function of the metric is to calculate a quantitative measure that ex-

presses the probability that the candidate structure, bs, generated the probabilis-

tic relationships that exist in the data set.

To that end, a number of implicit assumptions are made regarding the data set

of cases used:

• Variables are discrete: Continuous variables should be discretised at the

risk of losing information.

• No missing values in the data set: Estimate a distribution over the variable’s

values to estimate its value [254].

• Cases in the data set are independent of each other.

• The process that generated the data is not time dependent.

In Section 7.3.3.1 we define the fundamentals of the fitness metric used in our

research — Bayesian scoring metrics — and in Section 7.3.3.2 we present the

actual metric used.
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7.3.3.1 Bayesian-based scoring metrics

The Bayesian approach is a practical method for selecting statistical models —

for example Bayesian network models — given a database of cases [51]. In this

approach, Bayes theorem is used to calculate the posterior probability, P (Bs|D),

of a network structure given the database of cases. This is achieved by: 1) defining

a prior distribution over all network structures; and 2) for each structure, use

Bayes’ theorem to compute the posterior probability given the data set. Using

this approach, it is possible to compute ratios for pairs of networks structure and

thus rank order a set of structure by their posterior probabilities. To calculate the

ratio of posterior probabilities, say P (Bs1|D) and P (Bs2|D), we use the following

equivalence:

P (Bs1|D)

P (Bs2|D)
=

P (Bs1|D)
P (D)

P (Bs2|D)
P (D)

=
P (Bs1, D)

P (Bs2, D)
(7.3)

Using this principle, it is possible to compute P (Bs|D) for any candidate network

structure. Cooper and Herskovits have proposed a scoring metric for assessing

the quality of Bayesian network structures based on the Bayesian approach —

see Section 7.3.3.2.

7.3.3.2 Cooper Herskovits (K2) metric

Cooper and Herskovits [51] have derived a scoring metric based on the Bayesian

approach to compute P (Bs|D), where P (Bs|D) is described in their theorem:

Theorem 1. Let Z be a set of n discrete variables, where variable xi in Z has

ri possible value assignments: (vi1, . . . , viri). Let D be a data set containing m

cases, where each case contains a value assignment for each variable in Z. Let
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Bs1 denote a Bayesian network structure containing only the variables in Z.

Each variable Xi in Bs1 has a set of parents πi, where πi may be empty. Let

φij denote the jth unique instantiation of πi relative to D. Suppose there are

qi such unique instantiations of πi. Define Nijk to be the number of cases in

D in which variable xi is instantiated as vik and πi is instantiated as φij. Let

Nij =
∑ri

k=1 Nijk. If the cases in the database occur independently, there are no

missing values, and the prior probability density function of the parameters given

the structure is uniform, then it follows that:

P (Bs|D) = P (Bs)
n∏

i=1

qi∏

j=1

(ri − 1)!

(Nij + ri − 1)!

ri∏

k=1

Nijk! (7.4)

This score is known as the K2 metric. The P (Bs) term in the right hand side

of Formula 7.4 captures information about the “real” network structure prior to

observation of the data set. For example, if specific edges are known in advance,

then the network structures that admit this information are given a higher prior

probability. If no information is available, all structures are equiprobable, hence

the P (Bs) term can be dropped from Formula 7.4. Note that the logarithm of

Formula 7.4 is used for numerical convenience.

7.4 Existing search and score algorithms

This section presents some examples of algorithms that can be used to search

through any space of Bayesian network (BN) structures. As introduced in Section

7.3.1, there are two categories of search algorithm, namely sequential algorithms

(Section 7.4.1) and population based algorithms (Section 7.4.2).
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7.4.1 Sequential algorithms

We begin by describing the “classic” K2 algorithm proposed by Cooper and Her-

skovits [51], which relies on an order among the variables as input. Thereafter,

we present Buntine’s algorithm [25], which does not rely on an order among the

variables. Finally, we present an extension to the K2 algorithm, the CB algo-

rithm, which combines conditional independence tests and Bayesian learning to

discover BNs. Note that other sequential algorithms are used for BN learning,

for example Simulated Annealing [33].

7.4.1.1 Classic K2

Cooper and Herskovits [51] proposed a greedy, deterministic search heuristic

which searches for the most probable belief network structure given a database of

cases, and it uses the CH metric, described in Section 7.3.3.2, to guide the search.

The algorithm assumes that an order among the domain variables is available,

an upper bound on the number of parents is imposed, and that a priori, all struc-

tures are equally likely. The order assumption states that a node xi can only

have node xj as a parent node if in the ordering node xj comes before node xi.

The K2 algorithm starts with an empty network and iterates through each of the

nodes according to their position in the order. For each node, K2 assumes that

a node has no parents, and then adds incrementally that parent whose addition

maximises the probability of the resulting structure. When the addition of no

single parent can increase the probability, the K2 algorithm stops adding parents

to the node.

The K2 algorithm pseudocode is shown in Figure 1 — the notation is defined in

Section 2.2.
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Algorithm 1 Pseudocode of the K2 algorithm [51].
Input: A set of n nodes, an ordering on the nodes, an upper bound u on the number of parents a node may
have, and a database D containing m cases.
Output: For each node, a printout of the parents of the node.
for i:= 1 to n do

πi = ∅
Pold:= f(i, πi); computed using Equation 9.1
okToProceed := true
while okToProceed AND |πi| < u do

let z be the node in Pred(xi); i.e. πi that maximises f(i, πi ∪ {z});
Pnew := f(i, πi ∪ {z});
if Pnew > Pold then

Pold := Pnew

πi := πi ∪ {z}
else

okToProceed := false;
end if

end while
print ‘Node:’, xi, ‘Parents of this node:’, πi

end for

Crucially, Cooper and Herskovits [52] show that the metric on which K2 is based

(CH, see Section 7.3.3.2) is minimized as the number of cases increases without

limit on “those [BN] structures that, for a given node order most parsimoniously

capture all the independencies manifested in the data”. In other words, the CH

metric favours the optimal (in)dependency model consistent with the given order,

as the number of cases in the data set increase without limit.

The main drawback with this algorithm is the fact that it requires as input an

order among the variables. The order imposed among the variables has an impact

on the resulting quality of the network structure [250], therefore to guarantee a

good performance, a good order needs to be specified as input for K2. In some

cases suitable “domain knowledge” may not be available, and where it is expert

time is charged at premium rates. As an alternative, automated order learning is

proposed. In addition, the K2 algorithm requires a decomposable scoring function

(see Section 7.3.3.2), which may be viewed as a drawback.
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7.4.1.2 Buntine’s algorithm

Buntine’s [25] ‘B’ algorithm is a popular greedy sequential search algorithm for

BN structure discovery. In contrast to Cooper and Herskovits K2 algorithm, the

B algorithm does not require a node ordering. It starts with an empty parent

set. At each iteration an edge that does not lead to a cycle and maximises the

scoring function is added, and the process continues until the fitness quality no

longer increases or all nodes in the order have been visited. Although the original

B algorithm considers a single operator — the add link operator — variations

could be proposed that include additional operators such as edge deletion and

edge reversal.

Like the majority of sequential greedy search algorithms, the primary drawback

of the B algorithm is premature convergence on local optima. For example, when

the B algorithm decides to add an edge, it can not be removed at a later iteration.

To that end, Blanco et al. [18, 17] have proposed new algorithms which allow the

search engine to reconsider previous decisions at a later time in the search.

7.4.1.3 CB algorithm

Singh and Valtorta [249, 250] proposed an algorithm which cherry-picks the best

properties of the algorithms described above, namely the Conditional indepen-

dence + Bayesian learning (CB) algorithm. Recall from Section 7.2 that depen-

dency analysis algorithms use conditional independence (CI) test to construct the

network; although effective, the main drawback in this approach concerned the

number of tests required to search through all possible CI statements. In Section

7.3, we describe the search and score approach to BN discovery from data, which

typically consists of a greedy search heuristic and a scoring function. In Section
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7.4.1.1 we introduce the K2 algorithm and note the metric used by the algorithm

favours the most optimal structure given an order among the variables. However,

the requirement of an order as input is the algorithm’s primary drawback, since

it may not be possible to provide an order for domains where there is very little

expertise or the number of variables is large.

The CB algorithm seeks to harness the qualities of each of the aforementioned

algorithms by combining them with a view to provision a “computationally

tractable algorithm which is not over dependent on CI tests nor does it require [as

input] a node ordering” [249]. It achieves this through an orchestration involving

CI tests to generate a “good” node order from the data, which is then used by

the K2 algorithm to discover the underlying BN. The CB algorithm executes in

two phases: in phase one, the CB algorithm starts with a complete, undirected

graph over all nodes, then CI tests are executed to remove the edges between ad-

jacent nodes that are unconditionally independent (CI tests of order zero). The

remaining edges in the undirected graph are orientated to form an order among

the nodes. In Phase II, the order derived in phase I is fed into K2 as input to

construct the network. The process is repeated as follows: Using the resulting

undirected graph from the previous iteration, the algorithm removes those con-

ditional independent edges given one node (CI test of order 1), then two nodes

and so on. The algorithm iteratively constructs the network increasing the order

of CI tests until the termination criteria is met.

7.4.2 Population based algorithms

A class of algorithms referred to as “nature inspired” search heuristics are loosely

based on systems found in nature; they are typically population-based and stochas-
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tic. Given the dimensionality and complexity of the Bayesian network (BN)

search space, those nature inspired algorithms which operate on groups of can-

didate solutions in parallel are of particular interest in BN learning. Many of

these population-based nature-inspired algorithms have been proposed as search

algorithms in the BN discovery from data problem.

Wong et al. [279], Novobilski and Kamangar [202] and Lee et al. [162] proposed

Evolutionary/Genetic Programming (EP/GP).

Larra˜naga et al. [154, 155, 156] and Novobilski and Fesmire [201, 203] have

proposed a range of Genetic Algorithm (GA) based approaches. Estimation of

Distribution Algorithms (EDA) have been applied by Romero et al. [232].

More recently, de Campos et al. [62] and Daly et al. [59] have employed Ant

Colony Optimisation (ACO), and Castro and von Zuben [35] apply the Artificial

Immune System (AIS) algorithm.

In Chapter 9, we compare our approach to BN discovery from data with algo-

rithms from the literature. In particular, we compare our algorithms with two

Genetic Algorithm (GA) based approaches. The following two sections provide

an introduction to these two approaches.

7.4.2.1 Genetic Algorithm approach for Bayesian network discovery

“ . . . the metaphor underlying genetic algorithms is that of natu-

ral evolution. In evolution, the problem each species faces is one of

searching for beneficial adaptations to a complicated and changing en-

vironment. The ‘knowledge’ that each species has gained is embodied

in the makeup of the chromosomes of its members [60].”
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Originally developed by John Holland [122], Genetic Algorithms (GAs) are in-

spired by, and based loosely on, principles of Darwinian evolution, and are used

extensively to solve search and optimisation problems. The algorithm’s strength

lies in its ability to evolve near optimal (or, in some cases, optimal) solutions to

complex problems, sometimes involving multiple objectives with minimal problem

information and without searching the entire search space [64, pp85] — a strength

favourable for problems where little is known about the underlying search space.

The ability of GAs to explore a search space is achieved by mechanisms employed

from evolution theory, which simulate natural selection and genetic inheritance.

Accordingly, individuals yielding a high fitness in the population are likely to sur-

vive and generate off-spring, thus transmitting their biological heredity to new

generations. As the name suggests, genetic algorithms and their mechanics allude

to natural genetics. However, note that computational GAs are simply inspired

by principles of natural genetics, and are not, in general, biologically plausible.

A GA has a number of components. Each potential solution to a problem is

encoded as a chromosome; one or more chromosomes make a population of so-

lutions. The algorithm embeds a fitness metric (objective function, for example,

a BN scoring metric), which facilitates solution evaluation. At each iteration of

the algorithm, chromosomes are selected according to some predefined selection

criteria and entered into a mating pool. The next population (generation) of

chromosomes are formed by performing genetic recombination on chromosomes

in the mating pool. In order to maintain diversity in the population and prevent

premature convergence, a mutation operator is applied at various positions in

the chromosome with probability P . A diagram of the GA process is shown in

Figure 7.1.
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Yes NoStopping
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Figure 7.1: Generic GA process diagram.

The interested reader is directed to Mitchell [183] for a useful, introductory text

on GAs.

From a BN discovery perspective, GA chromosomes encode solutions according

to the search space. For example, if the search space is defined as the space of

all BN structures, then a GA chromosome may encode an n by n connectivity

matrix, where n is the number of variables in the problem — see Section 8.5.1.

Alternatively, a chromosome may encode an order among the variables — see

Section 8.6.1. Note, that, in general, the GA operators are not closed with

respect to Directed Acyclic Graph (DAG) conditions — see Section 2.1. In other

words, the GA is stochastic, therefore the algorithm may evolve a solution that

includes cycles. However, Novobilski [201] has proposed genetic operators that
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guarantee acyclicity. An example of a GA process for BN discovery from data is

shown in Figure 7.2.

Initialise population of legal

BN structures

Use K2 metric to evaluate the

quality of each BN structure

Select high scoring structures

for entry into mating pool

Create some new legal BN

solution - combining ‘fit’ solutions

Create new population of

candidate BNs

Output best BN

structure in the population

Yes No
Best BN

structure

found / stopping

criteria

met?

Figure 7.2: GA process diagram for BN discovery.

Larranaga et al. [154] et al. proposed the GA as a search heuristic for exploring

the entire space of BN structures and the space of orders. When applied to

the entire space of structures, each candidate solution is evaluated using the K2

fitness metric — see Section 7.3.3.2. However, the GA variant, which searches

in the space of orders, executes the K2 algorithm on each candidate solution

with the purpose of achieving a score — see Section 7.4.1.1. Clearly, application

of the K2 algorithm to score candidate structures is computationally expensive.

However, Kabli et al. [135] have proposed a GA based algorithm that seeks to

reduce the computation expense. This algorithm is introduced in Section 7.4.2.2.
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7.4.2.2 ChainGA algorithm

In Section 7.3.2, we acknowledge that good orders lead to good Bayesian net-

work (BN) structures, and, given a good order, the K2 algorithm finds good BN

structures (see Section 7.4.1.1). In Section 7.4.2.1 we present a technique for BN

discovery from data which uses a Genetic Algorithm (GA) to search for ’good’

orders that are evaluated using the K2 algorithm. However, we note that use of

the K2 algorithm leads to high computational overheads 7.4.2.1.

Kabli et al. [135] have synthesised all the good properties of order-based search

into an algorithm called Chain-Model GA, and they demonstrated that their

approach is superior and computationally more efficient to the order-based GA

approach proposed by Larranaga et al. [154]. In the Chain-Model GA, Kabli

et al. hypothesis that “ a chain (order) is a sufficiently good model to local

node orderings of which good Bayesian network structures can be built [135]”.

The reduction in computational expense is gained by evaluating the chain struc-

ture rather than using the full K2 algorithm to evaluate all orders. For exam-

ple, given a domain of variables X1, X2, X3, X4 and a candidate solution (order)

X2, X1, X4, X3, then it admits a chain structure shown in Figure 7.3.

Figure 7.3: An example of a chain-structure.

Instead of using the K2 algorithm to evaluate the quality of the order, the chain

structure is evaluated using only the K2 metric with respect to the data. In other

words, the chain structure is the candidate BN model. Kabli et al. [135] make

the assumption that good orders lead to good structures, and that the ‘chain-

structure’ may hold important information about the ordering and its relation to
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the network structure. This is a similar assumption to that made by Cooper and

Herskovits [51] in that there is a reliance on a good order if the K2 algorithm has

a chance of finding a good BN structure. At the end of each iteration, a group

of high scoring chain structures are fed into the K2 algorithm as orderings; the

resulting structures and scores are stored. Experiments conducted by Kabli et al

[135] demonstrate a reduction in computational expense compared to a similar

order-based approach proposed by Larranaga [156]

7.5 Summary

This chapter presented the second approach to BN construction, namely the data-

driven approach. Two data-driven approaches are described in detail, namely al-

gorithms based on dependency analysis and algorithms based on the search and

score paradigm, and existing algorithms found in the literature are described.

Challenges and issues regarding BN construction from data, as well as develop-

ment opportunities within existing algorithms, are highlighted.

In the next chapter we present new algorithms for BN discovery from data, which

are based on binary Particle Swarm Optimisation.

