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Abstract 
In previous work, the author devised a collection of ontologies to model the generic structure and 
characteristics of the APPEL policy description language [18] utilised within the ACCENT policy 
system [1]. Two ontologies, namely genpol.owl and wizpol.owl, were defined using OWL (Web 
Ontology Language [10]) to describe the generic aspects of the policy language and aspects of how the 
policy wizard (user interface) uses the language. These generic ontologies are explained in CSM-169 
[3], while an ontology modelling a domain-specific implementation of the policy language for call 
control is described in CSM-170 [4]. This document describes how these ontologies have been extended 
to define the structure of resolution policies, in addition to standard domain policies. A resolution policy 
has a similar structural composition to a standard policy, but places restrictions on the characteristics of 
its components. While a standard policy is used to define how events within the domain are handled, a 
resolution policy is defined purposely to resolve run-time conflicts between standard domain policies. 
Conflict arises between a pair of standard domain policies whose actions clash if executed 
simultaneously. A resolution policy specifies the action to be taken when such conflict occurs.   
 
This report distinguishes between a standard policy and a resolution policy in APPEL, outlining the 
ontology description for each and highlighting subtle differences in their form. In particular, it 
demonstrates extensions to genpol and wizpol to specify generic resolution policies. Based on the 
generic extensions, callcontrol.owl was also expanded to include generic call control resolution 
actions. The call control ontology is described here as a concrete example of a domain-specific 
resolution policy language definition for the purposes of managing call conflicts. In addition, the report 
describes generic and domain-specific ontology extensions to aid in policy conflict detection using a 
filtering technique. 
 
Keywords: ACCENT, Call Control, Conflict Filtering, Conflict Detection, Conflict Resolution, 
Ontology, OWL, Policy. 
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Conventions 

1. Ontology conventions 
 
The ontology documents described in this report use a specific naming convention with respect to class 
and property objects. The format adopted reflects a widely acknowledged general convention for OWL 
ontology design. 
 
Ontology class naming convention 
Ontology class names begin with a capital letter and do not contain spaces.  Multiple words in a class 
name string start with a capital letter, conforming to what is known as ‘CamelBack’ notation.  
 
For example:  PolicyVariableAttribute 
 
Ontology property naming convention 
Ontology properties follow a similar convention to class names but start with a lower case letter. 
Property names begin with the word ‘has’ for clearer meaning in their application.  
 
For example:  hasPolicyRule 
 
 
2. Diagram conventions 
 
Diagrams depicted in this report were generated using the Jambalaya plug-in tool [7] and the OWLViz 
graphical plug-in tool [13] for Protégé-OWL 3.2. A key to the graphical notation used in each tool is 
outlined below.  
 
Jambalaya 
An ontology class is depicted by a single circle with the class name positioned directly above. By 
default, where applicable, Jambalaya displays the namespace prefix of a class (e.g. genpol or 
wizpol) in addition to its name, separated by a ‘:’ symbol. 
 

A property restriction is displayed as a straight line with a hollow triangle positioned at the mid-
point. The ‘point’ of the triangle faces the target class, thus indicating the direction of the relationship. 
In the example below, the class Policy ‘has’ some relation with the class PolicyRule. Policy is the 
source class and PolicyRule is the target class of the illustrated restriction. Although not shown, a 
plausible restriction would be ‘hasPolicyRule’. 
 
For example: 

 
 
 
Sub-class (inheritance) is shown by a solid straight line without a triangle.  
 
 
OWLViz 
Each ontology class is represented by an oval shape with any subclass relationship shown by a curved 
line with a hollow triangular arrow head located at the superclass. OWLViz is used  to illustrate 
ontology class inheritance only. Notation is not dissimilar from that of UML (Unified Modelling 
Language), signifying class inheritance or an ‘is-a’ relationship. Class names are displayed inside the 
oval class body, and imported class names are preceded by their namespace prefix (e.g. genpol, 
wizpol) separated by a ‘:’ symbol. 
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Shading indicates whether a class is imported, defined or undefined. Imported classes have the 
lightest shading. Defined classes1 are the most darkly shaded. Undefined classes have a darker shading 
than that of imported classes but not as dark as a defined class. Classes outlined with a darker border 
represent inferred subclasses. 

