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Abstract 

We present the example of the specification, implementation, and verification of a library system in 
Omnibus. Three approaches to verification (runtime assertion checking, extended static checking, and 
full formal verification) are applied to the example, and we compare the ease of use and the error 
coverage of each approach. We then discuss how the three approaches may be used together within 
Omnibus in an integrated manner, explain the benefits of this, and show how integration is supported 
by the Omnibus IDE. 
 

Keywords: static checking, run-time checking, integrated formal methods, object-oriented 
programming 



1. Introduction 
In [13-15] we introduced the Omnibus system, which provides a flexible, integrated approach for 
developing verified, object-oriented software. Omnibus supports three main approaches to verifying 
assertion-annotated software: Runtime Assertion Checking (RAC), Extended Static Checking (ESC), 
and Full Formal Verification (FFV). Different verification policies may be applied to different 
components within a single software project, according to the level of rigor that is needed and the 
amount of resources available for carrying out verification. 

Since 2005 the Omnibus system has undergone further development. The guidelines for combining 
verification approaches have been refined and tool support for enforcing these guidelines has been 
greatly improved [14]. In this paper we present a medium-sized case study, carried out using Omnibus. 
The case study provides a showcase for the range of verification techniques available in Omnibus, and 
illustrates the advantages and disadvantages of each technique. The case study also demonstrates how 
different verification techniques may be integrated within a single project. 

We begin with an overview of the Omnibus IDE and language. This is followed by the case study, 
which concerns a library system. We describe the implementation of the library system and then apply 
the RAC, ESC and FFV approaches, in turn, to verify the project in its entirety. This was done to 
permit direct comparison of the error coverage of each approach; we do not necessarily recommend 
that the verification approaches be applied sequentially to real examples in this way. We see that the 
approaches provide increasing error coverage and require increasingly expressive assertion annotations. 
We then describe how the approaches can be used together in a more integrated fashion, utilising new 
tool and language features. 

2. An Overview of Omnibus 
Omnibus provides three distinct verification approaches: RAC (exemplified in [7]), which uses 
lightweight assertions which are converted into run-time checks; ESC (exemplified in [8]), which 
provides automatic static detection of run-time errors and violations of lightweight assertion 
annotations; and FFV (exemplified in [1]), which consists of proving the correctness of a program with 
respect to a fully expressive, heavyweight specification. 

By providing integrated support for the approaches within a single tool, the Omnibus IDE 
allows different approaches to be used for different parts of a single project. The choice of 
approach is managed through a system of Verification Policies. Each policy defines how to 
manage the verification of a single class. Policies for RAC, ESC, and FFV are given as 
defaults and further policies may be defined by fine-tuning these; for example, by defining 
what theorem proving tool to use, how to handle troublesome constructs, or what detail to 
include in failure reports.  

Verification is carried out in a number of different ways, depending on the chosen policy. 
For RAC, a Java generator translates the program into a Java program with embedded run-
time checks. When the program is executed, a run-time check report is generated giving 
details of the assertion checks that have been executed. For ESC and FFV, the program is 
subjected to symbolic execution, which generates verification conditions, expressed in a 
generic logic [15]. These are then translated into the native logic of a theorem-proving tool, 
which carries out the proofs. For ESC, the prover that is currently used is Simplify [9] which 
is fully automatic. For FFV, there is a choice between Simplify or the interactive theorem-
prover PVS [11]. The proof output links directly back into the IDE. 

The Omnibus programming language [15] is superficially like Java, using similar concepts 
of packages, classes, methods, expressions, statements etc. To this is added a behavioural 
interface specification language. The language has been designed so as to facilitate 
verification and ease the annotation burden for developers. A key simplification is the use of 
value semantics by default for objects.  

An Omnibus program consists of a set of class definitions, each containing various 
methods for manipulating instances of the class. Methods may be constructors, which create 
an object; functions, which allow objects to be queried without side-effects; or operations,
which update objects. Constructors are class methods whereas functions and operations are 
object methods.



In Omnibus, all objects are immutable with the system creating new objects behind-the-
scenes as needed to preserve value semantics. This is hidden from the programmers who are 
allowed to think in terms of updating objects. There is a single equality operator which 
represents deep equality. 

Behaviour specifications: The behaviour of a method is described using behaviour 
specifications, expressed as requires, changes and ensures clauses. These state the method’s 
pre-conditions, frame conditions and post-conditions, respectively. A subset of the functions 
in the class are taken to represent the abstract state of the class; these model functions are 
declared with the model modifier and do not have post-conditions. The behaviour of the 
remaining methods is then specified in terms of the model functions. A method may have 
different behaviour specifications at different levels of accessibility (public, private, or 
protected). For example, a function can be declared as a model function at the public level but 
described as a derived function in terms of the private attributes at the private level. 