157



Chapter 8

Constructing BN using PSO

In this chapter we present a novel application of Particle Swarm Optimisation

(PSO), demonstrating its use as a search heuristic in the Bayesian network (BN)

structure discovery from data problem.

The necessary PSO background is presented in Section 8.1 and the motivation

for using PSO in the BN structure discovery problem is presented in Section

8.2. Some existing PSO-based approaches to the structure learning problem

are presented in Section 8.3. We present our approach in Section 8.4, and the

two resulting PSO-based algorithms for BN structure discovery are described in

detail in Section 8.5 and Section 8.6. It should be noted that this chapter does

not present any evaluation of the PSO-based techniques for BN discovery; such

evaluation is given a full treatment in chapter 9.

8.1 Particle Swarm Optimisation

Particle Swarm Optimisation (PSO) is a nature-inspired, population-based stochas-

tic search and optimisation heuristic which was first proposed by James Kennedy
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and Russell Eberhart [77]. The origins of PSO are sociologically inspired, as it

evolved from the notion of “producing computational intelligence by exploring

simple analogues of social interaction, rather than purely individual cognitive

abilities [221]” . In the early part of the 1990’s, Heppner and Grenander [117]

published work on the sociology of bird flocking behaviour when searching for

corn. Eberhart and Kennedy syndicated the sociocognitive behaviours observed

by Heppner and Grenander, and harnessed these characteristics to develop three

basic, abstract principles (evaluate, compare and imitate — see Section 8.1.1) to

produce a powerful optimisation method — Particle Swarm Optimisation.

As mentioned above, the mechanistic functioning of PSO is derived from social

interaction theory, and its underlying mechanics are based on social principles.

These principles — their underlying rudiments and their relation to PSO — are

discussed in Section 8.1.1. Thereafter, the anatomy of the fundamental compo-

nent of PSO, namely the particle, is presented in Section 8.1.2, and corresponding

notation is provided in Section 8.1.2.1. A description of the “original”, canonical

PSO algorithm is presented in Section 8.1.3.

8.1.1 Rudiments of the classical PSO

The PSO algorithm maintains a population of simple entities — the particles —

where each particle represents a single potential solution in the search space of the

optimisation problem at hand. Each particle in the population “flies” through the

search space, interacting with the rest of the population to seek new “optimal”

areas of the search space. In order to explore the search space effectively, particles

use three sociocognitive behaviours, introduced in Section 8.1. These innate social

behaviours provide each particle with the ability to evaluate their current position
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in the search space and compare their current and previous flying experience with

others, and imitate the behaviours of those who have succeeded finding features

in the search space that are important [142, pp. 288]. Before describing these

fundamental, sociocognitive behaviours (evaluate, compare and imitate), it is

important to note that particles are connected together according to a topological

neighbourhood. Each particle is a member of a neighbourhood, and within these

neighbourhoods particles communicate with each other to share information. The

concept of neighbourhood is described in more detail in Section 8.1.1.1.

Description of the three sociocognitive behaviours:

1. Evaluate In order to distinguish features of the search space that attract

and features that repel, particles have the ability to evaluate themselves,

usually by means of an objective function (or fitness function). The ability

of a particle to evaluate itself is an important asset, as it provides the

particle with a score that is a quantitative measure of goodness.

2. Compare Since particles have a consistent ability to evaluate themselves,

they therefore have a mechanism to compare themselves to others in the

population. The notion that particles with a high1score occupy “good”

areas of the search space is central. In order to explore new and better

areas of the search space, particles compare themselves to others in the

population and imitate the behaviour of those particles who are superior to

themselves.

3. Imitate Individual particles imitate their neighbours on the basis of their

performance. For example, if a particle’s neighbour in the population has

a better solution to the problem at hand, the particle will endeavour to
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be more like its neighbour, flying through the search space towards the

“better” neighbouring particle.

The mechanics of particle flight in PSO is simple [77]; a particle’s trajectory

along each dimension of the solution space is determined according to a set of

rules. At a high level of abstraction, these rules represent a combination of the

particle’s own flying experience and the successes of the particle’s neighbours.

The social behaviour principles that governs particle flight is described in more

detail in Section 8.1.1.1.

8.1.1.1 Solution exploration through social interaction

In a PSO, the particles interact in social groups to solve the problem at hand,

as they do not have the ability to solve problems as individuals [221]. The

population of particles is split and organised into sub-groups of particles according

to a specified topological communication/interaction infrastructure, sometimes

referred to as a social network, or neighbourhood.

Particles “fly” through the problem search space looking for good solutions. A

particle’s flight is controlled by iteratively adjusting its trajectory through cal-

culated changes in velocity. The velocity change is calculated by applying a

number of rules, which include combining the particles current and previous best

flying experience with the best point found by any particle in the surrounding

neighbourhood. To prevent premature convergence and encourage exploration,

stochastic perturbations are injected into the velocity update rules [77]. See

Section 8.1.3 for further details on the PSO algorithm and particle update rules.

1Qualification of the “high” is dependent on the problem. For example, in a minimisation
problem, a high scoring particle may be the one with a score closest to zero.
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Eventually, after successive iterations of the algorithm, the swarm is likely to

gravitate to an optimum of the fitness function. This behaviour aligns with Hep-

pner’s [117] observations of bird flocks foraging for food.

The neighbourhood strategies that govern how individual particle are connected

to one another (a particles “social network”) are numerous, however each group-

ing strategy is engineered using only one of two social interaction principles,

namely the global best(gbest) principle and the local best (lbest) principle [185].

On one hand, the gbest social network topology connects all members of the pop-

ulation to one another, thus individual particles can compare their performance

to every other member of the population, imitating the one single “best” particle

in the entire population. The gbest principle is known to converge quickly on

solutions, however its weakness is found in its propensity to become trapped in

local optima [142, pp.344]. On the other hand, lbest neighbourhood strategies

allow each individual to be influenced by some smaller number of topological

members of the population, allowing particles to “flow around” local optima,

as sub-populations explore different regions, striking a careful balance between

exploration of the search space and exploitation of local optima.

(a) Ring (k = 2) (b) Wheel

Figure 8.1: Common neighbourhood topologies — ring (b) and wheel (a)

The two most common lbest topologies are Ring and Wheel [140], shown in

Figure 8.1.1.1. In the Ring topology (Figure 8.1(a)), each particle communicates

with, and is directly influence by, its k adjacent neighbours; it is common for
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k = 2 in lbest strategies. Particles are assigned to a neighbourhood based on

their index. For example, assuming k = 2, the social neighbourhood for particle

1 includes particles 8 and 2. Similarly, the social neighbourhood of particle 2

includes particles 1 and 3.In this neighbourhood strategy, influence spreads from

neighbourhood to neighbourhood. If one segment of the population converges

on a local optimum while another segment converges on a different optimum,

if an optimum really is the best found by any part of the population, it will

eventually attract all other neighbourhoods towards it. Note that the lbest ring

topology is a special case of the gbest ring topology. On the other hand, the Wheel

topology (Figure 8.1(b)) prohibits particles from communicating with each other,

permitting communication through only a single, focal individual. The central

particle compares its performance against the rest of the population and modifies

its trajectory towards the best members, thus creating a ‘follow the leader’ effect.

Such a topology slows the speed of transmission of good solutions through the

population, thus only the very highest quality areas in the search space will

be communicated to the rest of the population. Kennedy [140] tested these

topologies using a number of benchmark problems, and results demonstrated

differences in performance. However, it should be noted that the difference found

was problem dependent, and there was no conclusive evidence to suggest that

any one topology was better than another. The interested reader is directed to

[144, 178] for detailed discussions on the effects of topology on performance in a

PSO.

163



8.1.2 Anatomy of a particle

Before presenting the PSO algorithm we describe the elements that constitute a

particle, as well as the PSO notation used throughout this thesis.

Each particle is composed of five attributes, summarised in Table 8.1. It is worth

noting that the “evaluate” behaviour described in Section 8.1.1 is represented by

the particle’s fitness score — row 4 in Table 8.1.

Attribute Definition

−→
Xi Position vector, which stores the current location of the ith particle in D-

dimensional space.
−→
Pi Previous best position found in D-dimensional space.
−→
Vi Particle’s current velocity along each of the D-dimensions.
f(−→xi) Fitness (score) of a particle at position −→xi .

PBk
i Fitness of the best position found so far (i.e. score of −→pi ).

Table 8.1: The five components of a particle.

A particle’s current position is denoted by the vector
−→
Xi, which represents a single

point in D-dimensional space, which, in turn, represents a single solution to the

problem at hand. Therefore, each of the D dimensions represents a variable in

the problem at hand.

At each iteration of the PSO algorithm, particles determine their own fitness,

f(
−→
Xi). If the current point

−→
Xi is the fittest solution that the particle has found

so far, then its coordinates,
−→
Xi, are stored in

−→
Pi and the corresponding fitness,

f(
−→
Xi), is stored in pBest. Thereafter, each particle updates its trajectory by

computing a new velocity,
−−→
vk+1

i , which is applied to its current position,
−→
Xi; this

enables the particle to fly to a new position in D-dimensional space.

A more detailed description of the PSO algorithm and the rules used to compute

new trajectories is provided in Section 8.1.3.
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8.1.2.1 Notation

In this section we present standard notation to describe PSO. The notation pre-

sented in this section will be used where appropriate through the remainder of

this thesis.

Swarm, or population A swarm (or population) of n particles is denoted as

the vector Sk; the superscript, k, denotes the swarm at the kth iteration.

Accordingly, a swarm of n particles at iteration k is denoted as: Sk =

[Xk
1 , Xk

2 , . . . , Xk
n].

A particle The ith particle, Xk
i , in the swarm at iteration k represents a sin-

gle point in d-dimensional space. Therefore, Xk
i is defined as: Xk

i =

[xk
i1, x

k
i2, . . . , x

k
ij], where x’s are the parameters (variables) and xk

ij is the po-

sition of the ith particle along dimension j at iteration k, where 1 ≤ j ≤ d.

Particle velocity Each particle has a velocity at iteration k. Velocity dictates

the rate of position change, and therefore enables the particle to fly. The

velocity of particle Xk
i along each dimension at iteration k is given by the

vector V k
i = [vk

i1, v
k
i2, . . . , v

k
ij]. Accordingly, each element, vk

ij, represents the

velocity of particle i along dimension j at iteration k. Changes in particle

velocity are sensitive: too little velocity and the search will never converge;

too much velocity and the particle will pass good solutions and may never

converge. To ensure a balance, the velocities are restricted to a user defined

range, V k
i = [Vmin, Vmax] — see Equation 8.4 in Section 8.1.3.1.

Personal best, pBest The best position in the search space found by particle

i up to iteration k is denoted by the vector PBk
i . At each iteration, pBest

is updated using Equation 8.1.
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PBk+1
i =





PBk
i if f(Xk+1

i ) ≤ f(BP k
i )

Xk
i if f(Xk+1i > f(BP k

i )
(8.1)

In other words, if the fitness of the particle at its current position is fitter

than the fitness of the current personal best, then set the current personal

best to the current position. Otherwise, leave the personal best position

unchanged.

Neighbourhood best In section 8.1.1.1 we noted two neighbourhood strate-

gies, namely gBest and lBest. In PSO algorithms that assume a gBest

strategy, the neighbourhood best particle is determined by, at each itera-

tion, iterating through every particle in the swarm and selecting the particle

with the best pBest score. The vector GBk retains the position vector of

the highest achieving particle in the swarm until a better position is found.

In the lBest strategy, the entire swarm is divided into sub-populations; each

particle is influenced by other members in its social network. In order to

achieve this, each particle has a separate memory store known as lBest

to stores the best location found by any member of the social network. At

each iteration, the personal best position found by each particle is compared

against the known best position in the neighbourhood. If there is a higher

scoring position found, then LBEST takes a copy the position of PBk
i .

However, if no better score is found, LBEST retains its current vector.

Now that the components of a particle and notation have been defined, we are

now positioned to present the original PSO algorithm.
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8.1.3 The original Particle Swarm Optimiser algorithm

The original PSO algorithm is simple [141]; it operates in continuous, real number

space, requires primitive mathematical operators, makes minimal use of computa-

tional resources such as memory and processing power, and it can be implemented

in a few lines of computer code [77].

The equations required to update a particle’s position in the search space are

described in Section 8.1.3.1, and the algorithm that implements the original PSO

is presented in Section 8.1.3.2.

Modifications made to the original PSO, including a technique to improve con-

vergence as well as a modification to support binary encoded problems, are in-

troduced in Section 8.1.4.

8.1.3.1 Updating the particles’ trajectory

Two equations are required to enable particles to fly to new areas in the search

space. The particle must first compute a new velocity, and using the new velocity,

fly from its current position to a new position in the search space. The two

equations for describing a particle’s flying trajectory are:

vk+1
ij = vk

ij + c1ϕ1(pb
k+1
i − xk

ij) + c2ϕ2(gbk
j − xk

ij) (8.2)

xk+1
ij = xk

ij + vk+1
ij (8.3)

Equation 8.2 defines how particle velocities are updated, and Equation 8.3 defines

how the particle flies to a new area of the search space, given the new velocities.
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Note that the term gbk
j in Equation 8.2 assumes denotes a gBest neighbourhood

strategy; this can easily be changed to a lBest strategy.

As can be seen from Equation 8.2, the velocity update equation is composed of

three parts:

1. Momentum, vk
ij: The particle’s velocity is based on its current value to

prevent abrupt changes.

2. Cognitive influence, c1ϕ1(pb
k
ij − xk

ij): This represents private thinking and

conservative tendencies. In other words, flight is based on previous flying

experience (pBest).

3. Social influence, c2ϕ2(gbk
j − xk

ij): This represents social collaboration be-

tween particles i.e. sheep-like (or follower) tendencies. In other words,

flying is influenced by experience of the rest of the swarm — in particular,

the flying experience of best particle in the neighbourhood.

The values of c1 and c2 are used to modulate the cognitive influence and social

influence of the particle as it accelerates through the search space, and are ini-

tially set to the value 2 [139]. Acceleration in the direction of pBest (c1) and

gBest (c2) is weighted by two positive, independent random terms, ϕ1 and ϕ2

respectively, drawn from a uniform distribution in the range U(0, 1). It is these

terms that provide the stochastic element in a PSO; the terms weight the par-

ticle’s individual-learning and social-influence such that sometimes the effect of

one, and sometimes the effect of the other, will be stronger. This encourages

diversity and exploration. Therefore, when a particle moves towards its best pre-

vious position or towards its neighbourhood best position, it moves towards a
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point which is around the best position. However, it is easy to see that the PSO

can become unstable quickly, as particles have the potential to increase speeds

uncontrollably, ultimately enabling the particle to leave the search space. To

that end, a clamping function, shown in Equation 8.4, is applied to each velocity

once it has been calculated to ensure that it remains within a specified range

[Vmin, Vmax]. Usually, Vmin = −Vmax.

restrict(vk
ij) =





Vmax if vk
ij > Vmax

vk
ij if vmin ≤ vk

ij ≤ Vmax

Vmin if vk
ij ≤ Vmin

(8.4)

Applying hard bounds on velocities should be done carefully for two reasons: 1)

there is no optimal value for ±Vmax — the value of ±Vmax is very much problem

dependent; however, there is no rule of thumb for deriving ±Vmax [221]; and 2)

incorrect selection of ±Vmax has the potential to allow particles to fly far past

good solution areas, and small ±Vmax has the potential to trap particles into local

minima [77]. This issue is discussed further in Section 8.1.4.1.

Once the velocity along each dimension is calculated, the particle flies to the next

point in the search space using Equation 8.3.

For a deeper discussion on parameter selection in PSO, the interested reader is

directed to [46, 163, 32, 246, 79, 210].

8.1.3.2 The Particle Swarm Optimiser algorithm

The PSO algorithm consists of repeated applications of the trajectory update

equations presented in Section 8.1.3.1. The original PSO algorithm is shown in

169



Figure 8.2 as a process flow diagram, and the corresponding pseudocode is given

in Algorithm 2.

Figure 8.2: Particle Swarm Optimisation flow diagram.