 
OWLViz has the ability to restrict levels of class hierarchy displayed in a single diagram for ease of 

clarity. A class with additional parents (direct or inferred superclasses) not currently displayed is 
marked with a small black dot to the left hand side – indicating the class has further parent classes, but 
they are hidden in the current diagram. Similarly, a class may have additional children (direct or 
inferred subclasses) which may be omitted from a diagram. This is indicated by a black dot to the right-
hand side of the class. 

 
 
 
 
 
 

 
 
 
 
 
 
 

 
3. Report conventions 

 
Throughout this report, ontology class, property and OWL file names are formatted using a Courier 
font. OWL ontology documents named genpol.owl and wizpol.owl are referred to as genpol 
and wizpol respectively. 
 

For example the name of an ontology class is LogEventAction, an ontology property is 
hasPolicyRule, and similarly an OWL file name is recognised as genpol. 

 

                                                      
1 A defined OWL ontology class is a class which has at least one property restriction deemed to be both necessary 
and sufficient. For further information refer to [6]. Typically, defined ontology classes are those whose subclasses 
are intended to be purely inferred. 

 

Dark class border  
Inferred subclasses 

Left hand dot marking 
Class has additional parents not 
shown in this diagram. 

Subclass inheritance: line with arrow  
e.g. CallCostCondParam ‘is-a’ 
AmountCondParam 

Right hand dot marking 
Class has additional children not 
shown in this diagram. 

Dark class shading 
Defined class (subclasses 
are inferred) 

Lightest class shading 
Imported class  
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1 Overview 
An ontology describes a particular area of knowledge, including the key terms, their semantic 
interconnections and certain rules of inference. Using ontology to describe a domain allows a common 
understanding of the structure of information to be shared between software applications or agents. A 
further benefit is the ability to separate domain-specific knowledge from common operational 
knowledge in a system. 

 
These advantages of ontology use have been employed in a move to generalise the ACCENT 

policy-based management system [1]. Previous implementation of this system saw both core policy 
language information and details specific to the original application domain (call control) embedded 
within the system interface. The lack of domain-independence imposed by such hard-coding, rendered 
the policy wizard incapable of easy adaptation to a new domain. 
 

In previous work, the generic constructs of APPEL were defined in an ontology known as genpol 
[5]. A second ontology, named wizpol, directly extends genpol to specify common features 
employed to manipulate the language within the ACCENT system ‘policy wizard’ user interface. These 
ontologies form the general base on top of which any domain ontology may provide language details 
specific to the field it describes. This includes a definition of the precise triggering events, conditions 
and actions which may be used in policy execution within that domain. The ontology for call control 
(callcontrol.owl) is a concrete example of how an ontology may extend genpol and wizpol 
to provide a domain-specific implementation of the APPEL policy language. The OWL ontology 
documents genpol.owl, wizpol.owl and callcontrol.owl may be accessed at [5], [21] and 
[9] respectively. 

 
In additional work, a system called POPPET (Policy Ontology Parser Program Extensible 

Translation) was developed to parse, interpret and incorporate ontology information within the 
ACCENT policy wizard.  The system is described further in CSM-168 [2].  
 

In the following introductory sub-sections, Section 1.1 provides an introduction to APPEL – the 
core policy description language used by the ACCENT system. Section 1.2 outlines the motivation for 
using ontology to define standard and resolution policy information, while Section 1.3 provides an 
overview of the language and tools chosen for ontology development. Section 1.4 describes the 
hierarchical stack of ontologies used to construct domain-specific standard and resolution policies.  

1.1 APPEL Policy Description Language 
A comprehensive policy description language called APPEL (the ACCENT Project Policy 
Environment/Language [18]) was designed to facilitate the creation of policies. APPEL comprises a 
core language schema which can be extended to support policy management for any given domain. 
APPEL was previously described using XML-based grammar – its syntax defined by means of XML 
Schema. Policies themselves are stored within the ACCENT system as XML documents. 

 
The ACCENT system supports rule-based policies in event-condition-action (ECA) form. In 

relation to the concept of ECA, a policy rule broadly consists of three main components: 
 
• A trigger set (events which potentially cause a policy to be executed) 
• A condition set (contextual variables used to determine whether the triggers justify policy 

execution) 
• An action set (output or resulting actions taken by the system upon policy execution). 

 
The APPEL language describes the make-up of a policy. This includes the definition of a Policy 

Document which may be either a standard domain policy or a resolution policy. Both types of policy 
are outlined in this report and the differences between them explained. 

