
Department of Computing Science and Mathematics

University of Stirling

A Symbolic Semantics and Bisimulation for Full

LOTOS

Mu�y Calder and Carron Shankland

Technical Report CSM����

August ����





Department of Computing Science and Mathematics
University of Stirling

A Symbolic Semantics and Bisimulation for Full

LOTOS

Mu�y Calder� and Carron Shankland

Department of Computing Science and Mathematics� University of

Stirling

Stirling FK� �LA� Scotland

Telephone �������������	� Facsimile �����������

	

Email mu�y�dcsglaacuk� carron�csstiracuk

Technical Report CSM����

August ����

�Department of Computing Science� University of Glasgow� Glasgow G�� �QQ



Abstract

A symbolic semantics for Full LOTOS in terms of symbolic transition systems is de�ned� the seman�
tics extends the standard one by giving meaning to symbolic� or �data� parameterised processes�
Symbolic bisimulation is de�ned and illustrated with reference to examples�

The approach taken follows that applied to message passing CCS in �HL	
�� but di�ers in several
signi�cant aspects� taking account of the particular features of LOTOS multi�way synchronisation�
value negotiation� selection predicates�

�



� Introduction

LOTOS �ISO��� is a message passing process algebra which combines two orthogonal languages a
process language� known as Basic LOTOS� with features from both CSP �Hoa�
� and CCS �Mil�	��
and the equational abstract data type language ACT ONE �EM�
�� LOTOS is an ISO standard
formal description technique� The semantics of LOTOS given in the standard �ISO��� is in terms
of structured labelled transition systems� In this semantics� each �data� variable in a process
is instantiated by every possible value of its corresponding type� resulting in in�nite transition
systems �both in breadth and in depth��

This approach has several drawbacks� First� it is impossible to use standard ��nite state�
model�checking techniques over in�nite transition systems� To employ model�checking as a proof
technique for LOTOS systems one usually has to restrict the underlying types� Second� because
the data values are embedded in the transitions� any uniformities in the actions of the processes
are lost� For example� the process description may make it clear that a particular action happens
when the value of some variable lies between � and �� �say�� but that information is much harder
to extract from the labelled transition system directly� especially if there are an in�nite number of
branches at that point� Finally� as a consequence of this approach it is not possible to reason about
partial� or �data� parameterised� behaviour expressions� Our experiences with LOTOS applications
�e�g� �TO	�� Tho	�� Tho	�� SM	��� indicate that this is highly desirable� For example� one might
wish to reason about the behaviour of a telephone service without recourse to the actual numbers
dialled �c�f� the example in section �����

The advantage of the standard approach to the semantics of LOTOS is that it easily accommo�
dates multi�way synchronisation� i�e� associative synchronisation between two or more processes
�CCS only allows two�way synchronisation�� Multi�way synchronisation is particularly useful for
certain kinds of systems� and has led to a particular constraint�oriented style of speci�cation in
the LOTOS community �VSvSB	���

So� the problem we address here is how to reason over potentially in�nite LOTOS processes
while retaining multi�way synchronisation� Since the addition of data to the language is the
reason for the problem� some sort of separation of the concerns of data and processes seems
appropriate� We cannot completely disregard data when considering the meaning of processes
and equivalence between processes the particular value of a data variable can completely alter
the behaviour of a process� There are two kinds of solution to this problem� The �rst is to get
rid of data altogether� either in a brute force manner �T�	�� �which changes the behaviour of the
process�� or by constructing a process representation of the data type �Got��� Bri	��� The latter
approach� however� still results in in�nite branching� The other kind of solution is to adopt a
symbolic approach� The tool SMILE �M�	�� implements a symbolic semantics for Full LOTOS
by Eertink �Eer	��� This semantics achieves a separation of the concerns of data and process�
without losing information� but is rather operational� concentrating on using the semantics in
implementing a simulation tool� There are no equivalences or preorder relations associated with
the semantics� A less implementation oriented approach is taken to symbolic semantics for message
passing CCS in �HL	
�� The semantics is given in a modular fashion� separating the notion of a
symbolic semantics from the operational aspects of making the symbolic semantics work within
an implementation� for example� how variable assignments are recorded�

Our approach is to de�ne a symbolic semantics for LOTOS in terms of symbolic transition
systems� This semantics eliminates in�nite branching� maintains uniformities of data� and allows
the representation of partial speci�cations� but does not lose the advantage of multi�way syn�
chronisation� nor the information conveyed by the data� Symbolic bisimulation between symbolic
transition systems is also de�ned� Symbolic bisimulation should not lead to processes being dis�
tinguished which are not in the standard semantics� similarly processes which are distinguished
under the standard semantics are not identi�ed in the symbolic semantics� The proof of this is the
subject of a di�erent paper� here we simply set up the framework for reasoning about Full LO�
TOS� Broadly� we follow the approach taken in �HL	
� for symbolic transition graphs and message
passing CCS� but our approach di�ers in several signi�cant ways to accommodate the particular
features of LOTOS�

�



The paper is organised as follows� Section � introduces LOTOS and the standard semantics�
highlighting the signi�cant features� In Section � symbolic transition systems are introduced�
with some basic de�nitions and conventions that will be used throughout in Section ���� the main
de�nition in Section ���� and the axioms and rules for generating a symbolic transition system
from a �possibly open� LOTOS behaviour expression in Section ���� In Section � �strong� symbolic
bisimulation �i�e� bisimulation over symbolic transition systems� is de�ned� Small examples are
used throughout to illustrate symbolic transition systems and symbolic bisimulation� a larger
example based on telephony systems is given in Section ����

Finally we draw our conclusions together in Section 
 and discuss future directions�

� LOTOS

The language Full LOTOS� is large and a complete presentation is outside the scope of this
paper� Although we are interested in the e�ect of data we are not interested in the language per se
therefore we do not discuss ACT ONE here� We assume only that the language has inductive data
theories and a proof system� Instead we concentrate on the behavioural aspects of the language�
and how that behaviour may be modi�ed by data�

Therefore� we begin with a brief overview of the syntax and a discussion of the semantics
of those features distinguishing LOTOS from other process algebras� such as CCS �Mil�	� and
CSP �Hoa�
�� Further details of LOTOS may be found in �ISO��� BB�	��

����� Syntactic Conventions

behaviour expressions begin with P or Q �
selection predicates �Boolean expressions� begin with SP �
gates in their simplest form are denoted g or h� Let G be the set of gate

names� then g ranges over G � f�g� and a ranges over G � f�� ig� also
known as SimpleEv� �The special gates � and i are explained below��

experiment o�ers �the data associated with events� begin with d and have the form �E
or �x S � The set of structured events �gates plus data� is denoted Act
or StructEv and � ranges over Act � f�� ig� Note G � Act� therefore
� ranges over G also�

�open� data expressions begin with E �
ground data terms begin with v �
exit parameters begin with ep�
variables begin with x � y � or z �
sorts begin with S �

����� Operators of LOTOS

As in CCS and CSP� the main components of LOTOS are actions and processes� The basic
processes in LOTOS are stop� indicating inaction �deadlock�� and exit�ep�� � � � � epn �� indicating
successful termination with data values� �There is also exit with no associated data��

Actions occur at gates� and may or may not have data o�ers associated with them� e�g�
g d� � � � dn is an action at gate g with data o�ers d� � � � dn � A data o�er can be a value �de�
noted by �� e�g� g ��� or a variable over a set of values �denoted by �� e�g� g�x Nat�� Actions may
also be subject to selection predicates� written g d� � � � dn �SP �� where SP is a Boolean condition
that may restrict the allowed data values� There are two special actions� i which is the �unob�
servable� internal event� and � which is the successful termination event �and may have associated
data��

Actions and processes are combined using the following operators

�Full LOTOS is Basic LOTOS �the process algebra� plus algebraic data types� In the remainder of this paper
the term LOTOS refers to Full LOTOS�

�



action pre�xing written g d� � � � dn � P � meaning behave like the action g d� � � � dn and then
behave like the process P �

choice written P� � � P�� meaning behave either like process P� or like process
P�� Nondeterministic choice results if the initial action of each branch is
the same�
There are two other specialised versions of choice� one to non�
deterministically choose a gate name from a given list� written
choice g in �g�� � � � � gn � � � P � and a similar one to nondeterministically
choose a data value from a given range� written choice x S � � P �

parallelism In its most general form written P� j �g�� � � � � gn � j P�� meaning perform
the behaviours P� and P� in parallel� synchronising on actions in the list
g�� � � � � gn � An action in G may not proceed unless both processes are
willing to perform that action� Actions not in g�� � � � � gn may proceed when
ready�
There are three special cases synchronising on no actions �written
P� jjj P��� synchronising on all actions in G �written P� k P��� and
par g in �g�� � � � � gn � op P where op is one of the three parallel operators
described so far� meaning instantiate n copies of P in parallel� replacing gi
for g in the ith instance of P �

enable written P� � P�� meaning behave like process P� and when that terminates
successfully� behave like process P��
Enable can also be parameterised with data P� � accept x� S�� � � � � xn 
Sn in P�� where values are passed from the terminating exit of P� and
bound to x�� � � � � xn in P��

disable written P� �� P�� meaning behave like process P�� but at any time P� may
interrupt and assume control� Control never returns to P�� If P� terminates
successfully then P� can no longer interrupt�

guard written �SP ���P meaning behave like process P if the Boolean condition
SP is satis�ed� otherwise behave like stop�

hide written hide G in P � meaning behave like P � but if an action in G oc�
curs then convert it to the internal action i �so it cannot be observed by
the environment�� This is mainly used to force the enclosed processes to
communicate only with each other�

renaming written P �S �� allows the gate names in P to be renamed� according to the
function S �

variable declaration written let x� � E�� � � � � xn � En in P � meaning bind xi to the value Ei in
P �

Recursion is also allowed and is unconstrained�

�	 Semantics and Distinguishing Features of LOTOS

The standard semantics �i�e� according to �ISO���� of a LOTOS process is a structured labelled
transition system� as de�ned in Appendix A�

LOTOS has three �related� features which distinguish it from most of the standard process
algebras multi�way �broadcast� synchronisation� value negotiation� and selection predicates� These
make it non�trivial to directly apply the notion of symbolic transition and bisimulation as described
in �HL	
��

Multi�way synchronisation means that when two actions synchronise� with possibly some data
exchange taking place� the resulting action may be involved in further synchronisation� This is in
contrast to CCS and the message passing process calculus used in �HL	
�� where synchronisation
is strictly two way two actions synchronise yielding an unobservable action� which may not
synchronise with any other action�

As a result of multi�way synchronisation� it makes less sense in LOTOS to refer to�input�
events and �output� events� In LOTOS an event o�ers a single value or a set of values drawn

�



from a particular sort� these are distinguished by the use of � or � respectively� Either kind of
o�er may be subject to a selection predicate which may restrict the data further� In fact� if
the selection predicate evaluates to false� the event itself is prevented from occurring� Note that
selection predicates can refer to data in the current event �whereas the guards found in other
process algebras refer to data from previous events��

� and � o�ers can synchronise in any combination� For example� when v� and v� are ground
terms� g �v�� P and g �v�� Q can synchronise i� v� � v�� where � is the equivalence induced by
the data type� g �v � P and g�x S � Q � where v is a ground term of sort S � can synchronise with
the e�ect of x being bound to v thereafter �i�e� in Q�� Finally� g�x  S � P and g�y  S � Q can
also synchronise� the result being that for every possible value� x and y are bound to the same
value thereafter� If they are quali�ed by selection predicates� then the value must satisfy both
predicates� This is known as value negotiation�

For example�

�g �succ���� P�� j �g � j �g�x Nat�odd�x ��� P�� j �g � j �g�y Nat�y � ��� P��

can synchronise� and is equivalent �with respect to bisimulation� to

g �succ���� �P� j �g � j P��succ����x � j �g � j P��succ����y ��

And this in turn can synchronise with� say�

g �pred�succ�succ������ P�

all of which assumes an appropriate theory of Nat�
Multiway synchronisation is achieved in the underlying transition system by encoding data

into transitions in both � and � events� This can be seen clearly by referring to the rules for
generating a transition system from action pre�x events� The rule for � events is straightforward

g �v � P gv �

� P

where v is a ground term and v � � �v � �i�e� the equivalence class of v��
Perhaps less obvious is the rule for � events

g�x S � P gv
� P �v�x �

where v is a ground term of sort S �
This latter rule gives us an axiom schema for each �x event which must be instantiated by

terms�values of the appropriate sort� The binding of x is de�ned at this point� i�e� the semantics
is early� A late symbolic semantics �meaning that the binding of variables to values is delayed as
long as possible� has no counterpart in the �standard� concrete semantics� This is in constrast to
value�passing CCS where both kinds of semantics are possible�

For example� g ��� P o�ers the single transition labelled g ���� while g�x Nat� P o�ers the
transitions labelled by g ���� g �succ����� g �succ�succ������ � � �� See Fig� �� Thus� event o�ers of more
than one value �i�e� � o�ers� correspond to a �possibly in�nite� choice over all values of the data
type�

g0
g1 g2

gn
... ...

g?x:Nat;P

Figure � Standard semantics of g�x�Nat event o�er

This encoding of values in the transitions in turn a�ects the rules for synchronised paral�
lelism� Consider the rule for CCS style two�way synchronisation �we use LOTOS syntax here for
comparison�






g �E � P�
gv
� P� g�x S � P�

gx
� P�

g �E � P�j �g � j g�x S � P�
i
� P�j �g � jP��v�x �

g � fg�� � � � � gn � �g

Here there is a single transition associated with the � o�er �labelled with x � and there is a clear
indication that value passing is occurring x gets bound to the value v � However� this approach is
clearly limited to two�way synchronisation because the value passed disappears from the transition
after synchronisation�

In contrast� the LOTOS rule for synchronised parallelism for the same processes makes use of
the encoding of values in transitions

g �E � P�
gv
� P� g�x S � P�

gv
� P�

g �E � P�j �g�� � � � � gn � j g�x S � P�
gv
� P� j �g�� � � � � gn � jP�

g � fg�� � � � � gn � �g

where v � �E ��
In the LOTOS approach� one of the transitions generated by the axiom schema for � o�ers is

chosen to match the transition generated by the � o�er� the matching transition may of course be
matched again in another synchronisation� That is� there may be lots of other potential transitions
from a state labelled with g and some value� but only one which is labelled with the value v �derived
from the expression E ��

So� if we wish to preserve multi�way synchronisation and selection predicates in LOTOS �and
we do�� we cannot simply employ the CCS�approach to � o�ers�

� Symbolic Transition Systems for LOTOS

Wemust de�ne a new semantics for LOTOS which associates a �nite number of symbolic transitions
with � o�ers �like CCS�� but preserves multi�way synchronisation and the selection predicates�
The new semantics should remove the in�nite branching introduced by � o�ers� but should still
be compatible with the standard semantics �i�e� it must not identify more or fewer processes��

Before giving the new symbolic semantics� we introduce some basic de�nitions and conventions�

�	 Preliminaries

Concrete Semantics and Strong Bisimulation We refer to the standard semantics �as de�
�ned in �ISO��� and reproduced in Appendix A� as the �concrete� semantics� We refer to the
corresponding strong bisimulation equivalence �Mil�	� as �standard� bisimulation �equivalence��
written as �� �N�B� � is de�ned only on closed behaviour expressions��

States and Boolean Formulae States in transition systems begin with T or U � and Boolean
expressions �over data� begin with B �in the case of partitions in the bisimulation�� and b in the
case of transition conditions� We use the shorthand tt for true and � for false�

Variables and Substitutions Variables and substitutions are over data� We assume all data
expressions are typed� but we do not make this explicit in our de�nitions� Similarly� all substitu�
tions are well typed�

We assume a set new�var of fresh variable names� Strictly speaking� any reference to this set
requires a context� i�e� the variable names occuring so far� For simplicity� we will assume that this
context can be inferred� as required�

A �data� substitution is written as �z�x � where z is substituted for x � we use � and � to denote
substitutions� Such substitutions are applied to process behaviours purely syntactically� We use a
di�erent mechanism to deal with substitution over transition systems� which deals with repeated
substitions to the same variable� See Section ����

�



We write the composition of two substitutions �� and �� as ����� where �� has precedence
over ���

Structured Events LOTOS allows multiple data o�ers� e�g� g �x �y�n  Nat� P � For simplicity
of presentation we will assume that only one event o�er can occur at a gate�event� We can easily
make a suitable extension to lists of o�ers�

The function name��  Act � f�� ig � G � f�� ig extracts the gate name from a structured
event�

Free and Bound Variables Standard LOTOS does not distinguish between bound and free
variables �because it allows no free variables�� but this is an important distinction in the symbolic
semantics�

Informally� free variables arise in several ways as formal process parameters� as variables which
have been introduced �and bound� earlier by a � event� a let clause� or an �� with accept clause�
For example� in g�x � g �x � exit � all occurrences of x are bound� but in g �x � exit � x is free�

The variables occurring in a data expression E are given by vars�E �� A behaviour expression
may contain free and bound �data� variables� a closed behaviour expression is one with no free
variables and a ground expression is one with no variables� The free variables of behaviour expres�
sions� denoted fv �P�� are de�ned in De�nition � of Appendix B� We assume that we may perform
alpha conversion �renaming of free variables� whenever necessary�

For a given expression E � we call a substitution � closing on E when all E� is closed� Similarly
for other objects such as states in symbolic transition systems� boolean expressions� and terms�

�� Symbolic Transition Systems

Following �HL	
�� symbolic transition systems �STS� are transition systems which separate the data
from process behaviour by making the data symbolic� Our STS are labelled transition systems
with variables� both in states and transitions� and conditions which determine the validity of a
transition�

De�nition � �Symbolic Transition Systems�
A symbolic transition system consists of�

� A �nonempty� set of states� Each state T is associated with a set of free variables� denoted
fv�T ��

� A distinguished initial state� T��

� A set of transitions written as T b �
� T �� where � � SimpleEv � StructEv and b is a

Boolean expression� such that fv�T �� � fv �T � � fv ��� and fv�b� � fv�T � � fv ��� and
��fv��� � fv�T �� 	 ��

Following convention� we shall often identify an STS with its initial state� And since one
possible interpretation of states is to view states as labelled by behaviour expressions� the set
of free variables of an STS T � fv �T �� is de�ned as the set of free variables of the behaviour
expression labelling the initial state of T � �By an abuse of notation we will often confuse states
and their labels�� We de�ne the free variables of a state �behaviour expression� in De�nition � of
the appendix�

We say that a state is closed if its set of free variables is empty� An STS is closed if its initial
state is closed�

We give a symbolic semantics for LOTOS by associating a symbolic transition system with
each LOTOS behaviour expression P � written STS�P��

�



�� Intuition

A complete de�nition of the axioms and rules which de�ne the symbolic semantics is given in
the next section� Before proceeding to the formal de�nition� we give an example which serves to
illustrate the di�erence between the concrete and symbolic semantics� Figs� � and � below contain
portions of the respective transition systems for the behaviour expression

g�x Nat�x � ���� h�y Nat� h�x � stop

...

h!0;stop

h!0;stop

g0

g1

h0
h1

h1

h0
h!1;stop

h!1;stop

stop

h!9;stop

.

.

.

g9

h!9;stop
h1

h0

h0

h0

h1

h1

h9

h9

stop

stop

stop

stop

stop

h?y:Nat;
h!0;stop

h?y:Nat;
h!1;stop

h?y:Nat;
h!9;stop

...

...

...

...

...

g?x:Nat[x<10];
h?y:Nat;h!x;stop

Figure � Concrete Transition System

In the concrete semantics� query o�ers are instantiated by explicit data o�ers� Therefore� in
Fig� �� the � o�ers correspond to either many or an in�nite number of transitions� each of which
is labelled by a concrete o�er� Strictly speaking� the labels are the equivalence classes denoted by
the ground expressions�

  

tt
stop

x<10 gx hy hxtt
h!x;stop

g?x:Nat[x<10];
h?y:Nat;h!x;stop

h?y:Nat;
h!x;stop

Figure � Symbolic Transition System

In the symbolic semantics� open behaviour expressions label states �e�g� h�x � stop�� and tran�
sitions o�er variables� under some conditions� these conditions determine the set of values which
may be substituted for variables� Whereas the concrete system in Fig� � has in�nite branching�
the symbolic system in Fig� � has only �nite branching�

�� Symbolic Semantics� Axioms and Rules of Transition

We assume the existence of the �attening function of the standard semantics� The �attening
function essentially ensures that the speci�cation adheres to the LOTOS syntax� but also removes
all hierarchical structure� ensures uniqueness of variable names� and that all names and types used
are previously de�ned� The resulting object is called a canonical LOTOS speci�cation�

�



We follow several naming conventions of the standard� including the use of a variable name to
stand for a more complex structure including information not just about the name of a variable�
but also its type and scope�

For a given canonical LOTOS speci�cation P � the rules to generate STS�P� are as follows�

pre�x axioms

a� P tt a
� P

g d � P tt gE �

� P

E � �

�
E if d � �E
x if d � �x S

g d �SP �� P SP gE �

� P

E � �

�
E if d � �E
x if d � �x S

exit axioms

exit tt �
� stop

exit�ep� tt �E �

� stop

E � �

�
E if ep � E
z if E � any S where z � new�var�

let rule

P �E�x � b �
� P �

let x � E in P b �
� P �

choice range rules

P �gi�g �
b �
� P �

choice g in �g�� � � � � gn � � � P
b �
� P �

for each gi � fg�� � � � � gng

P b �
� P �

choice x  S � � P b �
� P �

par rule

P �g��g � op � � � op P �gn�g �
b �
� P �

par g in �g�� � � � � gn � op P b �
� P �

where op is one of the parallel operators� j �h�� � � � � hm � j � for some
gate names h�� � � � � hm � k or jjj �

hide rules

P b �
� P �

hide g�� � � � � gn in P b i
� hide g�� � � � � gn in P �

if name��� � fg�� � � � � gng

P b �
� P �

hide g�� � � � � gn in P b �
� hide g�� � � � � gn in P �

if name��� 
� fg�� � � � � gng

	



accept rules

P�
b �
� P �

�

P� � accept x S in P�
b �
� P �

� � accept x S in P�

if name��� 
� �

P�
b �E
� P �

�

P� � accept x S in P�
b i
� P��E�x �

Similarly for � with no data�

disable rules

P�
b �
� P �

�

P� �� P�
b �
� P �

� �� P�

if name��� 
� �

P�
b �
� P �

�

P� �� P�
b �
� P �

�

if name��� � �

P�
b �
� P �

�

P� �� P�
b �
� P �

�

general parallelism rules �synchronising�

P�
b� g
� P �

� P�
b� g
� P �

�

P�j �g�� � � � � gn � jP�
b� � b� g

� P �

�j �g�� � � � � gn � jP
�

�

where g � fg�� � � � � gn � �g

P�
b� gE�� P �

� P�
b� gE�� P �

�

P�j �g�� � � � � gn � jP�
b� � b� � E� � E� gE�� P �

�j �g�� � � � � gn � jP
�

�

when �vars�b�� � vars�E���� � �vars�b�� � vars�E��� � ��

general parallelism rules �not synchronising�

P�
b �
� P �

�

P�j �g�� � � � � gn � jP�
b� ��
� P �

��j �g�� � � � � gn � jP�

name��� 
� fg�� � � � � gn � �g

� �

�
�z�x � if � � gx and x � vars�P�� where z � new�var�
� � otherwise

Similarly for P��

choice rules

P�
b �
� P �

�

P� � � P�
b �
� P �

�

P�
b �
� P �

�

P� � � P�
b �
� P �

�

��



guard rule

P b �
� P �

��SP � �� P� b � SP �
� P �

stop rule

stop generates no rules�

instantiation rule

P �g��h�� � � � � gn�hn ��E��x�� � � � �Em�xm �
b �
� P �

p�g�� � � � � gn ��E�� � � � �Em�
b �
� P �

where p�h�� � � � � hn ��x�� � � � � xm� � P is a process de�nition

bracket rule

P b �
� P �

�P� b �
� P �

relabel rule

P b �
� P �

�P��g��h�� � � � � gn�hn �
b ��

� �P ���g��h�� � � � � gn�hn �

�� �

��
�

hi if � � gi and gi � fg�� � � � � gng
hiE if � � giE and gi � fg�� � � � � gng
� otherwise

�
 Key Features

Key features �and di�erences from �HL	
� and the concrete semantics� of the symbolic semantics
de�ned above are

� The syntactic distinction between the two kinds of data o�er� i�e� between � and �� has been
lost� That is� both are represented by a transition labelled by a gate�event� an expression
�possibly a simple variable� and a Boolean condition� Each o�er is a set of values constrained
in some way � the constraint is usually expressed both by the form of the expression and by
the condition� Whether or not a variable has been bound can be determined by examining
the free variables of the associated states�

� Transitions associated with � events may introduce new variables� in order to avoid variable
name capture� For example� in g�x S � P jjj g �x � Q � the query variable needs to be renamed
in order to avoid capturing the free variable in the right hand side� New variables may be
necessary even when every � variable in a speci�cation is unique� For example� when a
process is invoked more than once� e�g� P �g � jjj P �g � where P �g � � g�x S � P �� then one of
the x variables must be assigned a unique name to avoid confusion�

� Guarding� pre�x and parallelism are the only rules which alter transition conditions�

� Transitions may have conditions which are not satis�able� We will refer to these transitions
as �imaginary�� Imaginary transitions may� for example� be the result of unsatis�able con�
ditions in a LOTOS guard� e�g� �x � �� �� P � where x is of sort Nat� Such imaginary
conditions are detected when the proof system of the data type is employed to evaluate
conditions generated by the axioms and rules of the previous section�

��



...

S2

S

S1

S11

S111 S121

S12

S1211 S1212
...

...
...

...

...

g1
g2

g1
g2

g1

g3

h1 h1

g1
g2 g3

...

h1

S= P ||| P
S1= h!1;P ||| P

          S2 =

 
 h!2;P |||P

S11 = h!1;P ||| h!1;P          

 

S12 = h!1;P ||| h!2;P
S111 = P ||| h!1;P S121 = P ||| h!2;P
S1211 = h!2;P ||| h!2;P S1212 = h!3; P ||| h!2;P

Behaviour expressions at states:

h2

h1

g3

h2 h3

h2

g1
g2 g3

h1
h3

h3h2

Figure � CTS for P �g � jjj P �g � where P �g � � g�x � h�x � P �g �

hy

tt

tt

gyhyhxgx

tt

tt

tt
tt

S1

S2 S3

S4

S1 = P | || P S2 = h!x;P P| ||

| ||S3 = P h!y;P | ||S4 = h!x;P h!y;P

gx

hx
gy

Behaviour expressions at states:

Figure 
 STS for P �g � jjj P �g � where P �g � � g�x � h�x � P �g �

��



Figs� �� 
� � and � contain some simple examples which illustrate some of the features of the
concrete and symbolic transition systems �CTS and STS respectively��

Figs� � and 
 illustrate the CTS and STS� respectively� for the same behaviour expression�
Note that the processes in Figs� � and � do not have a corresponding CTS because open

processes are not de�ned in the standard LOTOS semantics� and while the former results in a
�nite system� the subtle change in the recursion in the latter results in a in�nite �depth� system�

tt

gx+1S0

Figure � STS for P �g ��x � � g �x � �� P �g ��x �

gx+1 gx+2 gx+3tt tt tt ...S0 S1 S2

Figure � STS for P �g ��x � � g �x � �� P �g ��x � ��

�� State Equivalence and Substitution in STSs

When constructing STSs from behaviour expressions� straightforward syntactic substitution on
behaviour expressions was employed� Thus� state equivalence is de�ned purely by syntactic equiv�
alence� The examples STSs of Figs� 
 and � show the applied syntactic state equivalence�

However� in order to de�ne equivalence relations� preorders� or logics over STSs and to ensure
that cycles �such as might arise from recursive processes� are handled correctly� we must �rst
de�ne substitution on STSs�

Consider� for example� the simple bu�er Buff � input�x�Nat� output�x� Buff� The STS
which corresponds to Buff is shown in Figure ��

Buff

Buff’ Buff’
[3/x]

Buff

output x

tt

tt

input x

output x [3/x] tt

input x [3/x]tt

Figure � Failed substitution on Buff STS

If the �rst action taken by this process is to input the value �� then the x at the output gate
must also be bound to that value� Since Buff is recursive� we expect that the next time round
the loop a di�erent value may be input� and therefore a di�erent substitution must be applied�
However� if we simply substitute � for x in the STS� as shown in Figure �� we fail to capture this
possibility�

In �HL	
�� this problem is solved by introducing the concept of a �term� a node in a symbolic
transition system paired with a substitution� The same solution can be adapted for LOTOS�
Formally� a substitution is a partial function from Var to Var�Val and a term consists of an STS�
T � paired with a substitution� � such that domain��� � fv�T �� We write this as T� to indicate
that the substitution is not applied directly to T � and use t and u to range over terms�

��



T b a
� T � implies T�

b� a
� T �

��

T b gE
� T � implies T�

b� gE�
� T �

��

where fv�E � � fv�T �

T b gx
� T � implies T�

b��z�x � gz
� T �

�� �z�x �

where x 
� fv�T � and z 
� fv �T��

Figure 	 Rules for transitions between terms

Figure 	 gives the rules for transitions on terms� given the corresponding transitions on STSs�
Only three cases are required dataless transitions� transitions arising from � o�ers� and transitions
arising from � o�ers� In all cases� �� � fv �T �� C �� that is� the restriction of � to include only
domain elements in the set fv�T ��� The de�nition of free variables is extended to terms in the
obvious way�

For example� since Buff is closed� it can be paired only with the empty substitution to form
the term Buff� �� The substitution is applied step by step� when necessary� as explained in the
rules for transitions between terms �Figure 	�� For example� below are some possible transitions
starting from the term Buff� �� The substitutions capture the fact that the variable x is discarded
and then bound afresh upon each pass through the loop� making it possible to process a di�erent
value during each pass�

Buff� �
tt input z�

� Buff��z��x �

Buff��z��x �
tt output z�

� Buff� �

Buff� �
tt input z�

� Buff��z��x � and so on�

Terms� rather than STSs� are used as the basis for de�ning the bisimulation in the next section�
and the logic in �CMS��a� CMS��b��

� Symbolic Bisimulations

Although our motivation is to separate reasoning about data from reasoning about processes�
data cannot be disregarded when considering the equivalence of processes the particular value
of a data variable can completely alter the behaviour of a process� Therefore� for our purposes
the gate label is too coarse a measure of equivalence� we need the extra re�nement gained by also
considering data� but without considering speci�c data values�

The crux of the following de�nition of bisimulation is the notion that data can be partitioned
according to some Boolean expressions� or predicates� e�g� fx � �� x � �g and this may give enough
information to accurately simulate a process� without assigning a particular value to the data
variables� The role of the partition is to allow transitions to be split or merged according to their
data parameters�

The use of the partition means that each bisimulation is a parameterised family of relations�
where the parameters are the predicates� Furthermore� we only consider simulating transitions
which could possibly be valid� Namely� given a particular predicate� or �context� b� and a transi�
tion with condition b�� we do not consider that transition at all if the context and condition are
mutually inconsistent� For example� if b is x � �� and b� is x 
� �� then the transition can never be
valid in this context� i�e� it is �imaginary� and so we do not need to consider the transition in the
simulation� We also note that whereas Hennessey and Lin �HL	
� de�ne both an early and a late
bisimulation equivalence� only an early bisimulation is meaningful in our context �as explained in
Section �����

We give a de�nition of �layered� symbolic bisimulation over terms� written �b
i � where i is the

depth of bisimulation and b is the initial Boolean context�

��



We shall assume we have a function new�t � u� which� given two terms t and u� returns a
variable which is not among the free variables of either t or u� This is used� for example in clause
�b� to introduce a new name� z � for the value associated with the �t� transition� Note that the
same z is used for the �u� transition in the same clause� We know this is the same z because the
rules of transitions on terms allow us to use whatever name we like� and the renaming in the rest
of the term is carried out automatically�

De�nition � �Symbolic Bisimulation on terms�
For all b� a Boolean expression� t and u� terms�

	� t �b
� u�


� For all 	 an ordinal � �� t �b
��� u i�

�a� �dataless case�

if t has a transition t bt �
� t � then there is a �nite set of Booleans B over fv�t� such

that �b  bt � �
W
B and for each b� � B there is a transition u bu �

� u � such that
b� � bu and t � �b�

� u ��

�b� �data case� no new variable�

if t has a transition t bt gEt� t �� where fv�Et � � fv�t�� then there is a �nite set
of Booleans B over fv �t� � fzg such that �b  bt  z � Et ��

W
B� where z �

new�t � u�� and for each b� � B either

there is a transition u bu gEu� u �� where fv �Eu� � fv �u�� and b� � bu and b� � Et � Eu

and t � �b�

� u �

or
there is a transition u bu gz

� u � such that b� � bu and t � �b�

� u �

�c� �data case� new variable�

if t has a transition t bt gz
� t �� where z � new�t � u�� then there is a �nite set of

Booleans B over fv �t� � fzg such that �b  bt ��
W
B and for each b� � B either

there is a transition u bu gEu� u �� where fv �Eu� � fv �u�� and b� � bu and b� � z � Eu

and t � �b�

� u �

or
there is a transition u bu gz

� u � and b� � bu and t � �b�

� u �

�d� � �e�� �f� Symmetrically� the transitions of u must be matched by t�

�� For 	 an ordinal and 
 a limit ordinal� t �b
� u i� �	 � 
 � t �b

� u�

We may be relating processes that are parameterised� Therefore� the free variables must be
matched accordingly�

De�nition 	 ��b for parameterised processes�
If fv �t� � fxg and fv �u� � fyg� then

t �b u i� for z � new�t � u�� t�z�x � �
b�z�x �z�y� u�z�y��

We use �b to denote the largest symbolic bisimulation� for a given b�
Cases �b� and �c� of De�nition � appear quite complex� but the intuition is as follows� For case

�b� we assume that the data of the t transition is a value �expression�� This expression can either be
matched by a u transition with the same value� or a u transition with a new variable z � The rules
for transitions between terms �Figure 	� allow new variables to be introduced� The conditions to
be matched �particularly the implication between the members of the partition and the condition
of the u transition� vary depending on what sort of u transition is matched� Essentially� if a new
variable is matched then conditions relating to the data are captured exactly by the condition bu �

�




If a data expression is matched then information about data is given both by bu and the expression
Eu � The role of the new variable z is to provide a common language for matching transitions�
Case �c� is similar� but starting with the assumption that the data of the t transition is a new
variable z �

The resulting bisimulation is a Boolean condition�indexed relation� So� in most cases� when
t �b u� and t evolves to t �� and u evolves to u �� and t � �b�

u �� then b� is a di�erent condition to b�
i�e� di�erent states in the symbolic transition systems will be related by di�erent members of the
family of relations� This is because� in a typical symbolic transition system� restrictions on data
increase with depth�

�	 Examples

Some small examples illustrate symbolic bisimulation�

Example 	� Consider the following two processes� also illustrated in Fig� ���

process P �c�d�e�f�g��x�Int�� process Q �c�d�e�f�g��y�Int��

exit �� exit ��

g�x�� c�� �x	
� �� f�exit g�y�� c�� �y	
� �� f�exit

���x�
� �� g�exit� ���y�
� �� d�exit�

��c�� �x�
� �� d�exit ��c�� �y�
� �� g�exit

���x�
� �� e�exit�� ���y�
� �� e�exit��

endproc endproc

P(x)