Algorithm 2 Original particle swarm algorithm pseudocode
1: Create and initialise a swarm of d-dimensional particles: S
2: repeat
3: for each particle Xk

i ∈ [1, . . . , |S|]: do
4: Perform update using equations 8.2, 8.4 and 8.3
5: if f(S.Xk

i ) < f(pBestS.Xk
i
) then

6: pBestS.Xk
i

= S.Xk
i

7: end if
8: if f(pBest.Xk

i ) < f(gBestS.Xk
i
) then

9: gBestS.Xk
i

= Xk
i

10: end if
11: end for
12: until termination criterion is met

Creation and initialisation of each particle in the swarm consists of 3 steps:

1. Initialise the particle’s n-dimensional position vector, Xi, using a uniformly

distributed random number generator in the range Xmin, Xmax for each
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dimension, where ±Xmax is the bounds of the dimension (variable) at hand.

This encourages the particle to scatter its initial positions throughout the

search space.

2. Initialise the particle’s n-dimensional velocity vector, Vi, to zero. Alterna-

tively, a uniformly distributed random number generator can be used in the

interval ±Vmax.

3. Copy the initial position vector, Xi, to the particle’s pBest vector: pBest ←

Xi.

Optimisation algorithms have many different termination criteria options. In

many cases, however, the termination criteria are problem dependent. Common

termination strategies include running the algorithm for a fixed number of fitness

function evaluations or running the algorithm until a solution is found with a

fitness within a pre-specified error threshold.

8.1.4 Modifications to the original PSO

A number of improvements have been made to the original PSO algorithm, the

most pertinent being enhancements to the convergence capability, and the intro-

duction of a binary version of the PSO algorithm. These two topics are discussed

in Sections 8.1.4.1 and 8.1.4.2 respectively.

8.1.4.1 Improving search scope and convergence

In Section 8.1.3.1, one of the two caveats concerning the use of Vmax was the rate

of convergence. In particular, premature convergence on local optima when Vmax
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is low. A number of modifications have since been made to the PSO algorithm in

order to gain better control of the scope of the search and enhance its convergence

capability.

One of the most common enhancements is the inertia weight term, ω, proposed

by Shi and Eberhart [245]. The inertia weight is a scaling factor that governs

the amount of the previous velocity that should be retained when calculating

the new velocity. The change required in the algorithm to support inertia is not

structural; rather, the velocity update equation is modified to incorporate the

inertia weight. Therefore, Equation 8.2 becomes

vk+1
ij = ω · vk

ij + c1ϕ1(pb
k+1
i − xk

ij) + c2ϕ2(gbk
j − xk

ij) (8.5)

It is possible to restore the original PSO velocity update equation by setting

ω = 1.

In most PSO implementations that use inertia weight, the inertia is decreased

linearly over time, and it starts with an initial value close to 1 [246, 79]. The

inertia weight has the desired effect of modulating the particle’s velocity in such

a way that it balances exploration and exploitation. At the start of the search

the algorithm favours global exploration, as the inertia weight is high, therefore

permitting the particle to accelerate up to its maximum velocity. As the inertia

decreases, the particle’s velocity decreases towards zero enabling it to refine the

search and become more exploitative.

Various empirical experiments have been conducted to investigate the effect of

different inertia weight values. Shi and Eberhart [78] investigated the effect of

ω in the range [0, 1.4]. They found that the PSO converged quicker when ω took
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on values in the range [0.8, 1.2]. However, when ω > 1.2, Shi and Eberhart found

that the PSO reached convergence less often. In later experiments, it was found

that a linear decrease in ω from 0.9 to 0.4 was most effective on four different

problems [79]. Note that these ranges may vary between problems.

Relative to other nature-inspired search heuristics, for example Genetic Algo-

rithms, PSO has fewer parameters. However, it remains for the required param-

eters to be set, and like other algorithms, the choice of parameters is very much

problem dependent. A number of theoretical and empirical studies appear in the

PSO literature to assist users in parameter selection. The interested reader is

directed to [79, 77, 266, 246, 247, 82, 78]

8.1.4.2 The binary PSO algorithm

The original PSO algorithm proposed by Kennedy and Eberhart was designed

for solving real-value problems. However, with slight modifications, the original

PSO algorithm is capable of solving problems that are binary in nature [143].

In Kennedy and Eberhart’s version of binary PSO, a particle’s position vector is

restricted to values in the set {0, 1}d, though no restriction is applied to parti-

cles’ velocity vector.There is no change to the original velocity update equation

(Equation 8.2), however the notion of velocity in the binary PSO is different to

that of the real-value version. In the real-value version, velocity is interpreted as

a rate of change; it is clear, though, that this makes no sense in a binary space.

Therefore, in Kennedy and Eberhart’s binary PSO, velocity is interpreted as a

probability threshold which is used to determine whether xk
ij — the jth compo-

nent of xk
i , a bit — should be in one state or another (0 or 1). Once the velocity

update equation is applied,
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vk+1
ij = vk

ij + c1ϕ1(pb
k+1
i − xk

ij) + c2ϕ2(gbk
j − xk

ij) , (8.6)

the new velocity, vk+1
ij , is converted to a probability using a logistic transform

function (shown graphically in Figure 8.3), defined as

sig(vk+1
ij ) =

1

1 + exp(−vk+1
ij )

(8.7)

Sigmoid logistic transform curve
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Figure 8.3: Sigmoidal logistic transform graph.

Although the original velocity update equation does not change, the position

update equation differs from the original (Equation 8.3), and is defined as

xk+1
ij =





0 if ϕ3 ≥ sig(vk+1
ij )

1 if ϕ3 < sig(vk+1
ij )

, (8.8)

where ϕ3 is a random number drawn from a uniform distribution in the range

U [0, 1]. In other words, generate a random number ϕ3 for each bit-string site and

compare it to the squashed velocity, sig(vk+1
ij ), for that site. For example, for
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each bit-string site, if ϕ3 is less than sig(vk+1
ij ), then xk+1

ij is 1, otherwise xk+1
ij is

0.

Analysis of the logistic transform function used to squash the velocity into a

probability shows that the position of the particle fixes on xk+1
ij = 0, with less

chance of change, as sig(vk+1
ij ) approaches 0. In other words, when vv+1

ij . −10

[143]. For example, if vv+1
ij = −11, sig(vk+1

ij ) ≈ 0.00002, rounded sig(vk+1
ij ) = 0;

since ϕ3 generates positive random real numbers, application of Equation 8.8 for

any value of ϕ3 results in xk+1
ij = 0. On the other hand, the sigmoid function

becomes saturated when vv+1
ij > 10, resulting in a greater probability of xk+1

ij = 1.

In order to prevent sig(vk+1
ij ) becoming too close to 0.0 or 1.0, the velocities are

clamped using a constant parameter Vmax — the same as the real-value PSO

in Section 8.1.3.1. Kennedy and Eberhart [142, pp. 296] recommend clamping

the velocities in the range [−4, 4]. As can be seen from the logistic transform

graph shown in Figure 8.3, the probability of state change is reduced to the

range between ≈ 0.018 and ≈ 0.9820. This means that there is always a chance

(≈ 0.018) that a bit will change state, which Kennedy and Eberhart [142, pp.

296] equate to a mutation rate in Genetic Algorithms.

8.2 Motivation for using Particle Swarm Opti-

misation

Recall from Section 7.1 that the primary problem with Bayesian network (BN)

discovery from data is the size of the search space, as it grows with the number

of variables in the problem domain — see Section 7.1. There is a plethora of

literature which documents the ability of nature inspired algorithms to search
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effectively and produce good results in problems characterised by massive, high-

dimensional, complex search spaces — problems such as BN discovery from data.

Researchers who have looked at this subject (in the context of BN structure

discovery) include Larra˜naga et al. [155], who proposed GAs for BN structure

learning. Other researchers include Romero et al. [232], de Campos et al. [62]

and Castro et al. [35] who applied Estimation of Distribution Algorithm (EDA),

Ant Colony Optimisation (ACO) and Artificial Immune System (AIS) to BN

structure learning, respectively. They have all demonstrated that nature-inspired

algorithms yield successful results for BN structure discovery from data.

More recently, Particle Swarm Optimisation (PSO) has emerged as a nature-

inspired search and optimisation heuristic. Evidence from the literature suggests

that, for certain problems, PSO is superior to its GA counterpart. For example,

Petrovski et al. [219] compare GAs and PSO techniques in the evolution of op-

timal chemotherapy schedules for patients suffering from cancer. Their results

concluded that PSO was able to find feasible regions for possible solutions faster

than GAs. In addition, the PSO algorithm was successful in finding better so-

lutions to the problem than the GA approach. Another example is the work of

Mouser and Dunn [189]. In their research, they show that PSO outperforms

GAs in optimal design of aircraft. Hassan et al. [109] examined the claim that

PSO has the same effectiveness (finding the true global optimal solution) as the

GA, but with significantly better computational efficiency (fewer function eval-

uations). Kennedy and Spears [145] compared binary PSO and the GA on a

number of different randomly generated multimodal problems. In that study, the

binary PSO was superior in performance to the GA — the binary PSO found
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the global optimum on every trial, regardless of the problem features; the same

could not be said for the GA.

A possible explanation for the improved performance of the PSO over the GA may

be found in the underpinning mechanics of the respective algorithms. The PSO

has strong sociological underpinnings that promotes information sharing and, in

addition, it has the capacity to store a limited amount of information about good,

previously explored areas of the search space. Using its social communication

principles, it has the ability to communicate this information between particles

at each iteration. GAs, on the other hand, do not have the ability to conserve

information from “ancestors”. Learning from peers is limited to application of

genetic operators on the individuals in the population at the current iteration

(i.e. there is no interaction across all candidate solutions).

Since PSO has shown evidence of enhanced performance over GAs on a selection

of problems, we seek to determine PSO’s performance on the task of BN structure

discovery, and compare the results to work previously done using GAs for BN

structure discovery. Before presenting our approach, though, we present some of

the current approaches PSO approaches to BN structure learning.

8.3 Existing PSO-based structure learning ap-

proaches

As mentioned in Section 8.2, PSO has been shown to be an effective algorithm

for searching through complex, high-dimensional search spaces. In addition, re-

search has demonstrated that, on some problems, PSO is more effective in terms

of computational cost and convergence to an optimal solution when compared

177



with other nature-inspired search heuristics (for example, the GA). These char-

acteristics have encouraged active research into the application of PSO for BN

structure learning, and as a result, a number of papers have been published. It

would appear that this element of our research has been actively pursued by oth-

ers in the field at the same time. This is encouraging, as it would indicate that

others in the field view this approach worthy of investigation. We will review

some of the recent literature in this section.

Du et al. [76] use PSO to explore Directed Acyclic Graphs (DAG) space, where

each particle represents a single “point” in the space (i.e. a candidate BN struc-

ture), and is encoded using an n x n connectivity matrix, where each element in

the matrix represents a dimension in the particle, and n is the number of nodes

in the problem. The presence of a “0′′ in any element indicates no edge, and a

“1” indicates a connecting edge. In this implementation, velocities are discrete

{−1, 0, 1}. Therefore, when calculating the velocities for each position, the re-

sulting value indicates whether the edge represented by the position in question

is to be removed, added or left unchanged. An example is shown in Table 8.2.

In the example, dimension 1 for an arbitrary particle is examined. The personal

best value for dimension 1 is shown in the first column, and the current value of

the particle along dimension 1 is shown in the second column. The new cognitive

portion of the velocity for dimension 1, as per Equation 8.2, is shown in the third

column; a translation for the new velocity is given in column four.

PBk
i1 xk

i1 (pbk
i1 − xk

i1) Translation
0 0 0 unchanged
0 1 -1 remove
1 0 1 add
1 1 0 unchanged

Table 8.2: Illustration of Du et al. velocity update.
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The velocity is applied to the particle’s current position in order to move it to a

new point in the search space. If the position currently represents no edge (xk
i1 =

0), when vk
i1 = 1, then a new edge would be added at the position (xk+1

i1 = 0);

otherwise, the edge stays present or is removed, i.e. xk+1
i1 = 0.

As can be seen from Section 8.4, our approaches are based on the binary PSO,

which bases velocity update on the notion of a probability of change for each

position, and so our position update rules are different to those used by Du et al.

Another PSO approach is that of Heng et al. [115, 114]. The encoding scheme is

different to that mentioned above. In this approach, each position in the particle

encodes a variable, and the contents of the position is the list of those variables

that are direct parents. A set of discrete operators are defined, which, when

applied to a position instruct the particle whether to add a variable, remove a

variable or take no action. These operators are known as Switch Operators, and

a list of such Switch Operators can be applied to a single position. The interested

reader is directed to [115] for a detailed description.

Sahin et al. [236, 235] exploit the advantages of the parallel nature of PSO.

In their implementation, they use a distributed binary PSO algorithm across 48

processors. The approach is very similar to ours in that it is implemented as

a binary PSO; however, the benefit here is that the computational expensive

aspect of the search, namely computing the fitness score, is distributed across

many processors in parallel. They apply their algorithm to airplane engine fault

diagnosis.

Other PSO-based approaches to BN structure learning include [39, 53].

There are a number of differences and similarities between these approaches and

the approaches that we have developed. Firstly, we represent and encode our
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solutions using a connectivity matrix. In one case as an nxn connectivity matrix,

and in the other case the upper triangulated matrix complete with a concatenated

permutation. Secondly, we explore the space of DAGs; in the first case we repair

solutions that do not respect DAG constraints, and in the other case we do not

need to repair at all. Common to our approaches and the approaches discussed

here is the use of a Bayesian fitness metric, typically the Cooper-Herskovits [51]

metric, which provides the particles with an objective scoring function to evaluate

their positions as they fly through the search space.

8.4 Proposed approach PSO

In this section we present an overview of our approach to Bayesian network (BN)

structure induction driven by a Particle Swarm Optimiser. Detailed descriptions

of the two binary PSO-based algorithms developed are provided in Section 8.5

and Section 8.6.

Our approach to BN structure discovery is based on the search and score paradigm,

described in Section 7.3, and uses binary PSO. It is worth noting that our ap-

proach is closest to Du et al. [76] in terms of solution representation and in

terms of how the algorithm functions. In the first of our approaches, we use the

binary PSO algorithm as the search engine to explore the space of BN structures.

In our implementation, we represent solutions using the full n × n connectivity

matrix. This method for solution representation, however, requires a mechanism

to repair solutions that are invalid due to cycles, caused by the PSO’s stochastic

update algorithm. Since this algorithm first generates solutions and then repairs
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those that are invalid, we have named the algorithm CONAR (CONstruct And

Repair), and it is described in detail in Section 8.5.

In our second approach, we remove the the need for a repair operator. In this

algorithm, we propose the use of only the upper triangular portion of the n × n

binary connectivity matrix to represent solutions. In doing so, we can exploit

a solution representation strategy that restricts generation of illegal BN struc-

tures, thus produces only legal solutions. We have named this algorithm REST

(REstricted STructure), and it is described in detail in Section 8.6.

We propose the Cooper and Herskovits [51] BN scoring metric (K2), described

in Section 7.3.3.2, expressed in terms of the natural logarithm, to score candidate

BNs. At each iteration of the PSO algorithm, the K2 metric is used to evaluate

the quality of the generated solutions. Therefore, our aim is to find the structure

with highest probability of representing the probabilistic relations embedded in

the data set — the one with the K2 score closest to zero. The K2 scoring metric

was adopted to enable us to compare our research with similar work on BN

structure discovery using nature-inspired methods, such as [135, 16, 62, 155, 156].

Details of the two algorithms, CONAR and REST, have been published in [57].

Before the two algorithms are presented, we first give an overview of the core

representation strategy that we propose to encode BN structures in both CONAR

and REST.

8.4.1 Bayesian network representation

Each individual particle in the swarm represents a single BN structure; each BN

structure is encoded in a n×n binary connectivity matrix. In a n-dimensional do-
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main, where n is the number of domain variables, a particle encodes the flattened

binary connectivity matrix, denoted as C, such that,

C[i, j] =





1 if xi → xj

0 otherwise
, (8.9)

where i infers the row, and j the column.

As alluded to in Section 8.4, the use of a n × n binary connectivity matrix gives

rise to two different representation strategies:

1. The full, n×n connectivity representation in which all nodes of the network

can be parents of all other nodes in the domain. This is the representation

scheme used by CONAR.

2. The upper triangular connectivity matrix representation which requires an

order among the variables such that a node has the potential to be a parent

of only nodes preceding it in the proposed ordering. This representation is

used by REST.