Requirements specifications: The requirements of a class are specified using initially,
invariant, and constraint assertions. Initially assertions should hold over all freshly 
constructed objects, invariant assertions should hold over objects whenever they are 
accessible by code in other classes and constraint assertions should hold across any operation 
calls. 

Implementations: Implementations of classes are defined in terms of method 
implementations that manipulate the values of private attributes.

Libraries: Like JML [4], Omnibus hides mathematical abstractions like sequences and 
sets behind a façade of library classes. The case study includes examples of the use of some 
of these classes, such as List and Collection.

3. Informal description of the Library System 
The Library contains a set of Items which can be loaned out. Each Item has a unique itemNo and 
title. There are three concrete types of Item: Books, CDs and DVDs. In this paper we focus on the use 
of Books. A Book has additional attributes: an ISBN, a list of authors (which may not contain 
duplicates), a publisher and a published date. 

The Library can hold multiple copies of each Item. Each Copy has a unique copyNo along with the 
itemNo identifying the item of which it is a copy. Items and copies can be searched, added, deleted or 
changed. Adding a new item creates a new copy and deleting the last copy of an item deletes the 
Item’s details from the system. 

People must register with the library as members before they can loan out a copy of an item. 
Members can be searched, added, deleted or changed. Members can loan out copies of items. For each 
Loan, the details of the memberNo, copyNo and start and end dates of the Loan are recorded. Loans 
can be searched, added, deleted or changed via a standard loan/return/renew procedure. 

4. Implementation of the Library System 
Here we present an implementation with lightweight assertion annotations suitable for verification 
using RAC. In later sections we will add further annotations to allow the use of ESC and FFV. An 
initial implementation was developed as part of an investigation into a novice user’s experience of 
using Omnibus [3]. Some of the code (and errors) discussed here derive from this work. The full code 
for the library system may be viewed at [12]. 
4.1. Auxiliary classes 
Most of the classes in the case study are simple data structures. These include Book, CD, Card, Copy,
DVD, Item, Loan, Member and Name. These all follow the same simple structure. Each of them is 
defined in a file with sections for the abstract state, constructor and update operations. 

As an example, consider the Book class. The abstract state is represented by four public model 
functions, which also serve as accessor functions for the private attributes:  
public class Book isa Item { 
private attribute isbn:ISBN 
private attribute authors:List[Name] 
private attribute publisher:String 
private attribute pubDate:Date 
public model function isbn():ISBN 
{ return isbn; } 



public model function authors():List[Name] 
{ return authors; } 
public model function publisher():String 
{ return publisher; } 
public model function pubDate():Date 
{ return pubDate; } 

Requirement specifications such as invariants are used to describe restrictions on the abstract 
state. For example, there should not be any duplicates in the list of authors. The omni.lang.List 
class that is used to model the lists contains a function called containsDuplicates which can be 
used to describe this: 
public invariant noDuplicatesInAuthors: 
!authors().containsDuplicates() 
The constructor simply assigns the passed parameters to the corresponding attributes (including 

attributes inherited from the superclass Item). 
public constructor newBook(iNo:integer, t:String, isbnNo:ISBN, 

auths:List[Name], pub:String, pDate:Date) 
{ itemNo := iNo;   
title := t; 
isbn := isbnNo; 
authors := auths; 
publisher := pub; 
pubDate := pDate; } 
To complete the Book class, four operations, setISBN, setAuthors, and setPubDate, allow 

updating of the state elements. These are declared to change the relevant state element. As an example, 
setAuthors is shown below: 
public operation setAuthors(as:List[Name]) 
changes authors 

{ authors := as; } 
Other auxiliary classes are ISBN, ItemStatus, MemberStatus, and Date, the details of which are 

omitted. 
4.2. The main Lib class 
The bulk of the code is within the Lib class. This contains the items, copies, members, cards and loans 
currently in the library along with methods to manipulate them. 
Accessor functions 
As in Book, the accessor functions for the private attributes are declared as public model functions. 
This enables them to be referred to in changes clauses. 

The model functions for the Lib class are: 
public model function items():Collection[Item] 
{ return items; } 
public model function copies():Collection[Copy] 
{ return copies; } 
public model function members():Collection[Member] 
{ return members; } 
public model function cards():Collection[Card] 
{ return cards; } 
public model function loans():Collection[Loan] 
{ return loans; } 
Formalisation of invariants of Lib class 
Seven class invariants were identified for the Lib class in the original informal specification of the 
library [3]. Four invariants state that the identification numbers used for each item, copy, card and 
member (item number, copy number, card number and member number, respectively) are unique. Two 
invariants state that the copies and members that are referred to in any loan must be in the library’s 
recorded copies and members, respectively. The final invariant expresses that a single copy cannot be 
recorded as on loan more than once at any one time. 

For example, the invariants that the itemNos of the Items in the library are unique, that every 
copy that is on loan is in the copies collection and that no copies are on loan more than once are 
shown below. 
public invariant itemNosInItemsUnique:  



forall (i:Item in items()): 
forall (i2:Item in items()): 
i.itemNo() != i2.itemNo() || i = i2 

public invariant allCopiesOnLoanInCopies:  
forall (l:Loan in loans()): 
exists (c:Copy in copies()): 
l.copyNo() = c.copyNo() 

public invariant noCopiesOnLoanMoreThanOnce: 
forall (l:Loan in loans()): 
forall (l2:Loan in loans()): 
l.copyNo() != l2.copyNo() || l = l2 

Lib operations 
As an example of an operation from the Lib class, consider takeOutCopy, which is used to loan a 
copy of an item to a member. This method accepts a member number, a copy number, and a date and 
takes out a new loan: 
public operation takeOutCopy(memNo:integer, cNo:integer, date:Date) 
requires exists (m:Member in members()): 

m.memberNo() = memNo, 
exists (c:Copy in copies()): 
c.copyNo() = cNo, 

forall (l:Loan in loans()): 
l.copyNo() != cNo 

changes loans 
ensures loans().size()=old loans().size()+1 

{ loans.add(Loan.borrows(memNo, cNo, date,  
calcNewDate(lookupItemFromCopy(cNo) 

.itemNo(),date))); }    
The requires clause asserts that the given member number and copy number must be known, and 

that there must not be any existing loan with the given copy number.  The changes clause states that 
only the loans element of the abstract state may be changed. The ensures clause gives a lightweight 
specification of the behaviour of the method: it simply states that the size of the loans collection 
increases by one. This is sufficient for RAC. 

The implementation constructs a new Loan object with the appropriate values and adds it to the 
loans collection. 

As an example of one of the update methods, consider the changeMemberName operation which is 
used to change the name associated with a given member number:  
public operation changeMemberName( 

memNo:integer, f:String, s:String) 
requires exists (m:Member in members()): 

m.memberNo() = memNo 
changes members 
ensures members().size() = old members().size(), 
lookupMember(memNo).name() = Name.newName(f, s) 

{var memObj:Member:= lookupMember(memNo); 
members.remove(memberObj); 
memberObj.setName(Name.newName(f, s)); 
members.add(memberObj); } 

The requires clause asserts that there must be a Member with the given memberNo. The changes 
clause states that only the members state element is changed. The ensures clause gives a lightweight 
specification of the behaviour of the method, saying that the size of the members collection does not 
change and that the new name is associated with the given member number. 

The implementation looks up the member with the given member number, removes that member 
record, and then replaces it after updating it with the new name.  
Lib functions 
There are also functions to query aspects of the library. For example, consider the 
lookupBookFromISBN function, which accepts an ISBN and returns a Book with that ISBN:
public function lookupBookFromISBN(isbn:ISBN):Book 
requires exists (i:Item in items() where i is Book): 

(i as Book).isbn() = isbn 
ensures result.isbn() = isbn, 

items().contains(result) 
{ foreach (i:Item in items){ 



if (i is Book){ 
var book:Book := i as Book; 
if (book.isbn() = isbn){return book;} 

}} 
unreachable; }

The requires clause asserts that there must be an Item which is a Book and has the specified 
ISBN. The ensures clause says that the isbn of the returned Book must equal the passed ISBN and 
that the Book must be in the items collection. 

The implementation iterates through the elements in the items collection. If it finds a Book, it 
checks the isbn and returns that Book if it matches the passed ISBN. The unreachable statement 
should never be reached because the requires clause ensures that the book will be found.  

5. Applying RAC to the Library System 
Verification with RAC is built around testing. Tests are used to ensure that the application performs its 
intended function without violation of any of the assertion annotations. 

The Omnibus language provides the facility to define tests and the Omnibus IDE can be used to 
automatically re-execute them at the push of a button. A Check Viewer tool is used to check the extent 
that the assertions present in the class were covered by executing the tests. 

As an example, a small part of one of the tests produced for the Lib class is displayed below. In its 
complete state, this particular test covers adding, retrieving, updating and changing the loan status of 
books. 
test bookTest { 
var lib:Lib := Lib.testDataLibrary(); 
// declare new book details 
var t:String:="Comparative Programming Languages"; 
var i:ISBN:=ISBN.fromString("0201710120"); 
var n:Name:=Name.newName("Robert","Clark");  

"Wilson"); 
var a:List[Name] :=  List[Name].empty().add(n); 
var p:String := "AW"; 
var d:Date:=Date.newDate(6,11,2000); 
var plItemNo:integer := lib.getNewItemNo(); 
var plCopyNo:integer := lib.getNewCopyNo(); 
// add the new book 
lib.acquireBook(t, i, a, p, d); 
// check details of added book 
var plItem:Item := lib.lookupItem(plItemNo); 
assert plItem is Book; 
var plBk:Book := lib.lookupBook(plItemNo); 
assert plItem = plBk; 
// check search functions 
assert lib.lookupItemFromTitle(t) = plBk; 
assert lib.lookupBookFromISBN(i) = plBk; } 

After a set of tests is executed, the Check Viewer reports which assertions passed (were 
encountered at least once and evaluated to true all times), failed (evaluated to false at least once) or 
were unchecked (were not encountered). Below, we show the Check Viewer screen after executing two 
tests, bookTest and cdTest. There are some errors present. 