1.2 Motivation for Ontology Usage 
The motivation behind using ontologies stems from the need to generalise the ACCENT policy wizard 
so it may facilitate user-friendly policy creation for any customised domain. As the APPEL language 
contains a core component structure which may be reused across any domain-specific policy language, 
generic aspects of the language defined in the genpol ontology can be extended to suit the area in 
question. The use of ontology brings many benefits including the ability to define complex knowledge 
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structures, reason with these using existing inference tools, and import and extend ontology structures. 
These features are key to achieving an extensible language framework, and are not possible using XML 
Schema alone. 

1.3 OWL/Protégé Overview 
A variety of specialised languages exist to define ontologies. OWL (The Web Ontology Language 
[10]) was the language chosen for ontology development. The language is XML-based and was 
officially standardised by the World Wide Web Consortium (W3C) in February 2004. OWL was 
chosen primarily due to its recent standardisation, the benefits this brings in terms of available software 
tool support, and compatibility with existing and future industrial and academic projects. In addition, 
OWL provides a larger function range than any other ontology language to date.  

 
Ontology documents expressed in OWL are intended for use in applications where ontological 

content must be processed rather than simply extracted and presented to the human eye. OWL was 
designed to combine and extend the customisable tagging of XML with the flexible data representation 
ability of RDF (the Resource Description Framework [16]) with a view to formally describing the 
semantics of terminology in a domain.   

 
The OWL language is broken down into three sub-languages that provide mounting strengths of 

expressiveness to meet the needs of different users and implementers. For a complete formal definition 
of the differences between OWL dialects, refer to [12]. In descending order, the dialects are: 

 
• OWL Full: The complete OWL language, OWL Full provides maximum expressiveness 

in an ontology. It permits all the syntactic freedom of RDF but gives no computational 
guarantee that statements will be logically inferable using existing Description Logic 
reasoners. 

 
• OWL DL (Description Logic): Designed to provide complete computational 

compatibility with Description Logic reasoners, OWL DL contains the full range of OWL 
language constructs, but places certain restrictions on how they are used. The result is an 
extremely expressive sub-language that can be used in conjunction with existing reasoning 
systems. 

 
• OWL Lite: The weakest dialect, providing only a subset of OWL language constructs, 

OWL Lite was designed for users requiring simple constraints and a class hierarchy. 
Additionally, tool support for OWL Lite ontologies is easier to implement, and the 
documents themselves are more compact. As OWL Lite is a condensed subset of OWL 
DL, it also offers compatibility with existing reasoning tools. 

 
To be compatible with existing formal reasoning tools, the ontologies outlined in this report were 

designed to conform to the OWL DL sub-language. An ontology can be validated to ensure its structure 
is compliant with the desired OWL sub-language. There are multiple online sources which provide a 
free validation service, including the WonderWeb OWL Ontology Validator [21]. To check the 
ontology described in this report, point the validator to the ontology URL as specified in [9]. 
 

Using OWL, an ontology is created by defining various classes, properties and individuals. A class 
represents a particular term or concept in the domain, while a property is a named relationship between 
two classes.  An individual is an instance or ‘member’ of a class, usually representing real data content 
within an ontology. Properties are applied to classes in the form of ‘restrictions’. A property restriction 
describes an ‘anonymous’ class, that is, a class of all individuals that satisfy the restriction. In OWL, 
each property restriction places a constraint on the class in terms of either a value (class or data type), 
or cardinality (number of values the property may be related to). The language also supports 
inheritance within class and property structures. A property restriction placed upon a class is 
automatically inherited by any of its subclasses. The Web Ontology Language Reference document 
[11] provides a complete description of all language constructs. 

 
OWL ontology documents are often very large and complex to edit manually – especially when 

using OWL DL or OWL Full sub-languages as these utilise a broad range of constructs. Protégé [14] is 
a widely used tool throughout industry and academia for the creation of ontologies. Under continual, 
active development, it provides an effective user interface framework through which to define and edit 
ontology documents, and supports automated reasoning capability via any external Description Logic 
compatible reasoning engine. An extendable framework, Protégé supports the creation of OWL 
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ontologies via a dedicated plug-in. Additional plug-in modules provide further specialised functions, 
such as graphical visualisation of ontology structure and class hierarchy diagram generation. Both of 
these were utilised for the figures within this report. The Protégé framework and all OWL modules are 
available to freely download. 