8.5 CONstruct And Repair (CONAR)

The CONAR algorithm is based on the search and score paradigm for BN dis-

covery, as described in Section 7.3. The algorithm performs a search in the space

of BN structures looking for the BN that best models the probabilistic relations

embedded in the data set. As noted earlier, in this research we use the K2 metric

proposed by Cooper and Herskovits [51] as the scoring function to evaluate the

quality of individual particles (solutions).
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8.5.1 Solution representation

In CONAR, particles encode the flattened, full n × n binary matrix, where each

dimension of the particle maps to one element in the matrix. For example, the

flattened matrix for an arbitrary BN with n variables, with respect to Equation

8.9, is defined as

C11C12 . . . C1nC21C22 . . . C2n . . . Cn1Cn2 . . . Cnn (8.10)

Once a particle’s velocity is updated and it moves to a new point in the search

space, the particle may well represent an invalid BN solution. This is because the

encoding scheme permits all nodes to be parents of other nodes in the domain,

and therefore does not permits cycles — such solutions do not respect Directed

Acyclic Graph (DAG) conditions — see Section 2.1.

For example, consider a domain of n = 3 variables, and an arbitrary binary

particle, xi, with n×n = 9 dimensions set as follows: [011000000]. The populated

matrix and corresponding BN structure is shown in Figure 8.4.

(a) Matrix before update (b) BN before update

Figure 8.4: A BN solution in CONAR, before update.

After a single iteration of the PSO, xi occupies a new point in the search space:

[01001100]. The updated matrix and corresponding BN structure is shown in

Figure 8.5.
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(a) Matrix after update (b) BN model after up-
date

Figure 8.5: A BN solution post CONAR update.

It is clear, however, that the new solution is illegal as it corresponds to a cyclic

graph: X1 → X2 → X3 → X1. We introduce a simple repair operator to trans-

form DAGs that violate DAG conditions back into legal DAGs. This is achieved

by repeatedly eliminating (at random) edges that break DAG conditions until a

legal DAG is recovered. Section 8.5.1.1 describes in detail the cycle detection and

elimination strategies employed.

8.5.1.1 Validation and repair in CONAR

In the CONAR algorithm, once particles fly to a new position in the search space,

their position is verified to ensure that it is legal. In other words, the solution

that the particle represents is validated in that it respects Directed Acyclic Graph

(DAG) conditions — see Section 2.1. If DAG conditions are violated, then the

particle is repaired by randomly eliminating cycle-causing edges. CONAR iden-

tifies cycles in a 3-stage process: firstly, self-referencing edges (or self-cycles) are

detected, followed by bi-cycles, and lastly regular-cycles. The method used to

determined the presence of cycles and the strategies employed to repair them are

discussed in this section.
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(a) Self cycle (b) Bi cycle (c) Regular cycle

Figure 8.6: Cycles caused using the full n × n representation.

(a) Self cycle (b) Bi cycle (c) Regular cycle

Figure 8.7: Matrices for BNs shown in Figure 8.6.

Self-cycles A self-referencing cycle (or self-cycle) occurs when a node has an

edge that points directly to itself. An example of a self-cycle is shown in Figure

8.6(a), and the corresponding n × n binary matrix is shown in Figure 8.7(a).

Detecting self-cycles is trivial. The presence of a ‘1’ in any element along the

diagonal of the n × n matrix identifies a self-cycle. The repair strategy simply

replaces any ‘1’ in the diagonal with a ‘0’.

Bi-cycles A bi-directional cycle (or bi-cycle) occurs when two nodes in a BN

structure appear to influence each other. In Figure 8.6(b), we see the scenario

where Node A influences node C, and in turn, Node C influences Node A. The

corresponding matrix is shown in Figure 8.7(b). Bi-cycles are detected by, for

each edge in the upper triangular portion of the n × n matrix, checking the

corresponding reverse edge. For example, if element C21 = 1 and C12 = 1, then

clearly a bi-cycle exists, therefore one of the edges is selected at random and
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removed. It should be noted that CONAR does not make an informed decision

about which edge to remove, therefore there is a 0.5 probability that an optimal

edge is lost.

Regular cycles Cycles spanning ≥ 3 nodes are referred to as regular cycles,

as shown in Figure 8.6(c). The n× n binary matrix for this example is shown in

Figure 8.7(c), where n is the number of variables in the domain. Node A influences

node B, Node B influences Node C, and Node C influences Node A. Such cycles

are identified using Warshalls algorithm [276], which calculates the shortest path

between pairs of variables. In doing so, it is possible to calculate whether a path

exists from Node Xi → Xi, which therefore indicate the existence of a cycle.

Therefore, to detect a regular cycle from a, Warshall’s algorithm is run to check,

for each node, if there’s a path from Xi to Xi, with computational complexity

O(n3). Note that this computational complexity is to detect a regular cycle from

a single node, and not all n nodes. Sub-graphs containing regular cycles are

repaired in the same fashion as the bi-cyclic sub-graphs, where offending edges

are removed at random until the solution respects DAG conditions.

8.5.2 Algorithm

The CONAR algorithm makes use of the canonical binary PSO algorithm, with

an extra step concerned with validation and repair; this is shown in Algorithm 3.

The following two points are worth noting:

1. The create and initialise swarm, step 1 in Figure 3, is as per Section 8.1.3.2

2. The initial dimensions are set such that they correspond to a legal DAG
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Algorithm 3 Pseudocode for CONAR
1: Create and initialise a swarm of (valid) n2-dimensional particles: S
2: Select arbitrary gBest
3: repeat
4: for each particle Xi ∈ [1, . . . , |S|]: do
5: Perform update using equations 8.6, 8.7 and 8.8
6: if isIllegal (S.Xi) then
7: S.Xi ← repair(S.Xi)
8: end if
9: if f(S.Xi) > f(pBestS.Xi

) then
10: pBestS.Xi

= S.Xi

11: end if
12: if f(pBest.Xi) > f(gBestS.Xi

) then
13: gBestS.Xi

= pBest.Xi

14: end if
15: end for
16: until termination criterion is met

Although the CONAR algorithm uses the basic canonical binary PSO algorithm

with simple repair strategies for repairing illegal structures, we feel that this

proposition makes for a good starting point to evaluating the potential of PSO

for BN structure learning.

8.6 REstricted STructure (REST)

The REST algorithm is almost identical to CONAR; the primary difference is

the solution representation, which is modified to guarantee generation of only

legal solutions, therefore eliminating the need for validation and repair operators.

REST uses binary Particle Swarm Optimisation to perform a search in the space

of legal BN structures, and it uses the same scoring function (K2) as CONAR to

evaluate the quality of candidate solutions.

8.6.1 Solution representation

It is possible to guarantee a legal BN structure by encoding the solution using

the upper triangular portion of an n × n (where n is the number of variables)
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connectivity matrix [54, 155, 16]. In this representation, particles encode the

flattened upper triangular portion of the n×n binary matrix, where each dimen-

sion of the particle maps to one element in the matrix. The flattened matrix for

an arbitrary BN with n variables, with respect to Equation 8.9, is defined as

C12C13C14 . . . C1n, . . . C23C24 . . . Cn2, . . . Cn−2n−1, Cn−2n, Cn−1n (8.11)

Therefore, the number of elements required to store an arbitrary BN structure

with n variables is defined as

n(n − 1)

2
(8.12)

An example of this representation scheme is as follows. Consider a domain of n =

5 variables, and a binary particle, Xi, with n(n−1)
2

= 10 dimensions. Assume that

the dimensions of the particle are set as follows: [1100001110]. The corresponding

matrix and the resulting BN structure is shown in Figure 8.8.

(a) Triangulated matrix (b) BN model

Figure 8.8: Triangulated n × n representation.
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Imagine that particle Xi has values [1000101001] after a single (stochastic) itera-

tion of the PSO algorithm; the updated matrix and corresponding BN structure

is shown in Figure 8.9. Notice that the DAG remains valid.

(a) Matrix after update (b) BN model after update

Figure 8.9: Triangulated n × n after update.

The issue with this approach is that the representation scheme is restrictive in

that the search becomes a search in the space of BNs that admit a specific order.

In other words, it is not possible to encode any arbitrary BN structure. For

example, in Figure 8.8 and 8.9, the order of the variables in the matrix dictates

the possible parent set for each variable. An order, by definition, states that a

node Xj can only have node Xi as a parent node if, in the order, node Xi comes

before node Xj [232]. For example, the edges X1 → X2, X1 → X3 and X3 → X4

are permitted; however, the edges X3 → X2 and X4 → X1 are not permitted.

In order to make the representations scheme flexible, and provide the ability to

represent any legal directed acyclic graph, we append one of the possible n! order

permutations to create a complete representation of the BN structure. Romero

et al. [232] use a similar encoding approach; however, they seek to find the

optimal ordering for the K2 algorithm, rather than the optimal BN structure.

Our encoding scheme is best understood by example.
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Consider a domain consisting of n = 3 variables, and an order X1, X2, X3. An

example is shown in Figure 8.10.

(a) Connectivity matrix (b) Corresponding BN model

Figure 8.10: Triangulated n × n after update.

Given that the encoding has n(n−1)
2

bits, and each bit represents a different struc-

ture, the total number of possible structures for 3 variables, ordered as X1, X2, X3,

is 2n(n−1)/2 = 8. The 7 of the 8 structures are shown in Figure 8.11 — the 1st

candidate structure, that is the one with no edges [000], has been omitted. The

matrix and structure shown in Figure 8.10 corresponds to the structure shown in

Figure 8.11(e).

(a) 001 (b) 010 (c) 011 (d) 100

(e) 101 (f) 110 (g) 111

Figure 8.11: All BN structures admitting order X1, X2, X3.

To make this representation flexible, we attach one of n! systematically generated

permutations (shown in Table 8.3) to the triangulated matrix encoding. Together,
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the binary connectivity encoding and permutation provide a specification that al-

lows representation of any legal BN structure, given n number of variables. Since

the encoding mechanism is composed of both a flattened triangulated matrix and

a permutation, the full encoding bit string length becomes n(n−1)
2

+permbits(n!),

where n! is an integer stored in a binary representation that corresponds to the

number of permutations for n variables, and permbits(n!) = dlog2(n!)e is the

maximum number of bits required to store n! in a binary representation.

000 = 0 = ABC 001 = 1 = ACB 010 = 2 = BAC
011 = 3 = BCA 100 = 4 = CAB 101 = 5 = CBA

Table 8.3: Table of permutations for n = 3 variables .

In this example, with n = 3 variables, the connectivity portion requires 32−3
2

= 3

bits, and the permutation portion requires dlog2(n!)e = d log(n!)
log(2)

e = 3. Accord-

ingly, 6 bits are required to represent solutions. Consider a particle, Xi with 6

dimensions set to [011101]. The first 3 bits ([011]) define the connectivity, and

the remaining 3 bits ([101]) define order. Converting the order bit-string ([101])

to an integer, we get 5; the corresponding kth permutation, where k = 5 and

the index based at zero, see Table 8.3, is CAB. The connectivity matrix (which

admits the order CAB) and the resulting BN structure is shown in Figure 8.12.

(a) Connectivity matrix (b) Decoded BN model

Figure 8.12: An example of the flexible binary encoded BN.
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Combining the connectivity matrix and the permutation bit-string provide a com-

plete binary specification for a BN structure. As such, the PSO algorithm can

optimise the encoded bit-string without the need for validation or repair. The

role of the PSO algorithm, therefore, is to find the area of the search space that

corresponds to a good order permutation and connectivity.

8.6.2 Algorithm

Since REST does not require any validation or repair steps, the algorithm is

identical to CONAR without steps 6 − 8, shown in Figure 3

8.7 Summary

In the previous chapter we introduced the notion of BN construction from data,

identified existing data-driven algorithms, and highlighted the issues and chal-

lenges with existing algorithms. In this chapter we presented a new algorithm

for BN construction from data and illustrated in detail its operation. The new

algorithm, binary PSO, seeks to address some of the issues found in other algo-

rithms.

Two algorithms are proposed in this chapter, namely CONAR and REST, and

are both based on binary PSO. CONAR serves to demonstrate that binary PSO

can be used as a search heuristic for BN construction, and that there is no need

to specify an order among the nodes or search in a two-tiered search space.

However, CONAR requires expensive validation and repair operators to ensure

the integrity of candidate solutions. With a view to alleviating the validation
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and repair requirements, the representation mechanism employed by CONAR

was modified, which resulted in REST.

In the next chapter, the algorithms are evaluated empirically against a number of

performance metrics, and are compared against the genetic algorithm approaches

for BN discovery from data.
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Chapter 9

Experimental evaluation

9.1 Introduction

In this chapter we analyse, evaluate and compare the performance of the Bayesian

network (BN) learning algorithms described in Chapter 8 with a view to address-

ing three questions:

1. What is the ability of PSO to search the entire space of Bayesian network

structures without the need to learn an order, and, in addition, can the

variable order requirement be suppressed completely?

2. What is the performance capability of the algorithms developed compared

against each other, and how do they compare to other algorithms in the

literature (both order-based algorithms and algorithms that explore the

whole space)?

For the purpose of experimentation and evaluation, we use a number of synthetic

data sets from the literature, which are commonly used for the purpose of evalua-
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tion and comparison. In addition, we examine the performance of our algorithms

on real-life clinical data pertaining to dementia diagnosis.

We begin this chapter in Section 9.2 by defining and describing the data sets

used, performance metrics and experimental parameters used in experimentation.

An empirical evaluation of CONAR and REST on the synthetic and dementia

data is provided in Section 9.3 and 9.4 respectively. We end with a summary

of the results in Section 9.5. Note that this chapter does not evaluate the BN

construction approach; rather, it presents the experimental results. A review

of the approach, along with an review of the difference in the dementia models

across construction approaches, is treated in Chapter 10.

9.2 Experimental design

For the purpose of assessing the performance of the BN discovery algorithms

using known models, and to provide a mechanism to compare BN construction

approaches described in Chapter 4 and Chapter 7, we have used two groups of test

data. One group consists of synthetically generated data using a known solution,

which enables testing the performance of the algorithm. The other group of data

consists of real-life clinical data, which allows us to test the algorithms on a “real-

life” problem as well as obtain models for the purpose of comparing construction

approaches.

9.2.1 Synthetic test problems and databases

A common approach to evaluating BN learning algorithms involves generating a

synthetic database from a pre-specified network, applying the learning algorithm
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to the synthetic data set, then comparing the learned network with the original

one. A description of the benchmark BN problems and generated databases used

in our research is given below (in order of complexity).

1. Asia The Asia database represents an artificial problem relating to medical

diagnosis. It was proposed proposed by Lauritzen and Spiegelhalter [161],

and it is commonly used to demonstrate the workings of BNs. The model is

basic, consisting of 8 binary nodes and 8 edges, as shown in Figure 9.6(a).

A ‘learning’ data set consisting of 5, 000 cases is generated using Netica [2]

(a BN software tool).

2. Car This is a demonstrative BN, which represents the working relationships

between parts of a car thus facilitating fault diagnosis. As can be seen from

figure 9.9, the Car BN consists of 18 nodes and 17 edges. Many versions of

the Car problem exist — we have chosen the version supplied by BayesiaLab

[1], from which 10, 000 cases were generated.

3. ALARM The ALARM network, proposed by Beinlich et al. [11], is a med-

ical decision support tool for monitoring patients in intensive care. The

network consists of 37 nodes and 46 edges, and is shown in Figure 9.12(a).

The Alarm BN is considered a challenging problem for BN learning algo-

rithms. For the purpose of experimentation, a database consisting of 3, 000

cases is generated using Netica [2].

9.2.2 Real life clinical data set - dementia diagnosis

We apply CONAR and REST to the dementia data set with the purpose of

evaluating the algorithms on a “real-life” problem. Furthermore, the models
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obtained from these experiments feed into the comparison in Chapter 10, which

addresses structural differences between the models created by an expert and the

models derived from data.

Since there was no single data set pertaining to the hand-crafted models in Chap-

ter 5, we invoked a data collection study to provide samples for evaluating the

diagnostic accuracy of the hand-crafted models and data-driven discovery. The

dementia data set used in this chapter is that described in Section 6.1.1, which is

used to test the diagnostic accuracy of the hand-crafted models. Note, however,

that the variables dementia with lewy bodies and frontotemporal dementia do

not appear, as there was a serious under-representation of these pathologies.

9.2.3 Performance measures

Since the original networks are known, it is possible to evaluate the performance

of the algorithms by comparing the learned solutions to the reference models.

In order to enable evaluation, we collected performance measures relating to

the quality of the learned structures, as well as computational complexity. In

evaluating the models derived using the dementia data set, the hand-crafted

models described in Chapter 5, Section 5.5.1 and Section 5.5.2, are taken to be

the reference models — the models discovered from the data set will be compared

against these.