To cover all the assertion checks in the Library system, we defined 7 tests, totalling 240 lines of 
code (excluding comments). Each of these exercises a particular aspect of the system. To get all of the 
assertions passed, we also needed to correct some errors, described in the next section.  
5.1. Errors detected 
As one would expect, the RAC process found some errors in the initial implementation. The most 
common error was missing old operators in ensures clauses of operations. The old prefix is needed 
to refer to the value of a state element before an operation is carried out. Novice specifiers often forget 
to use it. For example, consider the original specification of the disposeOfCopy operation: 
public operation disposeOfCopy(cNo:integer) 
requires exists (c:Copy in copies()): 

c.copyNo() = cNo 
changes copies, items 
ensures copies().size() = old copies().size() - 1, 
if (isOnlyOneCopy( 

lookupCopy(cNo).itemNo())) then
items().size() = old items().size() - 1 

else 
items() = old items() 

{ ... } 
This operation should remove the Copy with the specified number and, if it is the last Copy, delete 

the associated Item. RAC checking this code yields the following error. (The full error message also 
gives many other details.) 
Lib.obs:248: Failure of public requires clause of the lookupCopy function 

declared in Lib at line 780 
The error arises from the use of the function lookupCopy in the ensures cause. The lookupCopy 

function is used to search the copies collection to find the Copy with a given copy number; it requires 
that that Copy is present. The specifier wanted to say that if there was only one copy of the associated 
Item before the operation, then the size of the items collection is reduced by one; otherwise it stays 
the same. However, the call of lookupCopy, without an old prefix, refers to the library after the 
operation, when the copy has already been removed. This violates the requires clause of 
lookupCopy. There is a similar mistake with the call to the function isOnlyOneCopy.

There were also a number of genuine mistakes detected by the RAC process. A good example is 
from the acquireBook operation, an extract of which is shown: 
public operation acquireBook(title:String, isbn:ISBN, authors:List[Name], 

pub:String, pubDate:Date) 
changes items, copies 
ensures 
if (forall (i:Item in old items()  

where i is Book): 
((i as Book).title() != title 



&& (i as Book).authors() !=  authors)) 
then ... 
else  ... 

{ var countOfCopies:integer := 0; 
foreach (i:Item in items){ 
if (i is Book){ 
var b:Book := i as Book; 
if(b.title()=title&&b.authors()=authors){ 
countOfCopies := countOfCopies + 1;  

}}}  
... }  

The intention of this operation is to check for an existing Book with the specified title and authors, 
if there is one, add a new Copy of it and if there is not then add a new Item and Copy. On invoking the 
RAC checker, we get the following error. Here line 172 is the last line of acquireBook and line 1312 
is a point in the bookTest test where a second Book authored by ‘Robert Clark’ is added. 
Lib.obs:172: Failure of public ensures clause of the acquireBook operation 

declared in Lib at line 145  
Call stack:
at Lib.acquireBook(Lib:172) 
at Lib.test_bookTest(Lib:1312) 

The ensures clause expresses that both the title and the authors list are different from those of all 
existing books. The implementation iterates through the items collection and counts the number of 
Books with the given title and authors. If this is zero, it assumes the quantification in the specification 
is satisfied. However, the quantifier should contain a disjunction to describe the intended behaviour. 

This error was only picked up because of the comprehensiveness of the full bookTest test case. 
The inconsistency is only exposed when a new Book is added with the same title but different authors 
or same authors but different title as an existing book. It would have been easy to have missed this 
scenario in our test case, in which circumstance the error would have gone undetected by the RAC 
process. 

We have seen that RAC allowed us to identify a range of errors in the original Library system. 
However, as the next sections will show, there are other errors which the RAC approach was not able 
to detect. 

6. Applying ESC to the Library System 
Next we consider the use of the ESC approach to check the library project. Our starting point is the 
Omnibus implementation with lightweight specifications used in the previous section. We will see that 
ESC allows us to uncover errors that were not detected by RAC. 

The Omnibus ESC tool is straightforward to use: the programmer simply selects ESC in the Policy 
Selector and then clicks ‘Verify Project’. The tool generates appropriate logical theories and then runs 
the Simplify prover. 
6.1. New errors detected 
ESC uncovers several errors and omissions which were not detected by RAC. 

In the specifications produced for the RAC approach, we did not give private specifications for the 
public model functions as these were not needed. For example, the Item class included the following 
public model functions:   

public model function itemNo():integer 
{ return itemNo; } 
public model function title():String 
{ return title; } 

The Item class contains an operation called setTitle which is declared with a changes clause 
expressing that only the title model function should be changed, i.e. itemNo should not be affected. 
public operation setTitle(t:String) 
changes title 

{ title := t; } 
On attempting to ESC-check this file we get the following error, where line 20 is the changes 

clause of setTitle. ESC is unable to prove that setTitle does not change itemNo:
Item.obs:23: Unable to verify the implementation of the setTitle operation 

respects the public changes clause at line 20 
The problem is that the ESC tool is unable to deduce the relationship between the itemNo() 

function and the itemNo attribute because there is no specification of this relationship. ESC uses 



modular checking and can only reason about other methods using their specifications. The relationship 
between the model function and the attribute is clear from the implementation of the function, but the 
tool does not refer to this from within the setTitle operation. 

To fix this problem, we must add a private specification to the public model functions stating the 
relationship between the public model functions and the private attributes:  
public model function itemNo():integer 
private ensures result = itemNo 

{ return itemNo; }  
public model function title():String 
private ensures result = title 

{ return title; } 
These missing specifications are not really a mistake in the original code, more an additional 

annotation burden for using ESC. We note that it was not clear from the error message that this was the 
problem. 
Missing requires clauses 
When producing lightweight specifications, it is acceptable to specify as little as the programmer 
wishes in the ensures clauses. However, the requires clauses should completely describe the 
assumptions which a method makes about the state in which it is called. A method can only reasonably 
expect that the caller respects its requires clause and so if the requires clause of a method is met 
and then an assertion failure occurs during the execution of the method, that is a mistake in the called 
method. 

Consider the Book class as described in the previous section and RAC-checked. It contains an 
invariant stating that there are no duplicates in the list of authors of a book. It also contains a 
constructor, newBook, shown in Section 4.1. If we try to ESC-check this class we get the following 
error: 
Book.obs:51: Unable to verify the implementation of the newBook constructor 

maintains the public invariant at line 35 
The problem is that the author list that is passed into newBook is not constrained to not contain 

duplicates. The ESC tool correctly picks up this omission. To fix the problem, we add the following 
requires clause to newBook:
requires !auths.containsDuplicates() 

Our RAC checks did not detect this missing requires clause because our test cases were written 
to test correct execution for expected values, not graceful failure for invalid inputs. Let us consider 
what happens if we now add a test case to check the rejection of the addition of a Book with duplicate 
authors: 
test bookTest { 
... 
var n:Name:=Name.newName("Robert","Clark");  

"Wilson"); 
var a:List[Name] :=  List[Name].empty().add(n).add(n); 
... 
lib.acquireBook(t, i, a, p, d); 
... }

Without the requires clause in newBook, we get the following error when RAC-checking the test 
case: 
Book.obs:36: Failure of public invariant declared in Book at line 24 at end 

of newBook constructor 
So, we get a failure report for the invariant at the end of the newBook constructor. Since this is not a 

requires clause failure, we would expect it to indicate an error by the implementer of the newBook.
However, it is not an error in the implementation, it is the omission of a suitable requires clause. 
Here, ESC is much more accurate than RAC at pinpointing the cause of the error.  

Truisms in ensures clauses 
A subtle mistake was made in the entry of the changeFineDue operation in the Member class. The 
operation was initially defined as follows: 
public operation changeFineDue(f:integer) 
changes fineDue 
ensures fineDue() = fineDue() 

{ fineDue := f; } 



There is clearly an error in the ensures clause, which states vacuously that fineDue() is equal to 
itself. Instead, the specifier meant to say that fineDue() is equal to the parameter f. Unfortunately, 
this error is not picked up by RAC since fineDue() = fineDue() always evaluates to true so no 
assertion failure is ever triggered. 

This error also escapes detection in the ESC-checking of the Member class, again because the 
assertion evaluates to true when it is checked at the end of the implementation of changeFineDue.
However, the error is picked up by ESC when we check the Lib class, which includes a 
changeMemberFine operation. The lightweight specification of this operation asserts that the 
fineDue for a specified member should be set to a passed value. This is implemented via a call to 
changeFineDue. As ESC uses modular reasoning, it uses the specification of 
changeFineDue to reason about how the member’s fine is changed. The 
specification does not contain the information required for this, so an 
error is reported. 

This mistake was not picked up by RAC because RAC interprets other methods by executing their 
implementations, not by reasoning about their specifications. This property of RAC makes it excellent 
for working with external components with limited specifications, but here it is a hindrance and 
prevents the detection of a genuine error. 
6.2. Limitations of the ESC tool 
The ESC tool is not able to verify the full Lib and Date classes. If verification is attempted, the prover 
hangs. The specification of the Lib class is too sophisticated to be ESC-checked. The problem with the 
Date class is that it was not completely specified. 
6.3. Conclusions about ESC 
ESC was able to detect a range of mistakes that RAC did not detect. This is, firstly, because ESC 
considers the execution of the methods for arbitrary symbolic values, not a specific set of inputs 
covered by associated test cases. In particular, this helped identify errors in the handling of invalid 
input values which required additional requires clauses. Secondly, when verifying a method, ESC 
reasons about other methods using their specifications and this can help us find errors in the 
specifications. However, ESC was not able to verify the entire project because some of the 
specifications were too complex or incomplete. 

7. Applying FFV to the Library System 
We now consider the full formal verification of the library project. We will see that FFV requires more 
comprehensive specifications, and therefore uncovers issues that RAC and ESC did not detect. 

There is a key difference between ESC and FFV concerning the way that verification is carried out 
for constructors and operations. ESC checks only that the implementation satisfies the behaviour 
specification and requirements specification. FFV, however, generates additional proof obligations that 
the behaviour specification guarantees the requirements, independently of the implementation. Because 
of this, FFV requires more expressive, heavyweight specifications of behaviour, instead of the 
lightweight specifications that are sufficient for ESC (and also for RAC).  

FFV is performed using either an automated or interactive theorem prover. 
FFV with an automated prover 
After corrections, it is possible to verify the specifications of the auxiliary classes (i.e. all the classes 
apart from Lib) with the automated Simplify prover. This involves the proof of 19 VCs which takes 2 
seconds. 

Verification of the Lib class with the automated prover is less successful. The first 7 VCs, 
corresponding to proving the invariants for a constructor which creates an empty library, are proved in 
a total of just over 4 seconds; but then the prover hangs whilst trying to verify the main operations. 
This is not an unexpected result and is consistent with previous attempts to use Simplify for FFV 
projects [9]. 
FFV with an interactive prover 
To fully verify the Lib class we must use an interactive prover. When this option is chosen, the IDE 
generates PVS files containing the specification of the class and the libraries it uses, the proof 
obligations, and default proof attempts. These files are then opened separately in PVS and the proof 
attempts are manually developed into full proofs. The Omnibus IDE consults the PVS proof files to 
keep track of which proof obligations have been satisfied.  

As an example, consider the verification that the registerMember operation preserves the 
invariants. The registerMember specification is given below. It is quite straightforward, simply 
constructing a new Member with the passed attributes and adding it to the members collection. 



public operation registerMember(name:Name, ad1:String, ad2:String, 
pCode:String, telNo:integer, isAdult:boolean, isStaff:boolean) 

changes members 
ensures members() = old members().add( 

Member.newMember(old getNewMemberNo(), ...)) 
The memberNo for the new Member is calculated using the getNewMemberNo function. The 

specification of this function says that it returns an integer which is not the memberNo of any existing 
Member in the members collection. 
public function getNewMemberNo():integer 
ensures !(exists (m:Member in members()): 

m.memberNo() = result) 
Now let us consider the verification of the invariants. We assume that the invariants hold before the 

operation and must demonstrate that they are preserved. The changes clause says that only the public 
members model function is changed, so any invariant which does not refer to members will be trivially 
maintained. This covers 5 of the 7 invariants from the Lib class. The default proof attempts generated 
by the IDE are almost sufficient to complete these proofs, with only a few extra steps needed.  

Next, we have an invariant that says that every memberNo referred to in a loan corresponds to an 
existing member. This is also fairly easy to demonstrate as we have not removed any members from 
the members collection  

Finally, we prove the invariant that there are no two members with the same memberNo:
public invariant memberNosInMembersUnique: 
forall (m:Member in members()): 
forall (m2:Member in members()): 
m.memberNo() != m2.memberNo() || m = m2 

This is more complicated to prove, and relies on the specification of getNewMemberNo. The proof 
consists of 104 steps and involves several side-conditions. The details are described in [15]. 
7.1. New errors detected 
FFV found no errors in the registerMember operation, but other parts of the project were found to 
contain errors or omissions that were missed by the other approaches. 
Missing ensures clauses 
As part of the ESC process, we had to add a requires clause to the newBook constructor to ensure 
the invariant is satisfied (Section 6.1). We did not have to provide an ensures clause since the 
invariant was checked at the end of the implementation of the method. For FFV, however, we must 
show that the specification alone is sufficient to verify the invariant. If we attempt to verify  Book 
using automated FFV, we get the following error: 
Book.obs:13: Unable to verify the public behaviour of the newBook 

constructor satisfies the public invariant at line 7 
This is because there is no ensures clause to describe how the value of the public authors model 

function relates to the passed auths lists at the end of the method. We must add an ensures clause to 
describe this. 
ensures itemNo() = iNo, title() = t, 
isbn() = isbnNo, authors() = auths, 
publisher() = pub, pubDate() = pDate 