 
Inference support during ontology development was achieved using the RacerPro reasoning engine 

[15]. Diagrams were generated with the aid of the OWLViz [13] and Jambalaya [7] plug-in tools for 
Protégé.   

1.4 The OWL Ontology Stack 
The aim of ontology development was to provide a solid knowledge base describing the generic 

aspects of APPEL, which could be extended to create a larger ontology specific to a particular domain 
application. Using OWL, two generic ontologies were created. A previous report CSM-169 [3] 
describes the contents for standard policies. This report describes their extensions for resolution 
policies. 
 

At the base level, the genpol (Generic Policy Language) ontology describes the core constructs of 
the APPEL policy description language. This includes definition of key policy-related concepts such as 
Policy Document, Policy Variable, Policy Rule, Trigger, Condition and Action. Relationships between 
these concepts describe named associations, inheritance properties and cardinality restrictions. This 
ontology specifies a skeleton structure of ontology classes and properties, which can be imported and 
extended. 

 
Rather than work directly with XML, the ACCENT system includes a policy wizard that provides a 

graphical user interface through which users can create and edit policies. Thus, the wizard contains 
explicit knowledge of both the generic aspects of the APPEL language and its domain specialisations. 
The policy wizard incorporates a number of features that control and manipulate domain data prior to 
its display. Such features are not part of the policy language itself, but are common and useful in any 
domain-specific ontology that is geared towards use with the policy system. Examples include 
categorisation of triggers, conditions, actions and operators, and the inclusion of ‘user-level’ grouping 
categories to restrict the range of language functionality depending on a user’s skill or authorisation 
level. This additional, wizard-related knowledge is defined in a second base ontology known as 
wizpol (the Wizard Policy Language ontology). Wizpol directly extends the genpol ontology, 
thus specialising the APPEL language for use with the policy wizard.  

 
 

OWL supports the sharing and reuse of ontologies by means of ontology importation. Using this 
mechanism, all definitions of classes, properties and individuals within an imported ontology, may be 
used by the importing ontology. Wizpol imports the genpol ontology and extends it to provide 
additional user interface features not directly related to the APPEL policy language. In turn, wizpol is 
then extended to specialise the language for a particular application. Extending ontologies in this way 
has resulted in an ontology ‘stack’ or layered model, through which to build a domain-specific policy 
language ontology. This stack is shown in Figure 1. 
 

 

domain-specific.owl

wizpol.owl

genpol.owl
 

 
Figure 1. OWL Ontology Stack 

 
 
In Figure 1, domain-specific.owl represents an ontology used to describe a particular 

domain, such as callcontrol.owl described in this report. These ontologies define only the structure of 
policy-related knowledge and not actual policy data. For this reason, none of the developed ontologies 
contain individuals or ‘instances’ of ontology classes. All constraints have been applied strictly to 
‘anonymous’ classes. That is, relationships between classes are described in purely abstract terms.  
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The ontologies of genpol and wizpol are intended to be entirely reusable. Due to the recursive 
nature of the OWL import mechanism, a domain-specific ontology is required to import only wizpol 
– importation of genpol is inherently automatic. A domain-specific ontology – call control in this 
report – extends the class hierarchy of the imported wizpol ontology structure to define additional 
sub-classes and properties together with applicable constraints. This includes definition of the trigger 
events, condition parameters and actions particular to standard and resolution policies.  

 
Although the developed ontology stack structure is specially geared towards tailoring the language 

for use within the policy wizard, a domain-specific ontology may include additional non-policy related 
knowledge. The presence of the genpol and wizpol ontology structure ensures compatibility with 
the ACCENT system, but the same ontology may contain additional domain knowledge and an 
unlimited number of imported ontologies for use by other applications or agents. 
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2 Generic Policy Structure 
The generic aspects of the APPEL policy description language [18] are defined within the ontology 
known as genpol. This section describes the structure of a policy document in APPEL which is used 
to define both standard and resolution policies. 

2.1 Generic Policies in APPEL 
At the highest level of policy language abstraction, the outline of a policy described within genpol is 
depicted in Figure 2. Each labelled rectangle represents an ontology class, while linking arrows are 
ontology properties which indicate relationships between two classes. In brief, A PolicyDocument is 
related to Policy and PolicyVariable instances. A Policy has both PolicyAttribute and PolicyRule 
instances. Each PolicyRule has an associated TriggerEvent, Condition and Action. Both TriggerEvent 
and Action may have Argument instances, while a Condition is related to a ConditionParameter, a 
ConditionOperator and a ConditionValue. 