• Metrics to evaluate solution quality:

– Quantitative measure - the value of the CH (K2) metric (see Section

7.3.3.2). It is important to note that the learning problem is a maximi-

sation of the log of a probability, therefore lies in the range (−∞, 0).
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In other words, a score closer to zero is “better” than a score that is

more negative.

– Qualitative measures - structural differences between the learned net-

work and the original network. The average and variance of the total

number of edges (TE) is shown. TE is defined as the number of

correctly orientated edges in a solution with respect to the reference

model (TC), plus the number of inverted edges in a solution with re-

spect to the reference model (IE). In addition, the number of extra

edges (EE) — that is edges that appear in a solution and are not

correctly orientated or inverted in the reference solution — and the

number of missing edges (ME) are recorded.

• Algorithm complexity metric:

– Note from Section 7.3.3 that the scoring function used to evaluate

candidate solutions is decomposable. Therefore, the computational

expense associated with scoring a single candidate solution is measured

in terms of the number of function evaluations (FE) required to score

all families encoded by the solution. The FE counter is incremented

for each parent, therefore:

fch(xi, π(xi)) =

qi∏

j=1

(ri − 1)!

(Nij + ri − 1)!

ri∏

k=1

Nijk! (9.1)

9.2.4 Experimental parameters

A summary of the parameters used for experimentation are shown in Table 9.1.

Systematic tuning of the parameters has not been carried out; however, the values
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have been selected to be similar to those used in other optimisation problems:

population sizes for each benchmark problem are the same as [135]; we use [142,

pp. 344] as a guide for neighbourhood size; and φ1 and φ2 are randomly generated

in range [0, 1] [244]. The inertia weight, which is used to favour exploration in

the first stages of the search and exploitation in the second part of the search, is

decreased over time from [0.9 to 0.4] as [79]. The velocity clamp term, ±Vmax,

is set to ±4.0, as described in [142, pp. 296].

Problem Population size Neighbourhood size
Asia 100 4
Car 20 3
Alarm 10 2
DemNet 100 4
PathNet 100 4

Table 9.1: Experimental parameters.

9.3 Experimental results and analysis: Synthetic

data

We begin by presenting empirical results regarding the performance of CONAR

and REST in Section 9.3.1. In Section 9.3.2, we compare performance results of

CONAR and REST to order-based algorithms.

9.3.1 Comparison between CONAR and REST

Note that number of independent executions (or runs) of each algorithm for each

problem varies — the corresponding values used in our experiments are shown in

Table 9.2.
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Problem Runs Iterations
Asia 30 500
Car 50 30, 000

Alarm 60 8, 000

Table 9.2: Number of independent runs for each problem.

The experimental results for each problem are displayed in Tables 9.4 - 9.6. Each

table shows: the average score found and the standard deviation1(µ ± σ), the

best result found in all the runs, as well as qualitative and complexity measures.

We should note that the best score row in each table relates to the best score

found in all runs across both algorithms. The metric values for the best solution

found are denoted (.).

The quality of the “known” graphical structures, measured using the CH metric,

are provided in Table 9.3. We include these values as a comparative reference of

the goodness of the results obtained by our algorithms.

Asia Car Alarm
Known score -11,264.83 -23,151.45 -29,796.59
Known edges 8 17 37

Table 9.3: Scores and edges count for the “known” models.

CONAR REST
Score(CH) -11,241.04 ± 0.0 -11,261.64 ± 5.15
Best (in all runs) -11,241.04 -11,251.93
TE (9) 9 ± 0.0 20.63 ± 2.58
TC (6) 6 ± 0.0 1.67 ± 0.96
IE (1) 1 ± 0.0 2.47 ± 0.97
EE (2) 2 ± 0.0 16.5 ± 2.57
ME (1) 1 ± 0.0 3.87 ± 1.00
FE (395,560) 418,615.53 ± 14,096.17 327,835.67 ± 179,497.48

Table 9.4: Asia results — 30 executions.

1For consistency, we use µ ± σ as it aligns with the statistics used in the research that we
use for comparison (in Section 9.3.2).
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CONAR REST
Scores (CH) -23,163.76 ± 4.48 -23,673.78 ± 95.15
Best (in all runs) -23,158.45 -23,464.81
TE (25) 27.22 ± 2.0 43.78 ± 1.64
TC (15) 13.68 ± 2.13 5.70 ± 1.84
IE (2) 2.02 ± 1.53 4.62 ± 1.89
EE (8) 11.52 ± 2.51 33.46 ± 2.26
ME (0) 1.3 ± 1.02 6.68 ± 1.68
FE (13,037,127) 15,034,616.4 ± 1,491,111.95 12,691,603.96 ± 6,622,990.97

Table 9.5: Car results — 50 executions.

CONAR REST
Scores (CH) -32667.71 ± 404.36 -41772.75 ± 423.97
Best (in all runs) -31683.42 -40451.7390
TE (107) 133.12 ± 5.24 129.88 ± 3.11
TC (21) 16.08 ± 2.55 7.65 ± 2.22
IE (14) 14.92 ± 2.50 7.55 ± 1.95
EE (72) 82.12 ± 5.34 114.68 ± 4.00
ME (11) 15.00 ± 2.91 30.80 ± 2.23
FE (7,673,475) 8,228,848.42 ± 360,817.67 5,999,871.133 ± 2,974,604.498

Table 9.6: Alarm results — 60 executions.

Graphics depicting the best score achieved on a run by run basis for each problem

are shown Figures 9.1 – 9.3.

Best score achieved at end of each run
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Figure 9.1: Asia problem — best score achieved at the end of each run.
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Best scores found at end of each run
(Car)
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Figure 9.2: Car problem — best score achieved at the end of each run.

Best scores achieved at the end of each run
(Alarm)

Run

0 10 20 30 40 50 60

S
co

re
(C

H
)

-44000

-42000

-40000

-38000

-36000

-34000

-32000

-30000

CONAR
REST

Figure 9.3: Alarm problem — best score achieved at the end of each run.

A deeper, quantitative and qualitative analysis of the results is provided in Sec-

tions 9.3.1.1 and 9.3.1.2 respectively.
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9.3.1.1 Quantitative analysis

A statistical analysis has been carried out between CONAR and REST in order

to determine the significance of the differences in the scores and in the num-

ber of function evaluations. We have used the Mann-Whitney [172] statistical

significance test at 95% significance level, unless otherwise stated.

As can be seen from the scores achieved by both algorithms across all runs (shown

in tables 9.4 – 9.6), CONAR is undoubtedly the better performing algorithm, as

it finds better scoring solutions than REST (on average). The difference between

the two algorithms is significant: the Mann-Whitney test shows a significance

level of p < 0.001 for all problems.

Probing the results further, we make a number of observations and conclusions.

• The best result found for Asia has a CH value of −11, 241.04 across all

runs, which was found by CONAR. We should note that the BN learn-

ing literature regards the Asia domain as a trivial problem; however, it is

considered a useful test-bed for new BN learning algorithms. Between the

two algorithms, CONAR and REST, CONAR, in addition to finding the

best scoring network in the Asia domain, finds the best CH value for the

Car and Alarm domains, where the best networks found have CH values

of −23, 158.45 and −31, 683.42 respectively. As can be seen from Table 9.4

and 9.5, the best scores achieved by CONAR on Asia and Car exceed the

score values of the respective known reference models (shown in table 9.3).

• Regarding the accuracy of the solutions produced by each algorithm, it is

clear that CONAR outperforms REST on each problem. The CH value

attained by CONAR, on average, is closest to the CH value of the reference
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structure. Compared to the reference CH score, both CONAR and REST

improve on the CH value for the Asia reference model, however CONAR

achieves the best overall value. Similarly, the average CH value achieved by

CONAR on the Car domain is consistently closest to the reference model.

An interesting observation is found in the variation in the results produced

by CONAR: the standard deviation associated with the average scores pro-

duced by CONAR is lower than REST. Therefore, we can conclude that

the solutions found by CONAR are consistently good over all runs. This

can be seen graphically in Figures 9.1 – 9.3.

• In addition to achieving CH values close to the reference model, CONAR

produces solutions that are qualitatively closer to the reference models.

That is to say CONAR’s solutions exhibit less structural differences (TE,

EE, ME, I) than REST (see Table 9.4 – 9.6). Qualitative accuracy is

discussed in more detail in Section 9.3.1.2.

• With regard to efficiency, CONAR requires on average more FEs to converge

to a solution than REST. The difference in FEs between CONAR and REST

is statistically significant in the Asia problem (p < 0.030), however the

difference in FEs on the car problem is not significant (p < 0.059). Although

the average number of FEs required by REST is lower than CONAR, the

variance in the number of FEs is lower for CONAR than REST, thus the

computational effort required by CONAR is more consistent. It is worth

noting that REST’s efficiency gain in the number of FEs is compromised

by the quality of solutions obtained. As can be seen in Tables 9.4 – 9.6,

CONAR requires more FEs, however the quality of CONAR’s solutions is

significantly superior to those found by REST in all the problems examined.
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9.3.1.2 Qualitative analysis

In this section, we provide an analysis of the solutions found by CONAR and

REST from a structural perspective. That is to say that we: 1) compare the

morphological differences in network topology across the solutions found dur-

ing experimentation; and 2) compare morphologically the best scoring network

structure with the corresponding reference model.

In order to evaluate and compare the learned BNs with the known reference

models, we use the five structure feature performance metrics (TE, CE, IE,

ME, EE) introduced in Section 9.2.3. The average and standard deviation for

each of the five features is shown in Tables 9.4 - 9.6. Figures 9.4 – 9.11 drill into

these results in more detail. Specifically, the feature count for the best solution

found at the end of each run is shown graphically, as well as a summary of the

proportion of different feature types found in the best solutions across all runs.

By comparing visually the graphs shown in Figures 9.4 – 9.11, it is clear that

CONAR enjoys superior performance to REST in that the morphology of the

structures found by CONAR is consistently closest to the reference model on

each problem. The Mann-Whitney [172] test is performed to determine the

significance of differences between the two algorithms on each of the five feature

metrics. At the 99% level, the test shows a significance of p < 0.001 for all

problems on all metrics.
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Structure analysis (run by run)
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(a) CONAR: Solution features by count on each run.
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(b) REST: Solution features by count on each run.

Figure 9.4: Count of structural features of the best solutions in each run (Asia).

The Asia reference model is shown in Figure 9.6(a), and the converged solution

is shown in Figure 9.6(b). To assist visual comparison, the edges in the learned

model are colour coded to show correct, inverted, missing and extra edges with

respect to the reference model.
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(a) CONAR: Solution features by proportion across all runs.

Average structure features by proportion across all runs
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(b) REST: Solution features by proportion across all runs.

Figure 9.5: Proportion of structural features in the best solutions across all runs
(Asia).
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(a) The known model

(b) The best learned model (discovered by
CONAR)

Figure 9.6: The Asia BN problem: Reference and learned models.

Asia - key observations

• Solutions found by REST consist of more edges than the solutions found

by CONAR, which may be explained by REST’s extremely limited learn-

ing capability, which is reflected in its poor performance profile across all

problems.

• The structure of the models learned by REST deviate significantly from the

reference models. On average, REST finds 21 (rounded) edges in total, 4
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of which are correct edges (2 correctly orientated and 2 inverted), and 17

extra edges. In addition, REST fails to find on average 4 edges that appear

in the reference model.

• As can be seen from Figure 9.7, it is clear that the number of extra and

missing edges attained by REST is consistently higher than CONAR, and

the number of inverted and correct edges discovered by REST is significantly

lower than those found by CONAR.

• Analysing deeper the structural differences in the solutions found by each

algorithm, the proportion of correctly orientated edges found by CONAR

is significantly greater than those learned by REST. In particular, CONAR

finds 6 correctly orientated edges on every run, meaning that 60% of the

edges in solutions generated by CONAR are correctly orientated. In con-

trast, REST finds on average 2 (rounded) correct edges, which accounts for

only 7% of the edges found in solutions across all runs.

• Regarding extra edges, CONAR finds 2 (on average) compared to REST

where the average is 17. Therefore, across the population of runs executed,

67% of edges found by REST are extra. In contrast, only 20% of the edges

found in CONAR’s solutions are extra.

• The extra edges found by REST do not increase the overall quality of

solutions found, since the score of the reference solution is better than the

average score of REST’s solutions.

• Considering the reference model and best learned model, shown in Figure

9.6, 7 out of 8 edges are found. Only few errors were obtained. The extra

edges were ‘visit asia’ → ‘smoking’ and ‘tuberculosis’ → ‘bronchitis’. The
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inverted edge is ‘cancer’ → ‘smoking’, and the missing edge is ‘visit asia’

→ ‘tuberculosis’.
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Structure analysis (run by run) - CONAR
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(a) CONAR: Solution features by count on each run.

Structure analysis (run by run)
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(b) REST: Solution features by count on each run.

Figure 9.7: Count of structural features of the solutions found in each run (Car).
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Average structure features byproportion across all runs
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(a) CONAR: Solution features by proportion across all runs.
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(b) REST: Solution features by proportion across all runs.

Figure 9.8: Proportion of structural features of the solutions across all runs (Car).

The known Car model is shown in Figure 9.9(a), and the best scoring model

achieved across all runs is shown in Figure 9.9(b). To assist visual comparison,
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(a) The known model

(b) The learned model (discovered by
CONAR)

Figure 9.9: The Car BN problem: Reference model and best learned model.
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the edges in the learned model are colour coded to show correct, inverted and

extra edges with respect to the reference model.

Car - key observations

• From a score perspective, the quality of solutions found by CONAR are

significantly more superior to REST (see section 9.3.1.1).

• As can be seen from Table 9.5, the structure of the models learned by

REST deviates significantly from the reference model, which has 17 edges.

On average, REST finds 44 (rounded) edges in total, 11 of which are edges

in the reference model(6 correctly orientated and 5 inverted), and 33 extra

edges. In addition, REST fails to find on average 7 (rounded) edges that

appear in the reference model. It is clear that the solutions found by REST

are further from the known model compared to those solution found by

CONAR (irrespective of orientation). The main difference is in the number

of extra and missing edges found by REST.

• It is noteworthy that CONAR, on average, finds all but one of the edges

in the reference model, albeit that 2 of the 16 edges are inverted. In con-

trast, REST finds only 11 of the possible 17 edges, 6 of which are correctly

orientated and 5 are inverted edges.

Regarding extra edges, REST finds significantly more extra edges than

CONAR. However, similar to the Asia problem, the extra edges found by

REST do not increase the overall quality of the solutions, since the score of

the reference solution is better than the average score of REST’s solutions

with extra edges.
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• It is interesting to note that best learned model, shown in Figure 9.9, con-

tains all the edges that feature in the reference model. There are, however,

a small number of edge errors, as well as a number of extra edges. The

inverted edges are 5 → 4 and 14 → 17; the extra edges are shown in red on

Figure 9.9(b).

• Compared with the Asia problem, the proportion of edges (correctly orien-

tated and inverted edges) is reduced: the number of edges found by CONAR

was 70% on the Asia problem; however in the Car problem, the proportion

of edges found by CONAR is 55%. In addition, there is an increase in the

proportion of extra edges found by CONAR in the Car problem (40%),

compared to the Asia problem (20% extra). However, the number of edges

missed by CONAR on the Car problem is reduced to 5%, where 10% of the

edges were missing in the Asia problem. The proportion of edges discovered

by REST on the Asia and Car remain approximately equivalent.
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Structure analysis (run by run) - CONAR
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(a) CONAR: Solution features by count on each run.
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(b) REST: Solution features by count on each run.

Figure 9.10: Count of structural features of the solutions found in each run
(Alarm).
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Alarm: Average structure features by proportion (CONAR)

Average total edges: 113.12

13%

12%
12%

63%

correct: 16.08

Inverted: 14.92

missing: 15

extra: 82.12

(a) CONAR: Solution features by proportion across all runs.

Alarm: Average structure features by proportion (REST)

Average total edges: 129.88

5%5%
19%

71%

correct

Inverted

missing

extra

(b) REST: Solution features by proportion across all runs.

Figure 9.11: Proportion of structural features of the solutions across all runs
(Alarm).
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(a) The known model

(b) The learned model (discovered by CONAR)

Figure 9.12: The Alarm BN problem: Reference model and best learned model.
Note that extra edges are not shown in order to simplify the diagram.
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The Alarm reference model is shown in Figure 9.12(a) and the best scoring model

achieved across all runs is shown in Figure 9.12(b). Extra edges are not shown,

as the model is larger in size, and the number of extra edges (72) would over

complicate the diagram.