Ensures clauses not strong enough 
After applying RAC and ESC, we have already made a number of corrections to the acquireBook 
operation. However, there is still a remaining error in the heavyweight specification produced by the 
novice user. This specification with all the existing corrections is shown below. 
public operation acquireBook(title:String, isbn:ISBN, authors:List[Name], 

pub:String, pubDate:Date) 
requires !authors.containsDuplicates() 
changes items, copies 
ensures if ... then // if it is a new book

items() = old items().add(...) 
&& copies() = old copies().add(...) 

else  
copies() = old copies().add(...) 

This specification is not sufficient to verify the invariant that the itemNos in the items collection 
are unique. 
public invariant itemNosInItemsUnique:  



forall (i:Item in items()): 
forall (i2:Item in items()): 
i.itemNo() != i2.itemNo() || i = i2 

The problem is that in the case where there is an existing entry for the Book, the new value of 
items() is not described. It cannot be assumed to be unchanged because it is mentioned in the 
changes clause to allow it to be changed when a new Book needs to be created. The intention was 
that, when a new Book is not to be added, the contents of items should not be changed, but this is not 
documented in the ensures clause. Like many specification errors, this is probably the result of the 
programmer thinking in imperative terms about the declarative specification. 

The problem is solved by changing the else part of the assertion to say explicitly that items does 
not change: 
else  
copies() = old copies().add(...) 
&& items() = old items() 
This problem was not picked up by RAC because RAC does not test the completeness of ensures 

clauses. It was not picked up by ESC because, when verifying the Lib class, the invariant was checked 
at the end of the implementation and not from the behaviour specification. The tool would have 
identified the omission if we had ESC-checked a class that uses the Lib class and needed to assert 
some property about items after adding a new copy of a Book.
7.2. Conclusions about FFV 
FFV allows the specifications of the system to be improved still further. Richer specifications can be 
used since the user can guide the PVS prover through proofs that are beyond the automated Simplify 
prover. However, the costs are much higher. Our experience is that manually carrying out proofs for 
FFV requires considerable time and mathematical ingenuity and would be beyond many users. 

8. Integrated Verification 
In the preceding sections we considered the use of the different approaches, in turn, to verify the 
entirety of the library project. In this section we consider how we can use the different verification 
approaches offered by Omnibus in a more integrated fashion. The question of how to combine the 
approaches safely is discussed in detail in [13-15] which present a number of guidelines for developers 
to follow. 
8.1. Using different policies for different files 
The simplest way to combine the use of the different approaches is to select different verification 
policies for different classes in the project. For example, ESC was very good at verifying the auxiliary 
classes in the library project but it could not handle the richer specifications in the Lib class or the 
incompletely specified Date class. The Policy Selector permits different policies to be specified for 
different files. So we could select the RAC policy for the Lib and Date classes and ESC for the others, 
as shown below. 

The integrated verification process can be started via the Verify Project option. If the versions of 
the files before corrections are used then the errors will be detected and displayed together in the Errors 
tab, as shown below. 



If we use the corrected versions, no errors will be reported and the check viewer will report that all 
run-time assertion checks in the Date and Lib classes were covered and all the automated VCs for the 
other classes were proved.  

However, combining ESC and RAC in this way violates the guidelines which we previously 
proposed [13], because ESC policy does not involve the generation of run-time pre-condition checks. 
The tests used to RAC check the assertions in the Lib class use instances of the other classes which 
were statically verified and have no run-time pre-condition checks. This means the tests may be silently 
violating the pre-conditions of the other classes, invalidating their verification, which was based on the 
assumption that the pre-conditions of their methods are respected by calls. 

Our Obligation Viewer tool (below) allows this to be detected. For example, the verification of the 
acquireBook operation in the Lib class will lead to the Obligation Viewer reporting an unjustified 
obligation for the check that the pre-condition of the newBook constructor is respected when the new 
Book object is created. 

To address this problem, our guidelines prescribe that run-time checks must be generated for the 
pre-conditions of the Book class, because it is used in a RAC-verified class. We can do this by 
changing the verification policy for the Book class to be ‘ESC with RAC client checks’. This policy 
includes run-time checks of the pre-conditions as well as statically verifying the implementation. When 
this change is made, no unjustified correctness obligations are reported. 
8.2. Fully integrating the verification approaches 
Omnibus provides a number of features to support higher levels of integration between approaches. 
Here we discuss two of these features: special cases and targeted tests. 