 
 

Figure 2. High-level Generic Policy Structure 
 

2.2 Types of Policy 
A Policy can be either a StandardPolicy or a ResolutionPolicy, as shown in Figure 3. Each oval 
represents a class. The connecting lines depict class inheritance. Standard policies and resolution 
policies share a similar structure in the policy language components they are constructed with. 
 

 
Figure 3. Types of Policy 

 
A distinction is made between the types of triggers, conditions and actions used to define the 

characteristics of standard and resolution policies. These are shown in Figure 4, Figure 5 and Figure 6 
respectively. Where a class appears with darker shading, this indicates it has a specific set of values 
described within the ontology. Arrows to the left or right of a class indicate presence of further 
superclasses or subclasses respectively, which are not shown. 
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Figure 4. Types of TriggerEvent 

 
 

 

 
Figure 5. Types of Condition 

 
 

 
Figure 6. Types of Action 

 
 

Section 3 describes the components of a standard policy, while section 4 describes the components 
for a resolution policy. Section 5 outlines how a resolution policy may be customised for a particular 
domain. Section 6 describes and explains how additional ontology information is used to aid in conflict 
detection, using the call control domain as an example. 
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3 Standard Policies 
A StandardPolicy is a policy which is used to express how particular situations in a domain may be 
handled. Standard policies offer control of domain events. Genpol describes the make-up of a 
StandardPolicy as shown in Figure 7. 

 
Figure 7. Standard Policy Class Hierarchy 

 

3.1 Standard Policy Rules 
A PolicyRule within a StandardPolicy is defined to have zero or more associations with 
PolTriggerEvent, zero or more associations with PolCondition, and at least one association with 
PolAction.  

 

3.2 Standard Policy Triggers 
A PolTriggerEvent is defined as a subclass of TriggerEvent as shown in Figure 8.  

 
 

 
Figure 8. Standard Policy TriggerEvent  
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3.3 Standard Policy Conditions 
A PolCondition is defined to have a single association with each of PolConditionParameter, 
ConditionOperator and PolConditionValue. The parameter and value of a StandardPolicy is 
customisable to the domain whereas the operator must be selected from a named set of operators 
defined within the ontology. Defined operators, such as EqualTo, NotEqualTo, GreaterThan, and 
LessThan for example, are shown in Figure 7.  

 

3.4 Standard Policy Actions 
A PolAction is defined as a subclass of Action as shown in Figure 9. A standard policy action can also 
be a trigger within a resolution policy. Therefore, PolAction is also a subclass of ResTriggerEvent. 
Conversely, ResTriggerEvent is a subclass of PolAction. 
 

 

 
Figure 9. Standard Policy Action  
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4 Resolution Policies  
A ResolutionPolicy is a policy which is used to express how conflicts between actions of standard 
policies may be resolved. Resolution policies follow the same structural format as standard policies, 
with differences occurring in the types of arguments and parameters of triggers, conditions and actions. 
Genpol defines the make-up of a ResolutionPolicy as shown in Figure 10. 

 
The following subsections describe the format of triggers, conditions, actions and variables for 

resolution policies. 
 

 
Figure 10. Resolution Policy Class Hierarchy 

 

4.1 Resolution Policy Rules 
A PolicyRule within a ResolutionPolicy is defined to have a minimum of two associations with 
PolTriggerEvent, zero or more associations with PolCondition and at least one association with 
PolAction. The most notable difference between a ResPolicyRule and a PolPolicyRule is that a 
resolution policy must define at least two triggers – relating to the pair of conflicting policy actions. A 
PolPolicyRule may contain zero or more triggers. 

 

4.2 Resolution Policy Triggers 
As resolution policies exist to define how conflicts between standard policy actions are handled, the 
triggering events for a ResolutionPolicy are in fact a combination of domain-specific standard policy 
actions. This is shown in Figure 11, where a ResTriggerEvent is defined to be a PolAction (standard 
policy action). Conversely, a PolAction is also a ResTriggerEvent. In general, a resolution policy will 
have just two triggers, relating to the pair of conflicting actions to be resolved. 
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Figure 11. Resolution Policy Trigger Class Hierarchy 

 

4.3 Resolution Policy Conditions 
Resolution policy condition rules follow the same format as a standard policy condition. Each 
ResCondition has three component parts of a parameter, an operator and a value. The ontology 
definition is shown in Figure 12.  

 
Figure 12. Resolution Policy Condition Class Hierarchy 

 
 
With reference to Figure 12, a ResConditionParameter may be either a ResVarPreference (variable 

bound to the preference value of one of the conflicting standard policies in question) or a 
ResVarVariable (variable bound to the actual arguments of a trigger). The range of condition operators 
which may be used is common for all types of policies – both standard and resolution. In contrast to a 
standard policy condition, a ResConditionValue of a ResCondition may be any value used as a 
ResConditionParameter, so parameters (standard policy preferences or trigger arguments) may be 
compared. Additionally, a ResConditionValue can be a literal value. 

 

4.4 Resolution Policy Actions 
In principle, the action of a ResolutionPolicy could simply be to execute one of the two conflicting 
standard policy actions. However, the action could also be any available standard policy action defined 
for the domain in question. Therefore, actions of a ResolutionPolicy may be either generic or specific, 
as shown in Figure 13.  

 
A GenericResAction is a general action which is used to select one of the conflicting policy actions 

for execution. These actions are defined within genpol and can be used in resolution policies for any 
domain. They consider standard policies in a generic sense, comparing attributes of the policies such as 
policy preference level (e.g. ApplyNegativeResAction, ApplyStrongerResAction), definition date (e.g. 
ApplyOlderResAction, ApplyNewerResAction) and domain (e.g. ApplyInferiorResAction, 
ApplySuperiorResAction). In addition, where applying a single generic action does not result in 
elimination of one of the conflicting actions, the ApplyDefaultResAction and ApplyOneResAction 
options can be used to narrow it down to a single selection. 
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A SpecificResAction is a standard policy action defined in a domain-specific implementation of the 
policy language. Examples are shown in section 5 for the domain of call control. 

 

 
Figure 13. Resolution Policy Action Class Hierarchy 

 

4.5 Resolution Policy Variables 
Resolution variables are specifically bound to data values relating to preferences or arguments within 
conflicting standard policies. The genpol ontology class definition is shown in Figure 14. A 
ResVariable may be either a ResVarVariable or a ResVarPreference.  
 

A ResVarVariable is a variable bound to an actual argument of a trigger. A ResVarPreference is a 
variable bound to a preference value of one of the conflicting policies. Although typical resolution 
policies will require two variables to represent policy trigger arguments and two variables to represent 
policy preferences, the policy language makes provision for an arbitrary number of variables. In this 
case, the ontology defines nine variables to represent ResVarVariable and nine variables to represent 
ResVarPreference.  

 

4.6 Resolution Policy Attributes 
A ResolutionPolicy has a range of RequiredAttribute instances as shown in Figure 15. Unlike a 
StandardPolicy, resolution policies do not include OptionalAttribute instances as depicted in Figure 7 
for standard domain policies. 
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Figure 14. Resolution Policy Variables 

 
 
 
 

 
Figure 15. Resolution Policy Attributes 
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5 Domain-Specific Resolution Policies 
In section 4, the basic form and structure of a resolution policy was described. Such generic language 
details are contained within the genpol ontology. In this section, domain-specific resolution policies 
are described using the example domain of call control. These details are defined within the ontology 
named callcontrol.owl, which imports and extends the ontologies of wizpol and genpol as 
previously outlined in Error! Reference source not found.. Specifically, the domain ontology extends 
the generic resolution policy description within genpol to define SpecificResAction subclasses 
particular to call control.  

 
While genpol defines a number of generic resolution actions, these are applicable to any domain 

policy. Within the call control ontology, SpecificResAction is extended to define resolution actions 
particular to call control. As shown in Figure 16, the actions defined are ApplyCalleeResAction and 
ApplyCallerResAction. These actions can be used in resolution policies to handle call control policy 
conflicts. Their effect is to execute the action associated with the callee or caller respectively when a 
conflict occurs. For example, if two policies conflict when the caller wishes to refrain from using video 
during a call and the callee wishes to include video, one resolution may be to apply the caller’s policy 
as they are paying for the call. 

 
 

 
Figure 16. Specific Resolution Actions 

 
 
In addition, any domain-specific action defined within callcontrol.owl can be used as a 

resolution policy action. These actions are listed in the following section which describes how a 
domain-specific ontology may be utilised in the process of policy conflict detection. 
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6 Policy Conflict Detection Support 
During policy execution, the outcome of two policies may conflict. For example, one policy may have 
an action to add a medium to the call, whereas another may have an action to remove a medium from 
the call. If both policies become eligible for execution at the same time, the policy system must detect 
they conflict and resolve the situation – typically by choosing one of the two policies to execute. For 
the purposes of conflict filtering, it is necessary to consider every possible paired combination of 
actions statically to identify those with similar effects on the environment. The subject of policy 
conflict filtering and techniques to aid in detection and resolution of conflicts is discussed in [20]. 

6.1 Action Effect Ontology Support 
For the purposes of conflict filtering, the ontology stack includes an additional class and object 
property to define action effect categories and associate them with particular actions. As this 
information is not part of the policy language but is common to any domain-specific policy language 
specialisation, it is omitted from genpol and defined in wizpol.  
 

The new class was named ActionEffect and the property named hasActionEffect. Domain-specific 
ontology extensions for the policy language can define particular effect categories as subclasses of 
wizpol:ActionEffect. Domain actions are associated with these categories using the 
wizpol:hasActionEffect property. 

6.2 Detecting Conflicts Between Actions 
The call control ontology defines a set of standard policy actions as shown in Figure 17. Each action is 
deemed to have a particular effect on the execution environment. The effect categories of these actions 
are shown in Figure 18. 

 
Conflicts can occur between actions themselves or between the parameters of actions. While two 

actions may appear to be unrelated, both may utilise a parameter which could potentially conflict. 
Therefore, conflicts must be considered between all action action pairs and all 
action(argX) action(argX) pairs for actions with enumerated parameter values.  
 

Action parameters are defined as genpol:ActionArgument subclasses in the call control ontology. 
Call control action arguments are shown in Figure 19. For example, AddMediumAction is associated 
with MediumActionArg. Argument types with an explicit set of values have these defined as subclasses. 
For example, MediumActionArg is the parameter type, while possible parameter values are either 
AudioMedium, VideoMedium or WhiteboardMedium.   
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Figure 17. Call Control Actions 
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Figure 18. Call Control Action Effect Categories 
 
 
 

 
 

Figure 19. Call Control Action Arguments 
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To associate actions with effect categories, the property wizpol:hasActionEffect is used. An 

example is shown in Figure 20. The action AddMediumAction is shown linked along this property with 
MediumEffect and PrivacyEffect. This is because the action of adding medium to a call may affect both 
‘medium’ (as audio or video may be added to the call), and also ‘privacy’ (as the introduction of, say, 
video may conflict with the callee who does not want to have their image broadcast).  

 

 
 

Figure 20. Example Actions and Effect Categories 
 
 

Together with AddMediumAction, Figure 20 shows the actions PlayAudioClipAction and 
RemoveMediumAction are also defined to affect medium. From this it can be inferred that any pairing 
of these three actions could potentially result in conflict. 
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7 Conclusion and Future Work 
This document outlined how a series of ontology documents was extended to describe the generic 
structure and characteristics of resolution policies in the APPEL policy description language. A 
resolution policy shares similar structural components to a standard domain policy in APPEL, but 
differs in the form of the components. Standard policies define how certain events in a domain should 
be handled, whereas a resolution policy defines the action that should be taken when the actions from a 
pair of standard policies conflict if they become eligible for execution as a result of the same triggers. 
 

The extensions made to the generic language ontology genpol describe the components used to 
form resolution policies and also a set of generic resolution policy actions. Resolution actions specific 
to a particular domain can be defined in a domain ontology. This report used an ontology for call 
control as a working example.  

 
A technique to aid in policy conflict filtering was outlined in section 6. The procedure is not related 

to the APPEL language so its implementation required n extension to wizpol and the call control 
ontology only. The technique aids in the early stages of conflict detection between policies in APPEL 
using the concept of ‘action effect categories’ which standard domain policy actions can be linked 
with. Actions with similar effect categories may be potentially conflicting. The ontologies contain 
classes and property descriptions to specify the links. Using this technique, external tools can make use 
of effect information and automatically generate lists of conflicting actions. This allows creation of 
skeleton resolution policies to handle such conflicts. A stand alone application to perform such semi-
automated conflict filtering and resolution policy generation is under development.  
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