Alarm - key observations

• Despite reduced performance compared to the other problems considered

in this research, CONAR continues to discover, on average, more than 70%

of the edges in the reference model. However, it should be noted that the

number of correctly orientated edges is lower than those found in the Asia

and Car domains.

• Irrespective of lower score performance compared to Asia and Car, the best

learned model, shown in Figure 9.12(b), contains 75% of the edges found

in the reference model. Of that, 60% are correctly orientated, and 40% are

inverted.

9.3.2 Comparison with order-based techniques

In Section 7.4.1.1, we acknowledge that order-based techniques, such as the K2

algorithm proposed by Cooper and Herskovits [51] (see Section 7.4.1.1), produce

good Bayesian network structures when an optimal order is provided. The pri-

mary issue associated with this approach, however, relates to specification of the

order, as this impacts on the quality of the resultant network [126]. It is possible

for a human expert to specify the order, although this increases the risk of error.

Alternatively, algorithms exist that seek to learn the order. However, two-tiered
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algorithms that attempt to learn the order then the structure, such as Larrañaga

et al. [154, 155], are expensive.

The purpose of this section is to compare our algorithms, which do not make an

order assumption, with algorithms that that require, or make use of a variable

order during learning. The comparisons are defined in terms of three objectives:

1. Compare CONAR and REST algorithms to those that require an order as

input to learn the BN structure. Specifically:

(a) How do CONAR and REST perform against an order-based algorithm

when random orders are specified?

(b) How do CONAR and REST perform against an order-based algorithm

when a good order is specified?

2. Investigate the performance of CONAR and REST compared to algorithms

that evolve optimal orders.

3. Determine whether the performance of the algorithms developed in this

research have sufficient capability to relax the need to learn order.

9.3.2.1 Comparison experimentation

In order to answer the question stated in Section 9.3.2, four comparison experi-

ments are conducted:

1. K2no - K2 with random orders. The K2 algorithm is considered a bench-

mark in BN learning literature. It requires as input an order among the

variables. In demonstrating K2’s reliance on correct orders and enabling
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a comparison between K2, CONAR and REST, K2no is executed 10 × n

times with unique, randomly generated orders, where n is the number of

variables.

2. K2 - standard K2, with good order. When K2 is given a good order,

good BN structures are produced [51]. Therefore, for each problem, we

execute K2 with a good order. This enables a comparison between our

algorithms (that do not rely on an order) and the benchmark algorithm that

requires an order to perform well. In addition, this experiment contributes

towards answering the question concerning relaxation of the need to learn

order,introduced in Section 9.3.2.

3. K2GA - Order learning using a Genetic Algorithm (GA). Clearly, the risk

of error is increased if humans are responsible for defining the order of

variables. Acknowledging, however, that a good order leads to good BN

structures, we seek to compare our algorithms with a technique that learns

an optimal order using a GA, such as that developed by Larra˜naga et. al

[154]. While this approach results in good solutions, it should be noted

that this particular technique is computationally expensive, as it uses the

K2 algorithm as a mechanism to evaluate each candidate solution (order)

evolved by the GA. We use this algorithm as a comparison to investigate

how our algorithms (which do not require order information) perform when

compared against an existing approach that learns orders.

4. ChainGA - As mentioned above, the K2GA algorithm requires execution

of the K2 algorithm for each and every solution in the population, which

expensive. Kabli et al. [135] have developed a variant of the K2GA algo-

rithm, which greatly reduces K2GA’s dependency on the K2 algorithm for
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evaluating every solution in the population. This experiment will enable a

comparison with a state of the art algorithm which learns orders efficiently.

Together, the K2GA and ChainGA experiments seek to answer the question

concerning the performance of CONAR and REST compared to algorithms that

automatically learn a suitable order. The K2 algorithm experiments combined

with the K2GA and ChainGA experiments, will address the question relating to

the value of algorithms that learn the order.

9.3.2.2 Comparative results

The experimental results generated by CONAR and REST are listed alongside

the K2, K2GA and ChainGA algorithms in tables 9.7 – 9.9. Note that K2O refers

to the K2 algorithm with an ordering, and K2no refers to the K2 algorithm with

a random order.

It is worth noting that we have obtained the data set used by Kabli et al. [135]

in order to compare our algorithms with theirs. However, we are unable to make

comparisons of statistical significance between our algorithms and the K2GA and

ChainGA algorithms, we do not have access to the raw results generated by their

algorithms. Although not ideal, we use the summary statistics published in their

paper as a basis for comparison.

Rank Evaluation FE
CONAR 1 -11,241.04 ± 0.0 418,615.53 ± 14,096.17
REST 5 -11,261.64 ± 5.15 327,835.67 ± 179,497.48
K2no 6 -11,266.12 ± 19.81 31.93 ± 1.65
K2O 4 -11,248.23 ± n/a -
K2GA 2 -11,244.3 ± 2.0 3,645 ± 968
ChainGA 3 -11,248.1 ± 11.0 1,924 ± 152

Table 9.7: Algorithm comparison - Asia.
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Rank Evaluation FE
CONAR 2 -23,163.76 ± 4.48 1,491,111.95
REST 6 -23,673.78 ± 95.15 6,622,990.97
K2no 5 -23,262.71 ± 79.94 80.65 ± 4.45
K2O 1 -23,149.65 ± n/a -
K2GA 3 -23,168.5 ± 21.0 2,227.96 ± 395
ChainGA 4 -23,213.3 ± 152 1,018.7 ± 177

Table 9.8: Algorithm comparison - Car.

Rank Evaluation FE
CONAR 5 -32,667.71 ± 404.36 8,228,848.42 ± 360,817.67
REST 6 -41,772.75 ± 423.97 5,999,871.13 ± 2,974,604.49
K2no 4 -30,658.86 ± 313.08 185.51 ± 4.66
K2O 3 -30,129.82 ± n/a -
K2GA 1 -30,068.4 ± 164 2,458.4 ± 474
ChainGA 2 -30,097.3 ± 141 1,844.0 ± 116

Table 9.9: Algorithm comparison - Alarm.

9.3.2.3 Discussion of experimental comparisons

With the purpose of answering the questions outlined in Section 9.3.2, the results

obtained in Section 9.3.2.2 are discussed here in detail.

Comparison with algorithms requiring an order. We should note that

the K2O algorithm is a deterministic, thus if it is run n times the result is

constant with zero standard deviation. Therefore in comparisons involving the

K2O algorithm, the 1-sample Wilcoxon [278] test at the 95% confidence level

appropriately replaces the Mann-Whitney test.

As can be seen in Tables 9.7 through 9.9, it is clear that the capability of K2O is

superior to that of K2no across all problems. On the Car and Alarm problems,

the difference is vast: P < 0.001; on the Asia problem, however, the magnitude

is slightly less severe: p = 0.007. There is no surprise in the results generated by

this experiment; the results provide demonstrable evidence to support the fact

that good BN structures are obtained if an optimal order is supplied.

223



With respect to the scores of the known models, K2O attains consistently good

scores on all problems compared to K2no. In addition, the solutions found by

K2O are structurally more similar to the known models than those found by

K2no.

In comparing the algorithms developed in this research with K2no, CONAR out-

performs K2no on the Asia and Car domains; the difference in the scores obtained

by each algorithm is statistically significant: (P < 0.001). However, REST ab-

solutely struggles to compete with K2no on the Car and Alarm problems, where

the difference between the algorithms is extreme (P < 0.001). It is interesting to

observe that REST appears to produce solutions that are comparable to those

generated by K2no, as indicated by the statistical significance test (P = 0.65).

On the basis of an analysis of the results generated during experimentation, we

conclude that REST is inadequate for data-driven BN construction, since it does

not have the ability to at least compete with an algorithm that executes with

random orders. On the other hand, CONAR shows more promising results, as

it has the ability to produce good BN structures which are close in score and

morphology to the known reference model, and is at very least competitive with

other relevant algorithms.

Comparing analysed results generated by CONAR and K2, it is clear that K2

outperforms CONAR on two problems, namely Car and Alarm with a significance

P < 0.001. In addition to the difference in scores, K2 uses a significantly lower

number of FEs than both CONAR and REST, again the difference is hugely

significant P < 0.001. The explanation for this may be found in the different

underlying mechanics of the respective algorithms. K2 differs from that of nature

inspired algorithms such as ours: the K2 algorithm develops a single solution
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over time, where as our algorithms (nature-inspired) are population based and

iterative, therefore an increase in FEs is expected.

Problem TE TC IE EE ME
Asia 7 7 0 0 1
Car 17 16 0 1 1
Alarm 77 22 19 37 5

Table 9.10: Features found by K2 on Asia, Car and Alarm problems

By comparing the summary of the feature count produced by K2 (Table 9.10)

with that of the best solution found by CONAR for each problem, denoted by (.)

in Tables 9.4 – 9.6, it would appear that CONAR is comparable with K2 on Asia

and CAR. There are larger difference in the feature count achieved by CONAR

and K2 on the Alarm problem.

Comparison with algorithms that learn the order. As stated in Section

9.3.2.2, we reemphasise that we do not have access to the raw result data gen-

erated by Kabli et al. [135], and therefore are unable to make comparisons of

statistical significance between our algorithms, K2GA and ChainGA.

On the Asia problem, CONAR achieves the overall best average score with the

smallest standard deviation, as can be seen from Table 9.7. However, there

does not appear to be an obvious difference in scores achieved by CONAR and

K2GA, although there does appear to be a small difference between CONAR

and ChainGA. Without a statistical test, it is impossible to determine whether

CONAR is comparable or significantly better than ChainGA. To that end, we

conclude that the scores attained by CONAR are comparable to K2GA, and at

the very least comparable to ChainGA.
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We observe a similar patter to Asia in the Car problem; in Table 9.8, CONAR

appears comparable to K2GA on the Car problem. With regard to ChainGA,

CONAR has a better average score, and its standard deviation is much lower.

We conclude that the average score achieved by CONAR is at the very least

comparable to K2GA, and possibly significantly better than ChainGA.

It appears that CONAR experiences a degradation in search capability on the

Alarm problem. Given the number of variables in this problem, the solution space

is extremely large and complex. However, given comparable achievements against

the Asia and Car problem, the results on the Alarm problem are disappointing.

Future work is required to conduct further experiments, as the parameters used

may not be sufficient for the complexity of this problem and may need tuned.

The performance of REST compared to K2GA and ChainGA is poor; the same

pattern is observed on all other algorithms considered during experimentation.

Despite the potential benefits realised by removing the need for validation and

repair operators, REST is not capable of achieving results that are at least com-

parable to any of the other algorithms, as it does not deliver the requisite level

of performance.

With regard to the computational effort required by CONAR and REST com-

pared to the effort required by K2GA and ChainGA, it is clear that CONAR and

REST require a significantly larger number of FEs. A possible explanation for

this lies in the fact that CONAR and REST search in the larger, more complex

space of all possible BN structures, while K2GA and ChainGA search in the

smaller, more restricted space of orders. It is for this reason that the reduction in

the number of fitness function evaluations is observed in ChainGA, as it is only

the chain structure that is evaluated on a regular basis.
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On the value of algorithms that use an order to learn. It is well doc-

umented that high-scoring network structures can be found when an optimal

ordering among the nodes is given [154], and a variety of algorithms have been

developed that exploit this, such as K2. This behaviour is demonstrated in our

experiments: when K2 is executed with random orders, K2no, it performs poorly;

however, when a good order is provided, K2 performs very well — see Tables 9.7 –

9.9. Based on the discussion of the results which compares CONAR and REST to

algorithms that learn the order (K2GA and ChainGA), we explore the value-add

gained by using an order to learn Bayesian network structures.

The value in using the K2 algorithm is highlighted above; however, its major

drawback is its requirement of an order as input. This may not be available,

or, if specified by a human, may be incorrect, which may result in poor scoring

structures. We turn, therefore, to algorithms that learn optimal orders, such as

K2GA and ChainGA.

The primary issue with K2GA is the computational expense required by constant

dependency on the K2 algorithm as a mechanism for evaluating GA candidate

solutions. One of the original questions that this thesis seeks to address is: Are

the algorithms developed in this research sufficiently powerful to produce solu-

tions that are competitive with the solutions produced by an expensive algorithm

(K2GA) that learns in the space of orders, without having to employ an expen-

sive two-tiered algorithm. The results presented above go some way to answering

this question; they demonstrate that our CONAR algorithm is capable of struc-

ture discovery from data without the use of a two-tiered algorithm. However,

the ChainGA algorithm has very recently emerged as a promising algorithm that

seeks to improve the performance of K2GA by placing much less emphasis on
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the K2 algorithm. The algorithm is competitive with ours in terms of solution

quality, however it appears to have better performance in terms of computational

effort.

In two of the three problems in the experiments that we have conducted, there

appears to be no benefit to the score obtained by searching in the the space

of orders over searching in the entire space of Bayesian network structures. In

fact, there appears to be a small benefit in learning in the entire space, as the

average scores and associated standard deviations achieved by CONAR appear

to be better than K2GA and ChainGA, although the statistical significance is

unfounded. The slight increase in the quality of the scores obtained may be

explained by a more thorough exploration in the whole space of structures, as

opposed to the structures limited by the learned orders. However, there is clearly

a difference in computational expense between our algorithms at the K2GA and

ChainGA, as shown in the FE column in Tables 9.7 – 9.9. Clearly, this impacts

on our ability to achieve learning with less computational expense.

9.4 Experimental results and analysis: Clinical

data

In this section we present empirical results on the performance of CONAR and

REST on the task of constructing BN models for dementia diagnosis using a real-

life clinical data set. Note that this section reports only the results of CONAR

and REST on the construction task; a comparison of the “learned” models with

the original reference models is treated in Chapter 10.
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9.4.1 Comparison between CONAR and REST

Each algorithm is executed 30 independent times on each data set (dementia

syndrome data set and the pathology data set). The experimental results for

each are displayed in Tables 9.12 - 9.13. Each table shows: the average score

found and the standard deviation (µ±σ), the best result found in all the runs, as

well as qualitative and complexity measures. We should note that the best score

row in each table relates to the best score found in all runs across both CONAR

and REST. The scoring metric values for the best solution found are denoted by

(.).

The dementia models developed in Chapter 5 are taken to be the reference models,

and the quality of these structures, measured using the CH metric, are provided

in Table 9.11.

DemNet PathNet
Known score -1,312.15 -794.90
Known edges 10 21

Table 9.11: Scores and edges count for reference DemNet and PathNet models.

CONAR REST
Score(CH) -1,113.13 ± 0.12 -1,162.32 ± 5.87
Best (in all runs) -1,113.01 -1,149.32
TE (16) 16.87 ± 1.00 14.6 ± 2.04
TC (2) 1.93 ± 0.37 1.53 ± 1.31
IE (4) 4.40 ± 0.56 3.30 ± 1.40
EE (10) 10.53 ± 0.57 10.03 ± 1.54
ME (4) 3.67 ± 0.61 7.43 ± 1.57
FE (938,086) 909,623.3 ± 5,5623.28 443,199.6 ± 355,662.98

Table 9.12: DemNet results for CONAR and REST — 30 executions.
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CONAR REST
Score(CH) -676.82 ± 0.0 -697.21 ± 2.94
Best (in all runs) -676.82 -690.17
TE (9) 9 ± 0.0 14 ± 2.04
TC (1) 1 ± 0.0 1.53 ± 1.30
IE (1) 1 ± 0.0 3.03 ± 1.40
EE (7) 7 ± 0.0 10.03 ± 1.54
ME (10) 10 ± 0.0 7.43 ± 1.57
FE (522,639) 540,636.4 ± 12,124.54 420,108.2 ± 250,274.54

Table 9.13: PathNet results for CONAR and REST — 30 executions.

Graphics depicting the best score achieved on a run by run basis for each problem

are shown in Figures 9.13 and 9.14.

Figure 9.13: DemNet — best score achieved at the end of each run.

A deeper, quantitative and qualitative analysis of the results is provided in Sec-

tions 9.4.1.1 and 9.4.1.2 respectively.

9.4.1.1 Quantitative analysis

A statistical analysis has been carried out between CONAR and REST in order

to determine the significance of the differences in the scores and in the num-
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Figure 9.14: PathNet — best score achieved at the end of each run.

ber of function evaluations. We have used the Mann-Whitney [172] statistical

significance test; in all cases a 95% significance level is used.

As can be seen from the scores achieved by both algorithms across all runs (shown

in Tables 9.12 and Table 9.13), CONAR is undoubtedly the better performing

algorithm, as it finds better scoring solutions than REST (on average). The

difference between the two algorithms on both DemNet and PathNet is significant:

the Mann-Whitney test shows a significance level of p < 0.001.

Probing the results further, we make the following observations and conclusions:

• The best result found for DemNet has a CH value of −1, 113.01 across all

runs, which was found by CONAR. In addition, CONAR found the best

scoring PathNet model, which had attained a CH value of −676.82. As

can be seen from Table 9.12 and Table 9.13, the best scores achieved by

CONAR exceed the score values of the respective known reference models

(shown in Table 9.11).
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• From Figure 9.13 and Figure 9.14, it is clear that CONAR is more consistent

(and reliable) in terms of the solutions that it finds across multiple runs.

• Despite CONAR finding consistently better scoring solutions than REST,

the average score for both DemNet is not close to the known score, and

in the case of PathNet the average score exceeds the reference score. This

is exemplified by the qualitative results (TE, EE, ME, I) shown in Table

9.12 and 9.13. With regards to DemNet, 6 out of 10 edges were recovered.

However, many extra edges were produced (10), which may offer an expla-

nation for the gap between the average score attained by CONAR and the

reference score for each problem. In the case of PathNet, only 2 of the 12

edges were recovered. Qualitative accuracy is discussed in more detail in

Section 9.4.1.2.

• As seen in the results of the benchmark problems, Section 9.3, CONAR

requires on average more FEs than REST on both DemNet and PathNet.

The difference is statistically significant for DemNet (p < 0.001); however,

the difference is only just significantly different for PathNet (p < 0.049).

9.4.1.2 Qualitative analysis

In this section we provide an analysis of the experimental results on the clinical

data set. The analysis method is identical to that performed on the synthetic

benchmark data sets described in Section 9.3.1.2.

The average and standard deviation for each of the five feature metrics (TE, CE,

IE, ME, EE) introduced in Section 9.2.3 are shown in Tables 9.12 and 9.13.

Figures 9.15 through 9.18 drill into these results in more detail. Specifically,
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the feature count for the best solution found at the end of each run is shown

graphically, as well as a summary of the proportion of different feature types

found in the best solutions across all runs.

By comparing visually the graphs shown in Figure 9.15 and Figure 9.17, it is clear

that CONAR enjoys superior performance to REST in that the morphology of

the structures found by CONAR is consistently closest to the reference model

on each problem. The Mann-Whitney [172] test is performed to determine

the significance of differences between the two algorithms on each of the five

feature metrics. The significance values at the 95% are shown in Table 9.14;

non-significant differences between CONAR and REST are denoted by †.

Feature DemNet PathNet
TE < 0.001 < 0.001
CE 0.027 0.112†
IE < 0.001 < 0.001
ME < 0.001 < 0.001
EE 0.208† < 0.001

Table 9.14: Significance of differences in structural features between CONAR and
REST on DemNet and PathNet.
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(a) CONAR: Solution features by count on each run.
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(b) REST: Solution features by count on each run.

Figure 9.15: Count of structural features of the best solutions in each run (Dem-
Net).

Structural difference between the the “learned” models and the reference models

are discussed in detail in Chapter 10.
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(a) CONAR: Solution features by count on each run.

Average structure features by proportion across all runs
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(b) REST: Solution features by count on each run.

Figure 9.16: Proportion of structural features in the best solutions across all runs
(DemNet)
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(a) CONAR: Solution features by count on each run.
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(b) REST: Solution features by count on each run.

Figure 9.17: Count of structural features of the best solutions in each run (Path-
Net)

9.5 Summary

This chapter presents an empirical evaluation of the performance of the tech-

niques developed in the previous chapter. Experiments are conducted with a
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(a) CONAR: Solution features by proportion across all runs.
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(b) REST: Solution features by proportion across all runs.

Figure 9.18: Proportion of structural features in the best solutions across all runs
(PathNet)

range of standard benchmark problems, as well as a real-life problem — demen-

tia diagnosis. The purpose of the experiments was to demonstrate:
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1. The application of PSO to BN construction from data.

2. That the techniques developed do not require as input an order among

the variables, and produce results that are comparable and in some cases

superior to existing approaches.

3. The performance and efficiency of PSO-based approaches compared to other

order-based algorithms.

From the results presented in this chapter, it is clear that the benefits of the

CONAR algorithm are strong on some of the synthetic problems, however the

same cannot be said for the REST algorithm. Structures close to the original were

achieved on each of the synthetic problems. With regard to the performance met-

rics, CONAR significantly outperforms REST on all synthetic problems. Sim-

ilarly, REST is outperformed by all the comparator algorithms, most notably

K2no, which executes the K2 algorithm with random orders. However, com-

paring CONAR with other algorithms in the literature, it exhibited at least the

same performance as the algorithms used for comparison, except on one problem

(Alarm). It is anticipated, however, that further parameter tuning would result

in an improvement in the quality score value for the Alarm problem.

In Section 8.2, we outline the motivation for PSO, and in doing so suggest that

PSO has greater efficiency in some problems in exploring the search space than

its GA counterpart. It is evident that in our implementation, however, efficiency

(number of Fitness Evaluations, FEs) is poor in comparison to the standard GA

approach (K2GA) and advanced order-based approach (ChainGA) proposed by

Kabli et al. [135]. One possible explanation regarding the comparison with

the standard K2GA algorithm may be associated with the use of neighbourhood
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strategies in the PSO algorithm (see Section 8.1.1.1). A neighbourhood strategy

allows a wider area of the search space and reduces premature convergence, how-

ever the added expense is that the algorithm takes longer to propagate. With

regard to the ChainGA approach, a search is conducted in the space of orders,

however reliance on the K2 algorithm is greatly reduced due to the evaluation of

chain structures, which ultimately reduces the number of fitness evaluations.

Nevertheless, the CONAR PSO algorithm finds equally comparable solutions to

those found by the standard GA (K2GA) and the advanced ChainGA approach.

Moreover, in some problems, our CONAR approach finds structures that are

marginally superior to the standard K2GA and the advanced two-tiered ChainGA

approach.

A comparison of the data-driven models and hand-crafted expert models (Part

II), as well as a comparison of the two construction approaches is provided in the

next part of this thesis.
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Part IV

Comparison of approaches
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Chapter 10

Comparison and evaluation of

construction approaches

10.1 Introduction

The purpose of this chapter is to assess the concordance of the models derived

using the two construction approaches presented Part II and Part III. In addition,

we assess the main benefits and challenges of each construction approach.

10.2 Comparison of models

In this section we show the BN structures created using each of the construction

approaches and highlight and explain the differences.

10.2.1 DemNet

As can be seen from Figure 10.1(b), there is a lot of disparity between the hand-

crafted and data-driven model. The hand-crafted model shown in Figure (a)
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(a) Hand-crafted (reference model). (b) Data-driven (clinical data).

Figure 10.1: DemNet constructed by hand (a) and from data (b)

is taken to be the reference model. With respect to the reference model, the

“learned” model constructed from data in Figure (b) has only two correctly ori-

entated edges and four inverted edges; irrespective of orientation, this is a total

of six edges out of ten possible edges.

10.2.2 PathNet

The hand-crafted and data-driven models for dementia pathology diagnosis are

shown in Figure 10.2. The hand-crafted model shown in Figure (a) is taken to be

the reference model, and the model constructed from the clinical data is shown in

Figure (b). In comparison to the DemNet models shown above, there is not much

concordance between the hand-crafted model and the model derived from data.

In fact, the model derived from clinical data has recovered only 2 edges from a

possible 12, and one of those is inverted. Note that the variables frontotemporal

and lewy bodies have been removed due to the lack of data.
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(a) Hand-crafted (reference model).
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(b) Data-driven (clinical data).

Figure 10.2: PathNet constructed by hand (a) and from data (b)

10.2.3 Discussion

From the models presented in Section 10.2.1 and Section 10.2.2, it is clear that

there are marked differences in structure between the hand-crafted, reference

model and the models constructed from a clinical data set.

Two reasons may explain the structural differences in the models. Firstly, the de-

sired volume of real-life clinical data was not achieved during the data collection

study. Secondly — closely related to the low data volume issue — the spread

and diversity of data did not meet expectations. For example, the the reference

model supports diagnosis of dementia with lewy bodies and frontotemporal de-

mentia, notwithstanding co-existing pathologies. However, the clinical data set

contained only a hand-full of these cases, therefore the construction algorithm

could not recover relationships to satisfy this requirement. Accordingly, the two
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data-related factors are highly influential contributors, if not wholly responsible,

for the structural differences that appear in the data-driven models (particularly

the red and yellow edges). Clearly, when constructing BN models from data,

the volume and spread of the data are two important factors that need to be

considered in order to ensure the best possible chance of constructing the most

accurate model.

Nevertheless, it is encouraging that 60% of the possible correct edges appear in the

“learned” DemNet model. In this case, the volume of data available was enough

to recover the core relationships of the model. However, the downside is that the

eight extra edges (shown in red in Figure 10.1(b)), which illuminate the difference

in the models, are probably due to the lack of data. For example, in a bigger data

set, the distributions would be more pronounced, thus the construction engine

may find a better model that has a distribution that does not support these edges.

However, it is also worth considering the notion that extra edges are due to error,

which may have manifested themselves during data collection.

To demonstrate that the algorithm is capable of network construction in the first

place, we show the construction engine’s capability and performance on data set

synthetically generated from the reference model. The Netica [2] tool was used to

generate 5, 000 cases. As can be seen from the resulting model, shown in Figure

10.3, the algorithm is capable of constructing the network using data generated

from the reference model; it contains 90% of the edges that appear in the known

model, therefore the algorithm is capable of building a model that represents the

probability distributions in the data.

The comparison between the reference model and the model constructed from

real-life clinical data for dementia syndrome diagnosis, shown in Figure 10.1,

244



Figure 10.3: DemNet constructed from data generated from the reference model.

serves as a good indicator that there is a reasonable level of concordance with the

hand-crafted reference model and the true distributions found in clinical practice.

Clearly, more clinical data is required in order to test more rigorously the levels

of concordance between the models. However, the 60% edge recovery rate from

the clinical data set may be deemed as an achievement against a backdrop of low

data volumes and limited data spread.

As can be seen from Figure 10.2, the disparity between the reference and data-

driven models for dementia pathology diagnosis is vast. Clearly, this is because

of the small quantity of data. Even when 5, 000 data samples are synthetically

generated from the reference model, only 12 (60%) of the edges are recovered,

and 8 (38%) edges are missed, as shown in Figure 10.4.
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Figure 10.4: PathNet constructed from data generated from the reference model.

10.3 Evaluation of approaches

In this section we discuss the two approaches for BN construction, described in

detail in Chapter 4 and Chapter 7 respectively.

10.3.1 Evaluation of hand-crafted approach

Hand-crated BN construction in its pure form is completely dependent on access

to human expertise. This approach has many benefits, however there are also a

number of barriers that present significant challenges during construction. Such

benefits and barriers are discussed in this section.

10.3.1.1 Benefits of hand-crafted approach

One of the key benefits to be realised from the hand-crafting approach is that the

model is built interactively by a domain expert, therefore vital domain knowledge

is embedded in the model. In addition, the nodes, states and relationships are

fully understood by the human expert, therefore the rationale can be articulated

easily to others. Another benefit of the approach is that the model is built

primarily using subjective consensus information, therefore uncommon scenarios

that may be rare in data can be captured. The value is found in the fact that the
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BN formalism does not care whether the information is objective or subjective; in

fact, intrinsically, the BN formalism assumes that the information is subjective,

hence the alternative name, Bayesian ‘belief’ network. The ‘belief’ word reflects

the expert’s own uncertainty about the probability distribution in question. This

could be a known value, however it may not be known and therefore is based on

their expert judgement. Clearly, different experts will have different opinions on

the subjective probability distributions, and indeed the distributions may change

over time.

Another benefit of the hand-crafted approach is that one or more experts can

be involved in the construction process, and therefore the technicalities of the

domain and the factors that the model represents can be verified or discussed

in detail at each stage of the development cycle. However, Walls and Quigley

[274] note a potential drawback with group elicitation: one or more experts may

be more domineering over others in the group. In order to work around this,

they suggest that in “situations where the persuasive argument of dominant or

over confident experts might prevail or less-confident experts might be isolated”

that judgement elicitation should be carried out independently and combined

afterwards.

10.3.1.2 Barriers and challenges of hand-crafted approach

Despite the benefits associated with hand-crafted approach, there are a number

of barriers and challenges.

The primary barrier with this approach is concerned with probability elicitation

and judgement: humans find it difficult to provide assessments for many condi-

tional probabilities at once [124]. To that end, people have a tendency to use
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a heuristics to assist them in determining conditional probability distributions

for several conditioning factors [188, pp 163]. However, such heuristics tend

to give rise to bias [207, pp 35]. Another approach to making the assessment

task easier is to restructure the model and prune less important parent nodes,

especially where parents have more than two states. This has the effect of re-

ducing the complexity of the conditional distributions, thus easing elicitation.

However, restructuring or pruning the model may have an impact on the level of

granularity.

With regards to assisting the expert in probabilistic elicitation and reducing

the bias that is inherent in elicitation, controls in the form of protocols (formal

elicitation processes) can be employed. In general, these protocols introduce the

expert to the elicitation task, and make them familiar with the issues that may

arise so biases can be detected as they arises during elicitation exercises.

10.3.2 Evaluation of data-driven approach

In Section 10.3.1 we reflected on the hand-crafted approach to BN construction,

and highlighted the benefits and challenges. In this section, we reflect on the

alternative approach: the data-driven approach.

10.3.2.1 Benefits of data-driven approach

Constructing BNs from data involves discovering the graphical structure of the

network, that is the relationships between the variables, and estimation of the

conditional probability distribution given the structure. It is the fact that both

components of the BN are derived from data that make this an attractive ap-

proach, especially when no expert is available.
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Many medical (and other) domains create, collect and maintain data sets over

periods of time. Within these data sets are valuable pieces of information about

the relationships that exist between the variables. Using a data-driven BN con-

struction algorithm, it is possible to realise the relationships that exist in the

data graphically in the form of a BN. Accordingly, the issues associated with the

hand-crafted approach are eradicated; however, the data-driven approach comes

with its own set of challenges.

10.3.2.2 Barriers and challenges of data-driven approach

The two most common challenges with this approach are: 1) data quality and

quantity; and 2) automatic discovery of a BN from data is computationally com-

plex.

Data While data may be readily available in many domains, it must be com-

prehensive and it must satisfy a number of criteria if it is to be suitable for BN

learning. In the first instance, the variables and values in the data set should

match the variables and values of the desired BN; otherwise, there must exist

a consistent and reliable one-to-one mapping between the variables in the data

set and the requisite variables. Also, the data collection process must be exe-

cuted carefully to ensure that it is free from bias, as this could have a negative

effect on the resulting model. In addition, to ensure that the construction al-

gorithm has a chance of reliably recovering the probabilistic relationships, the

volume and spread of data must be proportional to the number of variables. In

general, there is no defined rule to express the volume of data samples required

for BN learning. As can be seen in Section 10.2, small, sparse sample sizes can
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lead to models that are not representative of the true relations of the problem at

hand. Another assumption that is made by many learning algorithms is that the

samples in the dat set are complete — there should be no missing values. This

may be viewed as an unrealistic, and to some extent utopian requirement, as

most real-life data sets are not complete, especially medical data sets. However,

algorithms exist that discover the network structure and parameters when data

is incomplete [90, 112, 225]. Finally, algorithms that construct BNs from data,

in general, make the assumption that the cases in the data set are independent

of each other.

Complexity The primary drawback of the data-driven approach is that it is

computationally hard. The problem arises because the number of possible struc-

tures for a given problem grows super-exponentially with the number of variables

in the problem domain (see Section 7.1).

10.3.3 Other broad issues

A number of other issues, listed below, arise from the construction approaches

discussed above.

Scalability Despite the tools and methods available to assist construction, the

hand-crafted approach is very labour intensive. As a result, the approach

can be tiring for experts. This begs the question regarding the scalabil-

ity of this technique for large BN model. Two potential solutions to this

scaling issue include: 1) a hybrid approach that combines construction ap-

proaches: first, a base-line model is constructed from data, then the expert
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tunes and moulds; and 2) a technique inspired by Object-Orientated pro-

gramming, which treats pieces of knowledge as artifacts (or fragments),

which are combined into the bigger BN model [158].

Network complexity The question of how complex the network should be is

an interesting one. It is reasonable to think that a complex topology with

many variables and relations is more beneficial than a simpler structure.

However, for classification problems, Thomas [263] and Domingos and

Pazzani [70] have demonstrated that a simple Bayesian classifier, such as

a Naive Bayes model, perform just as well as (and in some situations out-

performs) complex, sophisticated BN. In addition, Cheng and Greiner [42]

propose a less restrictive option, which relies on tree-augmented networks.

Such models are more flexible, as they permit extra dependency relations

between the variables. Nonetheless, there remains situations when more

complex models are required.

The best approach? Like many algorithms in computing science, no single

construction approach is a “silver bullet” for BN construction. It may be

reasonable, however, to assume that the hand-crafted approach may pro-

vide more valuable knowledge than the data-driven approach when data is

sparse — this was our experience (see Section 10.2). However, there is very

little evidence to support this point of view. In addition, there may equally

be a scenario where the expert is overwhelmed by the complexities of elic-

itation, leading to a poorly defined model. In which case, a data-driven

model may well derive a more accurate model, even with sparse data [191].
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10.4 Summary

In this chapter we have compared and evaluated the two approaches for BN

construction investigated in this thesis. We have applied both approaches to a

real-life problem, and we have compared the resulting models.

There is no one single “best” approach to BN construction — each approach has

its own merits and challenges. On one hand, the hand-crafted approach captures

expert knowledge of a domain, however there are significant barriers in terms

of elicitation. On the other hand, the data-driven approach does not rely on a

domain expert, however it does rely on a comprehensive, complete data-set. In

addition, the data-driven BN problem is computationally complex and therefore

requires powerful algorithms to construct the model from data.

The approaches are not necessarily independent of each other. There may be

situations where a hybrid that combines both approaches would be more suitable.

For example, where there are hundreds of variables and there is only one expert

to construct the model. In this scenario, the data-driven approach combined with

the hand-crafted approach would reduce the burden on the expert and aid the

construction task.
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Part V

Conclusion and future work
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Chapter 11

Summary, reflection,

achievements and conclusions

This thesis has presented BN construction approaches, it has identified opportu-

nities to improve automatic construction from data, and it has implemented new

algorithms to implement some of the opportunities. In addition, a novel appli-

cation of BN has been presented — decision support for dementia diagnosis. In

this chapter the body of work contained in this thesis is summarised. The overall

achievements are detailed along with a discussion on how the aims defined in

Chapter 1 have been met. Afterwards, limitations of the research are addressed,

and suggestions about how they could be resolved are discussed in the future

work section.

11.1 Summary

This thesis started by identifying the potential of Bayesian networks (BN) for

expressing and reasoning about problems characterised by uncertainty (Chap-
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ter 2). Thereafter, in Chapter 3 we identified challenges and barriers regarding

the diagnosis of dementia in primary care practice, particularly at the General

Practitioner (GP) level. To address this issue, we proposed a novel application

of Bayesian networks (BN) to provide medical decision support for the diagnosis

of dementia in primary care practice. However, the primary challenge with any

application of BNs is that they first need to be constructed before they can be

used.

We then focused on the two approaches for BN construction, namely the hand-

crafted approach and the data-driven approach (Part II and Part III). We in-

vestigated and reviewed a range of techniques for each of these approaches. In

Part II we provide a detailed description of a number of tools to support the

hand-crafted approach, and we demonstrated how these techniques are applied

to a real-life problem. In Part III, we investigated issues with the the data-driven

construction approach and proposed a new algorithm to address some of these

issues. We evaluated the new algorithms against a range of problems, includ-

ing the real-life dementia diagnosis problem, and compared their performance to

existing and new data-driven algorithms that appear in the literature.

Finally, in Part IV, we compare and discuss the two approaches, as well as the

BN models derived from each approach.

11.2 Contributions of research

The initial aims of this research are detailed in Chapter 1; however, they are

summarised below.

1. To conduct research in the area of BN construction
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2. To investigate the hand-crafted approach to BN construction and create a

practical framework to assist non-BN experts with model construction for

real-life applications

3. To investigate the potential for BN models for dementia diagnosis, and

develop a hand-craft for dementia diagnosis using expert knowledge

4. To determine the performance of BN models for dementia diagnosis

5. To investigate existing data-driven approaches and identify and implement

development opportunities

6. To investigate the performance of the new algorithms compared to new and

existing data-driven algorithms that appear in the literature

Through this programme of research, it is felt that the research objectives outlined

have been met. A breakdown of the contributions and how they have been met

are listed below.

This thesis started by identifying the potential of Bayesian networks (BN) for

expressing and reasoning about problems characterised by uncertainty (Chapter

2). Thereafter, in Chapter 3, we identified challenges and barriers regarding

the diagnosis of dementia in primary care practice, particularly at the General

Practitioner (GP) level. To address this issue, we proposed a novel application

of Bayesian networks (BN) to provide medical decision support for the diagnosis

of dementia in primary care practice. However, the primary challenge with any

application of BNs is that they first need to be constructed before they can be

used.
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Compiled a framework using common methods selected from the liter-

ature to support hand-crafted BN construction, and showed how they

are applied in a novel way to a real-life problem The potential of (BN)

for expressing and reasoning about problems characterised by uncertainty is well

known. However, before a BN can be used it must first be constructed — this

is a significant challenge, and perhaps one of the perceived drawbacks of the BN

formalism. In Part II of this thesis the hand-crafted construction approach is

treated.

• An in-depth investigation into the the hand-crafted BN construction ap-

proach is provided in Chapter 4. The challenges and barriers of the hand-

crafted approach, such as cognitive bias, are reviewed. At the beginning

of this research project, it was felt that one of the barriers preventing the

adoption of BNs is due to their construction. Therefore, in order to equip

non-BN experts for the challenge of hand-crafting BNs, a framework con-

taining a selection of methods from the literature that address issues such

as bias are presented.

• Chapter 3 describes in details a real-life domain — dementia diagnosis —

and highlights the challenges with dementia diagnosis in clinical practice.

Bayesian networks are proposed as a decision support engine.

• The research contribution is extended in Chapter 5 through a demonstra-

tion of how the framework presented in Chapter 4 can be applied to the

construction of BN models for dementia diagnosis decision support. The

models are evaluated empirically in Chapter 6.
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Investigated the data-driven approach to BN construction, identified

issues, and developed a new construction algorithm to address these

issues The alternative to the hand-crafted construction approach is the data-

driven approach, which is treated in Part III. However, this approach is no

silver-bullet to the construction problem.

• An introduction and review of the data-driven approach is provided in

Chapter 7. The primary contribution of this chapter is to bring to the

forefront the computational complexity associated with automatically con-

structing BN models from data, as well as to review existing algorithms in

the literature. At the outset of this research, it was felt that some of the

existing data-driven algorithms that require human input at the outset may

be restrictive, as the information may not be available. In this chapter, we

identify development opportunities to improve BN construction from data,

specifically targeting algorithms with the following characteristics: 1) algo-

rithms that search the entire space of structures, such as Larra˜nagaet al.

genetic algorithm [155] – is it possible to improve the quality of solutions

found as well as efficiency?; and 2) order-based algorithms reduce the search

space, and when a good order is provided, good BN structures are found.

However, we argue that the prerequisite to input an order among the nodes

is not always practical as an expert is not always available to provide the

order – can we find a suitable algorithm to search the entire space efficiently

such that an order is not required?.

• Since the primary issue of data-driven BN construction lies in the computa-

tional complexity of searching through a complex, high-dimensional search

space, we turned to the field of Evolutionary Computation (EC), as these
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algorithms are generally well suited to exploring such problem spaces. In

order to investigate the above, a set of new algorithms from the EC field are

proposed. Chapter 8 expands this research by detailing the two algorithms

developed, which are based on binary Particle Swarm Optimisation (PSO);

these algorithms search through the complex, high-dimensional space of BN

structures for the one that best represents the relations in the data set.

• Chapter 9 provide details of the experiments conducted, which demonstrate

the performance of the algorithms on synthetic and real-life problems. Ex-

perimentation in Chapter 6 shows that the models, in general, have good

ability to distinguish between the diagnostic groups (according to Pearce

and Ferrier’s [215] qualitative translation of classification performance).

Using synthetic benchmark data sets and a real-life clinical data set, the

performance of the new algorithms is assessed against classic and new algo-

rithms in the literature. One of the algorithms performed well on most of

the test problems.In addition, the algorithms are compared to other algo-

rithms taken from the literature that explore the entire space of candidate

structures as well as those order-based algorithms.

Compared the construction approaches and the models derived by each

approach Two approaches for BN construction are discussed in this thesis. At

the end of Part II, the performance of the hand-crafted dementia models is mea-

sured; similarly, the performance of the new data-driven algorithms are measured

at the end of Part III. The contribution of this part is to allow comparison in

Part IV of the two BN construction approaches, as well as the models derived by

each approach.
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• Like many approaches in Computing Science (and other domains), there is

no single “best” approach to BN construction. The pros and cons of each

construction approach are set out and discussed in Chapter 10.

11.3 Key strengths

The key strengths of this research are covered by the aims defined in Chapter

1.3.

1. Review construction approaches The review identified two approaches

for BN construction, and it highlighted the challenges and barriers with

each of the approaches. As a result, a number of development opportuni-

ties were proposed.

2. Implement development opportunities The hand-crafted approach by def-

inition relies on human experts. In addition, there are a number of chal-

lenges for non-BN experts, such as cognitive bias. To manage end to end

construction and the common issues faced, a construction process frame-

work is defined to assist non-BN experts. Moreover, a framework is provided

to assist during elicitation tasks.

The data-driven construction approach also faces challenges. Algorithms

considered in this research require an order among the variables as input,

or use a two-tiered algorithm to achieve construction. New algorithms are

proposed. The approach presented is able to find comparable solutions

(worst case) by searching the entire space of BN structures without an

order as input, and the algorithms do not require a two-tiered algorithm

for searching the order space.
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The space in which we perform our search (entire space) requires additional

operators to verify integrity of the solutions. In one of our approaches we

offer a mechanism that relaxed the need for such operators (but it didn’t

work well).

3. BN for dementia diagnosis Bayesian networks have successfully been ap-

plied to dementia diagnosis. The output is probabilistic therefore aligns

closely with clinical practice — other tools for dementia diagnosis in the

literature do not give probabilistic output. Reference models have been

hand-crafted, serving to demonstrate the construction process and tools

presented in Chapter 4. The models developed are capable of assisting de-

mentia syndrome and pathology diagnosis, both singly and in combination.

4. Systematic evaluation of new approaches The algorithms presented seek

to improve on the performance of existing algorithms in the literature. This

was demonstrated on a number of benchmark problems as well as a real-life

problem.

5. Evaluate construction approaches Two different approaches are adopted

for BN construction; they are both analysed and compared. In addition,

the structural differences between the derived models is assessed.

11.4 Limitations of research

Although the research in this thesis has many advantages and contributes to

applications in health-decision support and data-driven BN construction, it does

have some limitations. We divide the limitations into two parts, and address

them in this section.
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Bayesian network construction

1. REST construction algorithm The REstricted STructure algorithm is an

extension to the CONstruct And Repair (CONAR) algorithm. REST was

designed to circumvent the need to employ validation and repair operators

when searching in the entire space of BN structures. This solution modifies

the representation scheme such that a particle encodes two components:

1) triangulated connectivity matrix, which guarantees legal solutions and

2) a permutation, which provides flexibility in the possible relationships

between nodes (see Section 8.6). Using this encoding scheme, no repair or

validation operators are required.

However, as can be seen from the results in Chapter 9, REST does not

appear capable of recovering structures from data.

Novobilski [201] has proposed a mechanism to ensure legally encoded BN

models during stochastic update, however this technique has been imple-

mented for a genetic algorithm, although it is possible to adopt Novobilski’s

approach in Particle Swarm Optimisation. However, analysing further the

mechanics of Novobilski’s solution, it appears that there is still an element

of validation and repair.

A suitable binary representation is required that permits only legal BN

structures during stochastic update.

2. Parameter setting Section 9.3 shows the results of the approaches when

executed on a number of benchmark data sets from the literature. Out

of all the test problems, CONAR performs worst on the Alarm problem.

It is thought that the parameters need tuned further in order to improve
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the results. The problem of parameter tuning, however, is faced by many

nature-inspired algorithms.

3. Comparative performance - computational effort The computational ef-

fort required by the algorithm is measured in terms of the number of fitness

evaluations (see Section 9.2.3) required on average to converge to a solu-

tion. In Section 8.2, we note that part of the motivation for PSO is its

ability to produce high quality solutions with lower effort when compared

to the genetic algorithm, for example. Although our approach produces, in

general, solutions of comparable quality to other algorithms, as can be seen

from Table 9.7 through Table 9.9, the number of fitness evaluations required

by our approach is far more than those the number of fitness evaluations

required by the approaches that we use for comparison.

4. Comparative performance - significance In Section 9.3.2.2 we provide

an empirical comparison of our approach with three other algorithms in

the literature, namely K2, K2GA and ChainGA. We were able to obtain

our own results from the K2 (K2O and K2NO) algorithm, however the

results of the K2GA and ChainGA were taken from Kabli et al. [135]]

paper. We have been unable to obtain the raw result data. Although PSO

appear to marginally outperform the K2GA and ChainGA, we are unable

to validate the statistical significance without the raw results data.

Application to dementia diagnosis

1. Elicitation One of the limitations in the approach to hand-crafting the de-

mentia models is that only one expert was used during elicitation. However,
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the models received peer review at a number of points during development,

and the models were socialised at health-care conferences. Feedback was

incorporated.

2. Clinical data No pertinent clinical data existed at the start of this research,

and in order to test the accuracy of the hand-crafted models, as well as

the data-driven construction approaches, data from clinical practice was

required. A data collection study was initiated with a target of 350 samples.

However, only 154 samples were attained. Furthermore, the spread of the

data was limited, particularly the pathology data. To that end, we were

able to measure the classification accuracy of only three of the diagnostic

outputs, namely Alzheimer’s disease, vascular dementia and other. We were

not able to measure the classification accuracy of the hand-crafted models

on dementia with lewy bodies, frontotemporal dementia and co-existing

pathologies. Extremity testing was carried out on the diagnostic outcomes

omitted from the test strategy, and the model appeared to output values

inline with the expert’s expectations.

In addition, due to the lack of data, it was decided not to test the classifi-

cation accuracy of the models derived from the clinical data set.

11.5 Future work

The BN models for dementia diagnosis have been peer-reviewed by experts during

their development; however, if they are to be used in live clinical practice, they

will require full evaluation in the form of a clinical trial.
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In our experimentation, we have evaluated the the prediction accuracy of the

hand-crafted models against clinical data. However, further evaluation is required

by measuring the prediction accuracy of the learned, although more data would

be required.

Analysis of CONAR and REST results on benchmark problems showed that

they under-performed on the complex Alarm problem. An extension to the PSO

algorithm, namely Clerc’s restriction criteria, may assist convergence, and hence

improve the quality of solutions [47].

It may be possible to reduce the number of fitness function evaluations by caching

scoring computations. However, this would depend on how much the solutions

in the swarm change over time, which would require prior analysis.

Both CONAR and REST use PSO and search in a different space from the

nature-inspired algorithms used for comparison, namely K2GA and ChainGA.

Since CONAR and REST differ in two fundamental ways from these algorithms

(search space and algorithm), it is difficult to explain the reason for the difference

in performance. To enable more straight forward comparisons, we propose that

K2GA and ChainGA are compared with K2PSO and ChainPSO equivalents.

With regards to the consistently poor results achieved by REST, further inves-

tigation is required to determine ways in which the encoding mechanism can be

finely tuned to increase performance.

The CONAR and REST algorithms have been tested on standard benchmark

problems, and they have been applied to dementia diagnosis data from clinical

practice. However, a range of other real-life applications from various domains

ought to be tested.
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A number of nature-inspired algorithms have been applied to the BN construction

from data. However, there is no overarching study that systematically measures

performance across a number of problems. Such a study would be useful, as

there may be trends that emerge indicating that certain algorithms perform bet-

ter/worse on specific types of problems.
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