The verification policies to be used when verifying a project are usually specified on a project-wide 
or per class basis, as described in section 8.1. However, targeted tests and special cases allow different 
verification policies to be selected for specific test cases or individual obligations, respectively. A 
targeted test is a test declared with a policy clause which names a verification policy to be used to 
verify the test. Special cases are defined via a Special Cases tab in the Policy Selector by supplying the 
name of an obligation and the corresponding verification policy to use for that obligation. 

This section describes how these facilities can be used to fulfil various purposes. More examples 
are given in [15]. 
Using static verification special cases to omit obligations that are not RAC-compatible 
Certain obligations in a RAC-checked project may be too costly to evaluate, either because of their 
complexity or the frequency with which they are encountered. As an example, consider the items 
model function of the Lib class. We may wish to add a private ensures clause for this function in 
order to allow classes that use it to be ESC-checked. 



However, in the test cases used to cover all the assertions in the project, the private ensures clause 
of the items function is executed 1,531 times, which is costly in execution time and not a particularly 
smart way to verify the assertion. 

In response, we may deem that the assertion is not RAC-compatible [14,15] because it cannot be 
efficiently run-time checked, and remove it. When using RAC, we must be conscious of the limitations 
of the verification approach and adjust our specifications to what can be efficiently run-time checked. 
Of course, then there would be no specification of how the public items function relates to the private 
items attribute. This could prevent us from using ESC to verify code that uses instances of the class. 

A better option would be to use the Policy Selector (above) to define the verification of the private 
ensures clause of the items function as a special case and use ESC to verify it, instead of RAC. The 
method is easy to statically verify, and this approach enables us to retain the specification while still 
ensuring that it is respected. 

This technique can also be used to statically check obligations that cannot be translated into run-
time checks by our tool. For example, obligations involving quantifiers that are not restricted to 
enumerable ranges could be statically verified as special cases. 
Using RAC or FFV special cases to check obligations that are not ESC-compatible 
There are limits to what can be proved with automated provers. For example, the automated Simplify 
prover used by Omnibus is poor at handling recursion, arithmetic and complex quantified expressions. 
Within ESC we could combat this by adjusting the specifications to remain within the bounds of what 
the tool can do or by using assumption constructs [13]. Alternatively, we could define the troublesome 
VCs as special cases and use FFV with interactive theorem proving or RAC with associated tests to 
justify them. For RAC special cases, additional test cases must be provided in order to execute the 
special case RAC assertion to give justification that it is valid. By using a RAC targeted test, we can 
define a test to cover the run-time assertion check, without the burden of also having to ESC-check the 
test. 
ESC-compatibility of RAC- and FFV-checked classes 
Specifications developed for RAC and FFV are often not amenable to ESC-checking. For RAC, the 
problem is generally that the ensures clauses are not sufficiently expressive. For FFV, they are 
generally too expressive. We can use ESC targeted tests to detect these insufficiencies. The ESC-
compatibility of the Book class introduced in section 4.1 could be checked using an ESC-targeted unit 
test. This test should use the methods of the Book class to create and manipulate a Book object. It 
should be declared with a policy clause specifying that ESC should be used. ESC will then be used to 
verify the test case, ensuring that the specification is suitable to verify properties of the class. 

9. Related Work 
JML [4] is another language with tools supporting RAC, ESC and FFV. The tools contain facilities 
which address many of the limitations of the respective approaches. For example, the JML RAC tool 
[7] supports the automated generation of unit tests [6]. The ESC/Java2 tool [8] provides feedback on 
the limits of the automated approach so that users can differentiate between errors and limits of the tool 
[10]. The KeY tool [1] provides a visual interactive proof environment, making interactive verification 
more accessible and less costly. These are all separate tools, but it has been proposed [5] to provide 
built-in support for integration in the next generation of tools for JML. 

10. Conclusions and Future Work 
Our application of RAC, ESC and FFV, in turn, to the library case study demonstrated that the 
approaches offered increasing error coverage in return for increasing user burdens such as the need for 



more comprehensive specifications and, for FFV, user assistance in the proof process. Our verification 
policy system enables different approaches to be used for different classes within a single project. 
When doing this, gaps in the coverage of the assertion checking can arise but our Obligation Viewer 
tool helps detect these. Our tool also offers the possibility of even greater levels of integration between 
the different approaches through special cases and targeted tests. This gives great flexibility and means 
that flaws in the main approach used for a class can be addressed through selective use of other 
approaches. 

Current work on Omnibus is focused on the re-implementation of the Omnibus tools within 
Omnibus itself. We are developing a formal semantics for the language and using it as a specification 
for the new type checker, interpreter and static verifier. This work will give us a formal semantics for 
the language, a rigorously verified toolset and a substantial case study of the Omnibus approach. In the 
longer term, we propose a number of extensions to Omnibus: disciplined support for reference 
semantics in the programming language; more libraries and case studies; and further verification 
options, such as model checking.  
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