P1

P11

P111 P112 P121

gx

c c

f g
d e

c c

f d e

P12

g

Q1

Q11 Q12

Q121 Q112Q111 Q112

gy

x<0 x=0 x=0 x>0 y<0 y=0 y=0 y>0

P122

Q(y)

tt

tt tt

tt

tt tt

Figure �� Example �

These two processes are symbolically bisimilar� i�e� P�x � �tt Q�y�� The crucial partitions for
both P and Q are fz � �� z � �g� for the left c branches� and fz � �� z � �g� for the right c
branches� where z is a unifying variable�

Speci�cally� we have the following relations �and their symmetric counterparts�

�tt � f�P�z ��Q�z ��� �P��Q��g

�z�� � f�P���Q���� �P����Q����g

�z�� � f�P���Q���� �P���Q���� �P����Q����� �P����Q����g

�z�� � f�P���Q���� �P����Q����g

The family of indexed relations describing the complete bisimulation is
f�tt��z����z����z��g�

Example 
� Consider the following two processes� also illustrated in Fig� ���

��



process P �c�d�e�f�g� � exit �� process Q �c�d�e�f�g� � exit ��

gx�Int�� �x�
� �� c�f�exit gy�Int�c�� �y�
� �� f�exit

���x�
� �� c�e�exit ���y�
� �� e�exit

���x	
� �� c�d�exit� ���y	
� �� d�exit�

endproc endproc

f d
e

c

P1

P11

P121

gx

c c

f de

c

P12

P111 P131

x>0
x=0

x<0 Q1

Q11

Q111 Q113

y>0 y<0
y=0

Q112

P13

Q
P

gy
tt

tt

tt

tt tt tt

Figure �� Example �

These two processes are symbolically bisimilar� i�e� P �tt Q �
In this case the crucial partition is fz � �� z � �� z � �g� where z is a unifying variable� More

speci�cally� we have the following relations �and their symmetric counterparts�

�tt � f�P �Q�� �P��Q��g

�z�� � f�P���Q���� �P����Q����g

�z�� � f�P���Q���� �P����Q����g

�z�� � f�P���Q���� �P����Q����g

That P �tt Q goes against normal intuition about the e�ect of �nondeterministic� branching
on equivalence �these processes without data would not be equivalent under ��� Here as soon as
the data value is bound the later actions of the process are determined� so the choice is actually
deterministic�

Example �� Consider the following two processes� also illustrated in Fig� ���

process P �g�rpt�out��exit�Nat� �� process Q �g�rpt��exit ��

gx�Nat�P��x� gy�Nat�Q�

where where

process P� �rpt�out��z�Nat��exit �� process Q� �rpt��noexit ��

�z	
� �� out�exit rpt� Q�

���z��
� �� rpt�P��z��� endproc

endproc endproc

endproc

These two processes are also symbolically bisimilar� i�e� P �tt Q � given certain assumptions about
Nat�

This time the partition is not particularly interesting� but we need information from the in�
ductive theory of Nat� namely that � x Nat��x �� �  ��n Nat�x � n �� ����

Note that all the right�hand transitions from P � i�e� P� � P��� P�� � P���� � � �� are
imaginary and therefore these are not considered in the bisimulation� Excluding these transitions�

��



gx

Q1

Q

P1

P11

gx

P12

P111

x<0

P

P112

x+1>=0

x>=0

rpt

rpt

rpt

out

out

out
rpt

... ...

x+2>=0 x+2<0

x+1<0

tttt

tt

Figure �� Example �

we have the following in�nite relation �and its symmetric counterpart�

�tt � f�P �Q�� �P��Q��� �P���Q��� �P����Q��� � � �g

Finally� we give an example of two processes which are not symbolically bisimilar�

Example �� Consider the following two processes

process P �g��exit�Nat� �� process Q �g��exit ��

g��� exit gy�Nat�odd�y���exit

endproc endproc

While we can de�ne a suitable partition in one direction� e�g� fy � �g� giving us �y � ��� odd�y��
the symmetric case does not hold� i�e� odd�y� 
� �y � ��� As we would expect� the two cannot be
shown to be symbolically bisimilar�

�� A Larger Example

In this section we consider two speci�cations of user behaviour in a telephone network where users
are forbidden to make and receive calls to�from particular users� The two speci�cations are given
in Figs� �� and �
� and their respective STS in Figs� �� and ��� We allow ourselves the liberty
of extending the de�nitions to actions with multiple data o�ers� As noted earlier� this is a simple
extension� omitted in the rest of the paper for simplicity�

Each user process is parameterised by the user id� the list of prohibited incoming callers�
and the list of prohibited outgoing numbers� There are 
 events the con �connect� and discon

�disconnect� events� the dial �dial�� unobt �unobtainable� and on �on hook� events� The �rst
three events include data o�ers� for example� discon�x�y denotes the event of disconnecting the
call from user x to user y� Conditions are used both to guard processes �within a choice� and to
qualify structured input events� For brevity� details of the datatype userid and idlist have been
omitted� Also� we do not allow that phones are engaged� or unobtainable for reasons other than
being in the out list�

The di�erence between Tel I and Tel II is essentially the points at which choices are made�
rather than the criteria involved in those choices�

Phone Users are Bisimilar Tel I and Tel II are symbolically bisimilar under the trivial
condition� tt� i�e� Tel I �tt Tel II�

��



process Tel	I
dial�con�discon�unobt�on�

id�userid�bar	in�idlist�bar	out�idlist� �noexit ��

con�x�userid�id 
not x mem bar	in��� discon�x�id� on�

Tel	I
dial�con�discon�unobt�on�id�bar	in�bar	out��


�

dial�x�userid�


x mem bar	out� �� unobt� on�

Tel	I
dial�con�discon�unobt�on�id�bar	in�bar	out�


�


notx mem bar	out�� �� con�id�x� discon�id�x� on�

Tel	I
dial�con�discon�unobt�on�id�bar	in�bar	out���

endproc

Figure �� LOTOS Description of Telephone I

 

unobt

S0

S1

S3

S4

S2

tt

tt

on

dial x
con x id

discon x id

discon id x
con id x

not(x mem bar_in)

not(x mem bar_out)

x mem bar_out tt

tt

Figure �� STS for Telephone I

process Tel	II
dial�con�discon�unobt�on�

id�userid�bar	in�idlist�bar	out�idlist� �exit ��

con�x�userid�id 
not x mem bar	in��� discon�x�id� on�

Tel	II
dial�con�discon�unobt�on�id�bar	in�bar	out��


�

dial�x�userid 
x mem bar	out�� unobt� on�

Tel	II
dial�con�discon�unobt�on�id�bar	in�bar	out��


�

dial�x�userid 
notx mem bar	out��� con�id�x� discon�id�x� on�

Tel	II
dial�con�discon�unobt�on�id�bar	in�bar	out��

endproc

Figure �
 LOTOS Description of Telephone II

�	



 

unobt

T0

T1

T2T3

T4
T5

tt

tt on

dial x

con id x

discon id x
discon x id

con x id

dial x

not(x mem bar_out)

x mem bar_out

tt

tt

tt

not(x mem bar_in)

Figure �� STS for Telephone II

There is a symbolic bisimulation consisting of the following relations �assuming the symmetric
pairs in each set�

S tt � f�S�� T��g

Snot	x mem bar in
 � f�S�� T��g

S 	x mem bar out
 � f�S�� T��� �S�� T��g
Snot	x mem bar out
 � f�S�� T��� �S�� T
�� �S�� T��g

The proof relies on the partition fx mem bar out �not�x mem bar out�g�

� Conclusions and Further Work

We have de�ned a symbolic semantics for LOTOS in terms of symbolic transition systems� and
symbolic bisimulation over those transition systems� Broadly speaking� we have adopted the
approach of �HL	
�� however� the features of LOTOS� especially the need to accomodate multi�way
synchronisation and the resulting model of value passing� mean that this is not a straightforward
adaptation of the theory presented in �HL	
��

Our symbolic approach eliminates in�nite branching which has been a major source of di�culty
in reasoning about LOTOS speci�cations� The symbolic semantics� and a bisimulation relation�
allows us to reason about Full LOTOS processes� separating the data from the processes� without
losing essential information that the data supplies in terms of �ow of control� The solution is simple
and intuitive� unlike some previous approaches which have meant using considerable intuition
about di�erent representations of data� data as processes �Got��� or using transformations which
are rather complex �Bri	�� or do not preserve the data information �T�	���

We have only considered strong bisimulation here� though clearly other forms of equivalence
�e�g� weak� can be de�ned� While we have a means of checking whether a given relation is a
symbolic bisimulation� and several examples illustrate this� we have not given here an e�ective
method of constructing that relation� However� it is fairly easy to see that the partition has to be
derived from �the cross product of� the conditions in each transition system� The interesting case
is when we have in�nite �depth� transition systems� these may yield an in�nite number of variables�
and consequently conditions� and so we must be able to recognise the relationships between them�
For example� see Fig� ��

Related work includes the de�nition of a corresponding modal logic �CMS��a� in which to
express temporal properties of LOTOS� In a related paper �CMS��b� the logic is shown to be
adequate with respect to a version of the bisimulation de�ned here� that is� it should distinguish
and identify exactly the same processes as the symbolic bisimulation� Also planned is development
of tools to support reasoning about LOTOS using symbolic transitions� namely a tool to check
symbolic bisimulation� and a model checker for the logic�

��



Acknowledgement� The authors would like to thank Savi Maharaj for reviewing this report and for useful

input on the de�nition of bisimulation� and Ed Brinksma for many fruitful discussions on reasoning about

LOTOS� Thanks also to Jeremy Bryans and Ken Turner for reviewing a draft of this report� Carron

Shankland thanks the British Council� the Nu�eld Foundation and the Engineering and Physical Sciences

Research Council for their support�

References

�BB�	� T� Bolognesi and E� Brinksma� Introduction to the ISO Speci�cation Language LOTOS�
In P�H�J� van Eijk� C�A� Vissers� and M� Diaz� editors� The Formal Description Technique
LOTOS� pages ������ Elsevier Science Publishers B�V� �North�Holland�� �	�	�

�T�	�� T� Bolognesi� editor� Catalogue of LOTOS Correctness Preserving Transformations�
Technical Report Lo�WP��T����N���
� The LOTOSPHERE Esprit Project� �		��
Task ��� deliverable� LOTOSPHERE information disseminated by J� Lagemaat� email
lagemaat�cs�utwente�nl�

�Bri	�� E� Brinksma� From Data Structure to Process Structure� In K�G� Larsen and A� Skou�
editors� Proceedings of CAV 	� LNCS 
�
� pages �����
�� �		��

�CMS��a� M� Calder� S� Maharaj� and C� Shankland� A Modal Logic for Full LOTOS based on
Symbolic Transition Systems� The Computer Journal� ����� In press�

�CMS��b� M� Calder� S� Maharaj� and C� Shankland� An Adequate Logic for Full LOTOS� In
J� Oliveira and P� Zave� editors� Formal Methods Europe��	� LNCS ����� pages �����	
�
Springer�Verlag� �����

�Eer	�� H� Eertink� Simulation Techniques for the Validation of LOTOS Speci�cations� PhD
thesis� University of Twente� �		��

�EM�
� H� Ehrig and B� Mahr� Fundamentals of Algebraic Speci�cation 	� Equations and Initial
Semantics� EATCS Monographs on Theoretical Computer Science� Springer�Verlag� �	�
�

�Got��� R� Gotzhein� Specifying Abstract Data Types with LOTOS� In B� Sarikaya and G�V�
Bochmann� editors� Protocol Speci�cation� Testing� and Veri�cation� VI� pages �
���� El�
sevier Science Publishers B�V� �North�Holland�� �	���

�HL	
� M� Hennessy and H� Lin� Symbolic Bisimulations� Theoretical Computer Science� ����
��
��	� �		
�

�Hoa�
� C�A�R� Hoare� Communicating Sequential Processes� Prentice�Hall International� �	�
�

�ISO��� International Organisation for Standardisation� Information Processing Systems � Open
Systems Interconnection � LOTOS � A Formal Description Technique Based on the
Temporal Ordering of Observational Behaviour� �	���

�M�	�� M� Caneve and E� Salvatori� editors� LITE User Manual� Technical Report
Lo�WP��N�����V��� The LOTOSPHERE Esprit Project� �		�� LOTOSPHERE infor�
mation disseminated by J� Lagemaat� email lagemaat�cs�utwente�nl�

�Mil�	� R� Milner� Communication and Concurrency� Prentice�Hall International� �	�	�

�SM	�� M� Sighireanu and R� Mateescu� Veri�cation of the Link Layer Protocol of the IEEE���	�
Serial Bus �FireWire� an Experiment with E�LOTOS� Springer International Journal on
Software Tools for Technology Transfer �STTT�� ���������� Dec� �		��

�Tho	�� M� Thomas� The Story of the Therac��
 in LOTOS� High Integrity Systems Journal�
�������
� �		��

��



�Tho	�� M� Thomas� Modelling and Analysing User Views of Telecommunications Services� In
Feature Interactions in Telecommunications Systems� pages �������� IOS Press� �		��

�TO	�� M� Thomas and B� Ormsby� On the Design of Side�Stick Controllers in Fly�by�Wire
Aircraft� A�C�M� Applied Computing Review� �����
���� Spring �		��

�VSvSB	�� C�A� Vissers� G� Scollo� M� van Sinderen� and E� Brinksma� Speci�cation styles in
distributed systems design and veri�cation� Theoretical Computer Science� �	��	�����
�		��

A Semantics of LOTOS

The semantics of processes in LOTOS are given by structured labelled transition systems� The
complete syntax and semantics of full LOTOS may be found in the LOTOS standard �ISO����
here we give only the inference rules de�ning the semantics of LOTOS� Notational conventions
are as given in Section ��

In order to turn a LOTOS speci�cation into a labelled transition system� the speci�cation is �rst
��attened� to give a canonical LOTOS speci�cation� The inference rules of transition may then
be applied to the canonical LOTOS speci�cation to give a class of structured labelled transition
systems� each relating to di�erent instantiations of the formal parameters of the speci�cation�

In the next section we give the standard de�nitions relating to labelled transition systems and
algebras which are required for the de�nition of the inference rules in Section A���

A	 Algebras and Transition Systems

A �attened canonical LOTOS speci�cation� CLS� is given by a pair hAS� BS i� AS is an algebraic
speci�cation hS� OP� E i� where hS� OPi is a signature and E is a set of conditional equations� The
semantics of AS is given by the many sorted algebra Q�AS� which is the quotient term algebra
of AS� BS is a behaviour speci�cation hPDEFS� pdef�i where PDEFS is the set of all the process
de�nition in CLS� and pdef� is the top level process of the speci�cation� Each element of PDEFS
is a pair hp� Ppi of a process name and the corresponding behaviour expression� All sort names
and operations in BS are de�ned in AS �the �attening function ensures this��

The algebraic speci�cation generates a derivation system D� which allows us to deduce if two
terms are congruent� i�e� D � E� �AS E�� The congruence class of a term E � written �E �� is
de�ned as �E � � fE � j E �AS E �g�

A labelled transition system Sys is a ��tuple hS � Act�T � s�i �S � Act� f
�
��� S � Sg� s��� which

consists of a set S of states� a set Act of transition labels� a transition relation �
� � one for

each � � Act� with Act � G � fig� and a starting state s� � S �
A structured labelled transition system Struc is a 
�tuple hS �Act�A�T � si where A � hD �Oi

is a many�sorted algebra such that hS �Act �T � si is a labelled transition system� for Act
def
� fig

� fgv j g � G � v � �
S
D��g� This is also referred to as a labelled transition system over A�

In other words� a structured labelled transition system is just like a labelled transition system�
except that each label g is decorated by a string of values from D �

��



A� LOTOS Axioms and Inference Rules

i� P i
� P

g d� � � � dn � P
g v� 	 	 	 vn� �ty��y�� � � � tym�ym �P

i�

vi � �Ei � if di � �Ei �� 	 i 	 n� and Ei is a ground term�
vi � Q�si� if di � �xi�� 	 i 	 n� with sort�xi� � si �
ty�� � � � � tym are term instances with vi � �tyi � if di � �yj �� 	 i 	 n� � 	 j 	 m�

and fy�� � � � � ymg � fxi j di � �xi � � 	 i 	 ng�

g d� � � � dn �SP �� P
g v� 	 	 	 vn� �ty��y�� � � � tym�ym �P

i�
vi and tyi de�ned as above� and providing D � SP � where SP � denotes the ground
equation obtained by simultaneous replacement in SP of all xi in SP that also occur
contained in a di variable o�er� i�e� di � �xi�� 	 i 	 n�� by a term t � vi �

exit�ep�� � � � � epn �
� v� 	 	 	 vn� stop

i�

vi � �epi � if epi is a ground term �� 	 i 	 n�
vi � Q�si� if epi � any si �� 	 i 	 n�

exit �
� stop

�E��x�� � � � �En�xn �P
�
� P �

let x� � E�� � � � � xn � En in P �
� P �

�P��gi�g �
�
� P �

choice g in �g�� � � � � gn � � � P �
� P �

for each gi � fg�� � � � � gng�

�E�x �P �
� P �

choice x � � P �
� P �

i� E is a ground term with �E � � Q�s�� where x is a variable with sort�x � � s �

�P��g��g � par�op � � � par�op �P��gn�g �
�
� P �

par g in �g�� � � � � gn � par�op P �
� P �

where par�op is k � jjj or j � � j �

P �
� P �

hide g�� � � � � gn in P �
� hide g�� � � � � gn in P �

if name��� 
� fg�� � � � � gng

P �
� P �

hide g�� � � � � gn in P i
� hide g�� � � � � gn in P �

if name��� � fg�� � � � � gng

��



P�
�
� P�

�

P� � accept x� S�� � � � � xn Sn in P�
�
� P�

� � accept x� S�� � � � � xn Sn in P�

name��� 
� �

P�
� v� 	 	 	 vn� P�

�

P� � accept x� S�� � � � � xn Sn in P�
i
� �E��x�� � � � �En�xn �P�

where E�� � � � �En are ground terms with �E�� � v�� � � � � �En � � vn �

P�
�
� P�

�

P� �� P�
�
� P�

� �� P�

name��� 
� �

P�
� v� 	 	 	 vn� P�

�

P� �� P�
� v� 	 	 	 vn� P�

�

P�
�
� P �

�

P� �� P�
�
� P �

�

P�
�
� P�

�

P�j �g�� � � � � gn � jP�
�
� P�

� j �g�� � � � � gn � jP�

name��� 
� fg�� � � � � gn � �g

P�
�
� P �

�

P�j �g�� � � � � gn � jP�
�
� P� j �g�� � � � � gn � jP

�

�

name��� 
� fg�� � � � � gn � �g

P�
�
� P �

� P�
�
� P �

�

P�j �g�� � � � � gn � jP�
�
� P�

� j �g�� � � � � gn � jP
�

�

name��� � fg�� � � � � gn � �g

P�j � � jP�
�
� P �

P�jjj P�
�
� P �

P�j �g�� � � � � gn � jP�
�
� P �

P�k P�
�
� P �

where fg�� � � � � gng � G �the set of all gates��

P�
�
� P�

�

P� � � P�
�
� P�

�

P�
�
� P �

�

P� � � P�
�
� P �

�

P �
� P �

�SP � ��P �
� P �

i� SP is a ground equation and D � SP �

no inference rules are generated for stop

��



��E��x�� � � � �Em�xm �Pp��g��h�� � � � � gn�hn �
�
� P �

p �g�� � � � � gn ��E�� � � � �Em�
�
� P �

i� hp�Ppi � BS�PDEFS
where formal�gates�p� � hh�� � � � � hn i� and formal�vars�p� � hx�� � � � � xmi�

P �
� P �

�P� �
� P �

P �
� P �

�P� �g��h�� � � � � gn�hn �
��

� �P ���g��h�� � � � � gn�hn �

where

h�� � � � � hn are gate�names�
� � gv� � � � vm �
�� � gv� � � � vm if g 
� fh�� � � � � hng
�� � giv� � � � vm if g � hi �� 	 i 	 n�

These rules and axioms completely de�ne the structured labelled transition system of a canon�
ical LOTOS speci�cation�

B Auxiliary De�nitions

De�nition 
 �Free Variables�

Let vars�E � be the variables occurring in expression E� The set of free variables occurring in
an expression is fv �E � � vars�E �� The set of free variables of behaviour expression P� fv�P�� is
de�ned by

fv�stop� � fg
fv �exit� � fg
fv �exit�x�� � fxg
fv �P �g �� � fg
fv �P �g ��x�� � � � � xn�� � fx�� � � � � xng
fv �g � P� � fv�P�
fv�g�x S �SP �� P� � �vars�SP� � fv�P�� n fxg
fv �g �x �SP �� P� � fxg � vars�SP� � fv �P�
fv ��SP ���P� � vars�SP� � fv �P�
fv �let x � E in P� � vars�E � � �fv �P� n fxg�
fv �hide g in P� � fv�P�
fv�P� � P�� � fv �P�� � fv �P���

where � � � � � �� � � � j �g�� � � � � gn � j � k � jjj
fv �P� � accept x  S in P�� � fv �P�� � �fv �P�� n fxg�
fv �choice g in �g�� � � � � gn � � � P� � fv �P�
fv �choice x  T � � P� � fv �P� n fxg
fv �par g in �g�� � � � � gn � op P� � fv �P� where op is one of the parallel operators

�



