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1. Background

Boolean functions of two inputs are amongst the simplest of all functions, and the
construction of simple neural networks that learn to compute such functions is one of
the first topics discussed in accounts of neural computing. Of these functions, only
two pose any difficulty: these are XOR and its complement. XOR occupies, therefore,
a historic position. It has long been recognised that simple networks often have
trouble in learning the function, and as a result their behaviour has been much
discussed, and the ability to learn to compute XOR has been used as a test of variants
of the standard algorithms. This report puts forward a framework for looking at the
XOR problem, and, using that framework, shows that the nature of the problem has
often been misunderstood.

The report falls into three main parts. Firstly, in Section 2 | review neura nets in
general and the XOR problem in particular. This section is based on classic studies
and the material will be familiar to most readers. Secondly, in Section 3 | look in
considerable detail at the problem-space of the XOR problem using the simplest
network that can solve the problem using only forward transmission with each layer
communicating only with the next layer. Finally, in Section 4 | give a comprehensive
account of the error surface. | show that this surface has exactly sixteen minima and
that each is a solution to the XOR problem. Thisis a new result and corrects errors
made by many previous authors.



2. Neural Netsand the XOR problem

a) Neural nets

Neural nets are built from computational units such as that shown in Figure 1. This
unit is a rough analogue of the animal neuron, which connects to other neurons or
biological devices at synapses. these connections are inputs except for a single output
down the axon of the neuron. The sensitivity of the neuron to its inputs is variable.
The output is al-or-nothing: the neuron either fires or produces no output.

The design of the corresponding computational unit follows this description fairly
closely. The unit has a number of inputs. these may be from the outside world or
from some other unit. Each input has an associated weight. Each unit is considered to
receive a single input stimulus made up of the weighted sum of the inputs. Writing
a, asthe jth input (or activation) and w, as the corresponding weight, we write the

summed input to the ith unit as
in =% w;a Q)
Z =

The unit then applies a function g to the summed input. This function is typically a
step function such as
if x>t 0O
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where t is the threshold of the function. As we shall see, for many purposes it is
important that the function is differentiable, and for this reason the sigmoid function
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Figure 1: A Unit of aneural net



Figure2: Sigmoid function
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is convenient. Here again the parameter t gives a threshold for the function: the
function approaches 0.0 as x - —o and 1.0 as x — o, and for t =0 takes on the
value 0.5 a x =0. The parameter k affects the steepness of the transition between 0
and 1 in the centre of the curve. Figure 2 shows this function for k=1 and t =0.
We shall use these values throughout this paper.

Applying the function g to the summed inputs gives us the activation value (the
output) of the ith unit:

a :gi(zwjiaj) (4)

where the subscript on the g indicates that each unit may have its own function:
typically, the functions differ only in the threshold values, t, and it is convenient to
remove this difference by giving each unit an extra input whose value is dways —1.
The weight given to this input thus has an effect identical to that of the parameter t in
Equation (3), and using this weight in preference to manipulating t is algorithmically
simpler. (Thisextrainput is sometimes referred to as the bias unit.)

These units can represent (some) Boolean functions. For example, if g is the step
function of Equation (2), then the unit shown in Figure 3 computes the function X

AND Y, where X and Y are the two variable inputs, X,Y [ {0,1} , With O representing

False and 1 representing True. The bias unit is the right-hand input, which together
with its weight gives the function g a threshold of 1.5. A more compact
representation of thisis given in Figure 4, where the threshold has been written inside
the circle representing the unit.

These units may be combined into networks by assembling them together in layers of
units in parallel, and/or by making the outputs of one unit serve as inputs to other
units. A network in which there are no cycles is called a feed-forward network: we
discuss only feed-forward networks in this report. Units whose outputs serve only as
input to other units, and whose behaviour is not directly visible in the outside world,
are said to be hidden. A feed-forward network containing no hidden units (which
must therefore be single-layer) is called a perceptron (Minsky and Papert 1969). Thus
Figure 1 is arepresentation of a single-unit perceptron.



Figure 3: A unit that computes AND Figure 4: Alternative
representation of AND

Perceptrons are remarkable because they can learn any of the functions that they can
represent. From any starting set of weights, and given a set of examples of the inputs
and the correct outputs (the training examples), there is an algorithm, the perceptron
learning rule (Rosenblatt 1960), which adjusts the initia weights to a new
configuration that represents the desired function. Provided that the function can be
represented by a perceptron (we shall see what such functions look like in a moment)
this algorithm always converges, given enough training examples. For any set of
inputs and weights there will be atrue output T and an actual output O. Then we alter
each weight w; using the following rule:

W, « w, +7a,(T-0) )

where n is afractional constant called the learning rate. As one would expect, this
ruleis applied by iterating round the set of examples until the weights converge.

b) Perceptronsand XOR

Unfortunately, perceptrons are limited in the functions that they can represent. As
Minsky and Papert showed (Minsky and Papert 1969), only linearly separable
functions can be represented. These are functions where a line (or, in the case of
functions of more than two arguments, a plane) can be drawn in the space of the
inputs to separate those inputs yielding one value from those yielding another. Thus
in each of the cases of the truth tablesfor AND and OR, shown in Table 1 and Table 2
in a form that represents the Cartesian space of the inputs, we can draw a diagonal
line across the table to separate the T entries from the F entries.

Hence AND and OR can be computed by single-unit perceptrons. Thisis of course not
the case for the function XOR (Table 3) because there is no line that can be drawn
across the table to separate the 1s from the 0s. XOR is thus not computable by a
perceptron.
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Table1: Truth tablefor AND Table2: Truth tablefor OR
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Table 3: Truth Tablefor XOR

It is easy to see that this principle of linear separability follows from the equation that
defines the single-unit perceptron, Equation (4). Taking the function g to be the step
function, the equation shows that the output value will be 1 when

ijaj >t (6)

(taking the summation across only the origina inputs, ignoring the bias input) and
zero otherwise. Thus the values are partitioned by

ZWjaj =t (7)

which for two inputsis the equation of a straight line in the plane of the inputs a,, and
for more inputs is the equation of a plane in the space of the inputs.

Table 4 shows the 16 possible Boolean functions of two Boolean inputs. The first
column gives a hexadecimal reference number to each of these functions. The
numbers have been derived from the truth tables of each function, shown in the
second column’.

Inspecting these truth tables, we can see that al but two are linearly separable:
functions f, and fg, which are, respectively, XOR and its complement, are not. Thus

these two functions alone are not computable by a single-unit perceptron.

The numbers are purely for reference and the ordering has no significance. The algorithm for
producing the numbersisto sum the cells of the truth table, taking the cell (1,1) as having the value 8,
the cell (0,1) the value 4, the cell (1,0) the value 2, and the cell (0,0) the value 1. It turns out that
writing the functions in this order we have the second eight functions as the complements of the first
eight, reflected round the division between functions 7 and 8.
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These shortcomings of perceptrons can be overcome by allowing our network to have
more than one layer, that is, to allow it to contain hidden units. In this way, we can
build networks that will compute any function. The simplest form of this arrangement
is that where each layer feeds only to the next, and a unit can only accept inputs from
the layer immediately before it. Figure 5 shows such a network. There are two
hidden units and a single output unit, and the output unit takes inputs only from the
hidden units. The remainder of this report will look at networks with this topol ogy.

In fact, with the weights shown in Figure 5, and using the step function, we have a
network that computes XOR. Each of the three units computes a function from Table
4, the | eft-hand hidden unit (the one with the threshold of —15) computes f,, X +Y,

while the right-hand one computes function f,, OR. Findly the output unit
computes f,, AND. A tabular form of Figure 5 is shown in Table 5. It should be

clear that a bold box represents each of the three units, with the threshold weight
shown above the two other weights. It is typographically most convenient to write the
net simply as a vector of nine weights, and Table 6 shows the order in which we shall
in future write these weights. Thus, the network of Figure 5 and Table 5 would be
written as configuration (C1).

-1.0 -10 -15 1.0 10 05 1.0 10 15 (C1)
We have already seen that perceptrons can learn their weights using sample data. This
is also true of nets of the form shown in Figure 5. Of course, the perceptron learning
rule shown above in Equation (5), above, must be modified because for the hidden
units we no longer have any direct estimates of the error (the difference between the
‘true’ output and that actually being produced by the unit). One conventional solution
is back-propagation (Bryson and Ho 1969) in which the error detected at the output
unit(s) is effectively distributed throughout the network.

As before, during learning we have for each output unit a true output T and an actual
output O. For each output unit, we wish to update the weights relating to connections
with the penultimate hidden layer. Considering the ith output unit and its connection
with the jth unit in that layer, we use therule

wW; < w; +na,g’(in)(T, -0) (8)

We see that this includes the derivative of the activation function g of the unit.
Obvioudly, this means that the function must be differentiable, and it is for this reason
that we use the sigmoid function, referred to earlier. Because this function's
derivative is at its highest at zero, when the function value is half-way between the
‘stable’ outputs of zero and 1, we can say informally that we are making the greatest
difference to the weight of units that are so far ‘undecided’.

If wewritetheterm g'(in )(T, —O.) as ¢ then we obtain

W, W, +naé 9)
For the weights on the connections to the penultimate layer, that is from unit (or input)
k to unit j, the update rule of (9) retains its form, becoming:

Wy

- Wy + 738, (10)
but éj now alters: itis



9 :g’(inj)zwjié (11)

- and we see from this expression how the errors are indeed propagated backwards.
This process continues until all the weights have been changed.

The process described so far is iterative: the set of training examples is used
repeatedly until the weights settle. A possible refinement is to batch the changes to the
weights: using this method the weights are not changed until after a complete set of
training inputs have been applied. Instead, the changes are summed and applied to the
weights at the end of the cycle. This makes a subtle difference to the behaviour of the
algorithm on surfaces that are flat or nearly flat. If batching is not used, the
configuration of weights can move in a closed cycle. If batching is used then the
changes can cancel (summing to zero). It is important to realise that these are
different phenomena, and would not usually happen for the same configuration. Also,
if batching is not used, movement of the configuration after every training input may
allow the algorithm to move away from saddlepoints.

It can be shown (Hertz, Krogh, and Palmer 1991) that the algorithm is of the familiar
hill-descending type, which minimises the sum of the squared error terms (we shall
call this the SSE). One variant of this procedure is to use a momentum factor: a
proportion of the change last time is added to the change thistime. Thisisintroduced
in an attempt to avoid local minima. Writing the change to the weight w;, at timet as

A (1), then
Ayt+D)=ab;(t)+na,d (12)
where a isaconstant in therange 0 to 1.

As many authors have noted (see for example (Rumelhart, McClelland, and the PDP
Research Group 1986) the back-propagation method will find solutions to the XOR
problem. We turn now to a consideration of the space of XOR and of the behaviour
of back-propagation in that space.
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3. The space of XOR

a) Introduction

In this section, | present the results of an exploration of the space of the XOR
problem: that is, | consider where the solutions are in the space of the weights. This
discussion will focus exclusively on the behaviour of a network of the form shown in
Figure 5: one with two hidden units, each of two inputs, and a single output unit. All
the units will be considered to be using the same function g, modified by thresholds
set by an additional “bias’ unit whose input is always -1.

b) Boolean Class

We begin by considering the behaviour of such a network when the function g is the
step function of Equation (2), and the inputs X and Y are two-valued. The two values
are of course representing True and False, and we shall follow convention in giving
these the values 0 and 1 respectively. Under these circumstances each of the three
units computes one of the 16 functions of Table 4 (the list exhausts the possible
Boolean functions of two Boolean inputs). We have seen that two of these functions
are not computable by such (individual) units, so the units will be computing one of
the 14 remaining functions. For any combination of three real vaues for the three
weights of a unit, we can specify which function the unit computes. Thus, for
example, if the threshold weight is t and the other two weights are w, (the weight on

theinput X) and w, (the weight on the input Y) and the following conditions are met:

t>0,w, 2t, w, >t (13)

then the unit defined by these three values will compute f,, OR. Thus, we could

change the weights in the right-hand hidden unit of Figure 5 (the OR unit) to any
values meeting the inequalities in (13) and the network would be “the same” — its
constituent units would still compute the same functions as before and the network as
a whole would still compute XOR. Thus, the networks of (C2) and (C3) are in this
sense “the same” as the network of (C1).

-1.0 -10 -15 0.06 0.06 0.05 10 10 15 (C2)
-1.0 -10 -15 100 100 99 10 10 15 (C3)
Two lines of argument follow from this observation (if we remember that at this stage
in the discussion we are still using the step function as the function g). The first is
that we can show the form of a network like Figure 5 (and its corresponding Tables)
as 8(7,e) indicating that the output unit computes f, and this function is applied to the

outputs of the hidden units computing f, and f,. The order of writing the bracketed

function numbers is significant, although as it happens in this example 8(e,7) is aso
XOR because fg issymmetrical initsinputs. Asaconvenient label, let us call aform
such as 8(7,e) a Boolean class of networks. Thus, although each Boolean class
contains infinitely many networks, they al are “the same” in the sense that their
equivaent constituent units compute the same Boolean functions when using the step
function.

Using this idea of the Boolean class, we can go on to consider what each Boolean
class computes. There are 14° (2744) possible classes, each computing a single

11



Boolean function. The second column of Table 7 sets out the numbers of Boolean
classes that compute each of the 16 possible Boolean functions of two inputs. (We
shall discuss the third column of the Table later.)

Table 7 shows that 16 of the 14° possible classes compute fs, XOR. These 16 classes
are listed in the first column of Table 8. (We shall return to the other column of the
Table in due course.) It can be seen that the classes occur in pairs in which the
bracketed functions are reversed, such as the pair 1(1,8) with 1(8,1) or the pair 2(7,1)
with 4(1,7).

¢) Boolean Classes asregionsin space

The second line of investigation pursues the idea that the various possible individual
units can be though of as points in three-dimensional space — the space of the three
weights. Further, the possible three-unit networks can be though of as points in nine-
dimensional space. In terms of Boolean classes, the classes of units and of three-unit
networks will be regions in three and nine-dimensional space respectively.
Anticipating later material, these spaces and regions are (approximately) those that
back-propagation learning has to navigate if a network isto learn XOR.

In considering the regions that classes of units occupy in three-dimensional space, |

shall make use of asimplifying model. This model has the following characteristics:

1. Thepossible vauesfor the three weights that define the unit are each randomly
distributed in theinterval [—b..b], b OO". The bound b can be thought of asthe
largest real number in use for weights in some particular computing device and as

Output | Number | Proportion of
function | of classes networ k
weight-space Class Volume
0 524 0.403447 1(1,8) 4
1 144 0.017831 1(8,1) 4
2 144 0.017578 2(7,1) 4
3 128 0.016565 4(1,7) 4
4 144 0.017578 2(e,8) 4
5 128 0.016565 4(8,e) 4
6 16 0.000760 7(b,d) 4
7 144 0.009675 7(d,b) 4
8 144 0.009675 8(7,€) 2
9 16 0.000760 8(e,7) 2
a 128 0.016565 b(2,b) 8
b 144 0.017578 d(b,2) 8
c 128 0.016565 b(4,d) 8
d 144 0.017578 d(d,4) 8
e 144 0.017831 e(2,4) 8
f 524 0.403447 e(4,2) 8
Al 2744 1.000000 Table8: Boolean
Table 7: Possible network outputs classes computing
(using the step function) XOR
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such abound certainly existsin practice its presence in the model seems very
reasonable. (Of course, if the weights come from the domain of floating-point
numbers rather than from the real numbers, then the distribution ceasesto be
strictly continuous, but this can be ignored.)

2. The probability distribution of each weight is uniform within the interval.

3. Theweights are uncorrelated (i.e. the axes of the space are orthogonal).

The space of the weights of a unit can therefore be thought of as a cube of side 2b.
Inside this cube there are 14 regions corresponding to the 14 functions computable by
aunit. Figure 6 gives five cross-sections through this cube: each is at right-angles to
the dimension representing the threshold weight and thus shows an X-weight (x-axis)
by Y-weight (y-axis) plane. Thefirst cross-section is actualy the top face of the cube,
where t = b, the second cross-section (under the first) is one-quarter of the way down
the cube, where t =b/ 2, and so on down to the last cross-section, the bottom face of
the cube, where t = -b.

The regions of the space can (with some effort) be visualised from these cross-
sections.  Thus, the region where the unit computes f,, AND, is an upside-down

skew tetrahedron with its triangular base at the top right-hand corner of the upper
surface of the cube and its apex at the origin. (Thisis an open boundary because the
point at the origin, where all weights are zero, is not part of the region, belonging
instead to the region of f, , True.)) Similarly theregion of f, isan upside-down skew

pyramid whose base is the third quadrant of the central plane and whose apex is the
bottom left-hand corner of the cube. Its complement f, is a skew pyramid whose

base rests on the first quadrant of the central plane (as an open boundary: the quadrant
itself belongsto f, ) and whose apex is at the top-right corner of the cube.

Going on from this, it is clearly possible with some further labour to calculate the
volumes of the fourteen regions as fractions of the total space of the cube. The result
of these calculations is shown in the last column of Table 9. Thisgivesfor each
function’s region the proportion of the whole space that it occupies: thisis expressed
in the apparently odd unit of the 48" of the whole cube, chosen because this allows
convenient entries in the table. Referring back to Table 8, we can see that six of the
functions are not found in nets that compute XOR — these are functions 1, 3, 5, &, c,
and f. From Table 9 we see that these account for 34/48 or 0.708 of the weight-space.
Thus only just under 30% of the weight space of a unit calculates functions from
which an XOR network can be built. Carrying these calculations forward into the
nine-dimensional realm of such networks, we can calcul ate the proportions of the
nine-dimensional hypercube occupied by each of the 2744 Boolean classes. Thisis
easily done by multiplying together the figures from Table 9. For example, the class
1(1,8) will occupy (2 x 2x1)/48° of the total volume of the hypercube. Hence, we

can find the proportion of the total network wei ght-space occupied by each output
function (given in the last column of Table 7). This Table shows that the classes that
compute XOR occupy about 0.00076 of the total space of al such three-unit networks.
We can also find the volume of each of the classes that compute XOR. These are
given in the second column of Table 8.

13
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The above discussion dealt with the situation when [ f, Size
the step function of Equation (2) is employed. We 0 | © [ False 13
found that using this function the space of the nine —

: : . T : 1 XY 2
weights contains  sixteen  distinct  regions - —
corresponding to solutions to the XOR problem, and 2 | o | XY 2
that together these regions made up about 0.00076 of 3N 1Y 2
the space. 4 | 1 XY 2

5 B X 2
d) Using thesigmoid function 6 | O] Xy+xy -
Of course, in a practical stuation where 7 0] X+Y 1
back-propagation learning is being employed we g8 [ [ xvy 1
must use a differentiable function such as the sigmoid -
of Equation (3), afunction cited in all standard texts: 9 | w | XY+ XY -
see, for example, (Hertz, Krogh, and Palmer 1991). a | o | X 2
This function can only achieve the values 0 and 1 in b | %] X+Y 2
the limit. Hence, units using this function together c |[Zly 2
with finite weights cannot produce exactly the values REE >
that we have agreed to call False and True, and so =
(strictly speaking) cannot compute any Boolean € | | X+Y 2
function. Of course, this is too strict: for practical f | | True 13
purposes we must agree that approximations are Total 48

acceptable. For example we could agree to treat
values <¢ or >(1-¢), where ¢ is some positive
real quantity < 0.5, as being “really” False and True
when they appear as the output of the output unit,
while values in the range ¢ to 1-¢ ae
unacceptable. Alternatively we can sum errors across
the four cell of the truth table, and agree to accept a total error less than some small
real value. The standard method is to sum the squared errors: in fact, it is this
criterion that is minimised in the back-propagation gradient-descent method. Using
such a method, a set of weights are taken to be computing some Boolean function
when the sum of squared deviations from the true values in the function’s truth table
(the SSE) is smaller than some small positive rea value &, whose value might
typically be taken to be 0.1. We shall follow this approach from now on. Thus there
will potentially be two types of network: those that are said to be computing some
Boolean function, because the truth table produced is acceptably close (by the sums-
of-squared-errors criterion) to one of the sixteen standard truth tables, and those that
are not computing any Boolean function at all, because their truth tables are too far
from all of the sixteen standard tables. As a matter of nomenclature, we shall say that
this second kind of net is computing a no-function.

Table9: Volumes of the

16 Boolean functionsin

the space of the weights
of a single unit

Using the sigmoid, then, we might expect still to have sixteen distinct regions in the
weight space, corresponding to those aready described for the step function, where
XOR is computed, but that the boundaries between these regions and their neighbours
would be blurred. Where, using the step function, we had discontinuities in the space
at the planes where the network jumped from computing one function to computing
another function, we might expect to find transitional regions where no function is
computed. For example, the network of Table 5, and (C1), which computes XOR
when the step function is employed, in fact computes no function when the sigmoid is

15



used. Itstruth table, shownin Table 10, is 1 0.4366 | 0.4244
obviously that of a no-function (and in Y| 0l 042441 0.4366
fact has an SSE of 0.9951). However, the 0 1
truth table produced by the net whose X

weights are those of (C1) multiplied by
100 (an identical net from the point of
view of its Boolean class) produces XOR
with an SSE that is zero to four significant
figures. This second net, then, could
serve as an example of a net clearly inside the XOR region, while the net of (C1)
would be an example of one in the boundary of the region.

Table 10: Truth table produced by
the network of Figure5 using the
sigmoid

This intuitive reliance on an informal continuity argument would, then, lead us to
expect that the solutions to the XOR problem would simply be those found for the
step function, with each of the sixteen solution regions found earlier being separated
from other regions by zones where the network is computing no-functions. The
weight space would also contain regions where the network is computing the other 15
Boolean functions, AND, OR, and so on, and each of these regions will in turn be
separated from other regions by zones of no-functions. The sixteen regions
corresponding to XOR would occupy less of the weight space than before, because of
the arrival of the intervening no-function regions, but we would hope that the back-
propagation algorithm would still be able to find (at least one of) the solution regions
using gradient descent. Looking at Figure 2, the graph of the sigmoid function, it is
clear that small weights will tend to give no-functions because they will give small
values of the summed input to the output unit (of course, thisis precisely what led to
the figures of Table 10). The behaviour of the net in this region would be of particular
interest. We would expect that the surface produced by considering the SSE in the
space of the weights (the “error surface”) would exhibit sixteen troughs, one for each
of the sixteen solutions to XOR. These troughs will radiate from the origin, and have
closed ends near the origin (where small weights lead to large error terms) and will
become deeper and approach a height of zero as the weights become larger. The
ridges between the troughs would be made up of parts of the weight-space where the
net computes either no-function or some function other than XOR.

Unfortunately, however, matters are more complicated. Consider for example the
truth table of Table 11. This has an SSE of 0.000071 as an approximation to XOR:
clearly an excellent approximation. It was, however, produced by the network of
(C4), using the sigmoid function. Now, that network is in Boolean class 2(7,0) and
thus does not compute XOR when using the step function: in fact, it computes f.,

X+Y.

50 -50 -70 50 -50 05 130 -37.0 60 2700  (C4)
1] 0.9950 | 0.0046
Y| O 0.0009 | 0.9950
0 1
X

Table 11: Truth table produced by the

network of (C4) using the sigmoid
function
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This counter-example shows that we cannot simply assume that the solutions using
the sigmoid are essentially the same as the solutions already identified for the step
function. It is clear that a number of questions must be answered in order to clarify
the relationship between the sets of two solutions: for example, is the solution of (C4)
drawn from a distinct new region of solutions, or isit a point on a descent into one of
the regions that were identified for the step function? Or isit a point on a descent into
“alocal minimum”, a sort of second-class solution that we would want to discard? In
which case, when is a solution not a solution? We address this methodol ogical
guestion in the next sub-section: the empirical questions will be addressed later.

€) Solutions, local minima, and saddlepoints: theor etical issues

The previous sub-section asked the gquestion “when is a solution not a solution?” In
this sub-section we look at a number of related methodological issues to do with
solutions.

We know that using the sigmoid it is impossible with finite weights to reproduce
XOR exactly: we also know that with physical computing equipment it is impossible
to reproduce any real-valued function exactly. In many neural net applications we
have no exact criteria that would enable us to recognise perfect performance on the
part of anet (that is, we cannot specify exactly the function that the net isto compute).
Thus for practical purposes we must accept that most solutions are approximations. In
the present context, where we do know the function that we wish to compute, “a
solution” is an outcome that is within a specified tolerance of an exact solution. In
contexts where the target function cannot be specified exactly, “a solution” is one that
leads to acceptable performance by the computer system (the robot picks up the brick
95% of the time, say). In both cases the decisions as to what outcomes are acceptable
are guided, usualy, by pragmatic considerations. When authors on neura nets speak
pejoratively about “local minima’ (as, for example, awkward areas to be ridden
through using alarge momentum term), they are, then, doing more than describing the
mathematics of a surface. In such a context they mean that this particular minimum
on the surface does not meet the current pragmatically decided criteria for a solution
(and a better solution may be available). Using other criteriait would be “a solution.”

Therefore, the figures of Table 11 represent something that is a candidate for being a
solution, and it would be hard to argue that it is not very close to an exact solution.
For all practical purposes Table 11 is the truth table of XOR, and the network of (C4)
Is“asolution”.

A related question has to do with the meaning of the term “local minimum.” Some
authors use this term very loosely, apparently meaning a portion of an error surface
that

1. does not meet the criteriafor a solution
2. back-propagation will not escape in some specified number of iterations

This usage isindefensible: firstly, it goes against the ordinary meaning of the words in
mathematics, and secondly it depends on the parameters being used for back-
propagation. Obviously, the maximum number of iterations is important, but so is the
use of amomentum term. If a momentum term is used, then different results may be
obtained if back-propagation is started in the region in question, or enters it later. A
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momentum term may be too low, or even too high (if the route out of the region is
curved).

If we stay with the ordinary mathematical meaning of the term, then we obtain a more
satisfactory definition. We wish to capture the idea that alocal minimum is the least
value in some region, but not the least value overall. (We shall use the term “global
minimum” for the least value overal.) At the same time, we want to exclude the
special case of a function that is decreasing at the edge of the specified region. For
example, dthough it istrue that y = x* has a minimum in the interval [2,3], and this

minimum (the value 4) is greater than the global minimum (zero), we should not want
to say that it had a local minimum in the interval. Finally, in connection with our
present problem it is useful to be able to call a value a local minimum even if the
value is approached asymptotically as some weight or weights become very large.
Combining these various considerations, we arrive at the following: alocal minimum
mof afunctiony = f(x,...,X,),x OO isagreatest lower bound m for f within some

set of nopenintervals x; O (I;,h ), such that mis not alower bound for f in the whole
domain and f does not attain mfor any possible x, =1, or x, =h,. (Note that thisfinal

condition allows alocal minimum to be approached as alimit as one or more of the x;
approach + ).

The obvious contrasts with a minimum are a maximum and a saddlepoint. The
definition of maxima, if we were to need a definition, follows in an obvious way from
our definition of minima. A saddlepoint is a point at which atangent to the surfaceis
flat (as it is a maxima and minima) but the immediate neighbourhood of the point
contains some points at higher values and some at lower values. Thus, for example,

the surface of y =(x,)* - (x,)? has asaddlepoint at the point (x, =0, x, =0).

In the forthcoming material, we shall often show that particular points are not local
minima. Normally in doing this, we shal employ an informal argument that will
simply show that a path exists from the particular point, where all points on the path
have the same or lower function values as the value at the origina point. It is
acknowledged that this is an informa approach and one that is open to abuse by an
author prepared to act in bad faith. For example, using this method one could show
that the centre of a set of concentric ripples on a pond was or was not a local
minimum by choosing different points on successive ripples. | have tried hard to test
that points between the selected points do indeed have intermediate function values.
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4. Theerror surface

a) Previouswork

The XOR problem is mentioned in virtually every text on neural nets. Literature on
the error surface of our network has concentrated mainly on the practical matter of the
circumstances under which back-propagation fails to find an acceptable solution.
There have been widely different opinions. The experiments of Rumelhart et al
(Rumelhart, McClelland, and the PDP Research Group 1986) suggested that there
were (non-solution) local minima. Hirose et al (Hirose, Y amashita, and Huiya 1991)
found that the range from which the weights were chosen (in our terms, the bound b
mentioned above on page 12) had a profound effect. They found a u-shaped curve of
non-convergence against b. Thisisreproduced here as Table 12.

They say that there is a loca minimum around zero. “When the initial weights are
very small, the calculations become trapped in this loca minimum” (Hirose,
Yamashita, and Huiya 1991, page 63). They do not give an explicit reason for
non-convergence with weights greater than one, but imply that there are local minima
there too. For example, they say (page 65) “How well this algorithm [the subject of
their article] escapes local minima can be judged by ... the result when the initial
weights were chosen from the range (-5,5).”

Blum (Blum 1989) states that there is a manifold of local minima when the input
weights to the output unit are the same, but Sprinkhuizen-Kuyper and Boers present a
proof that these are saddlepoints and not minima (Sprinkhuizen-Kuyper and Boers
1994; Sprinkhuizen-Kuyper and Boers 1996).

Lisboa and Perantonis (Lisboa and Perantonis 1991), in what is claimed as a complete
analytical solution of the problem, claim to have found “true local minima’ of four
different analytical types, and present five examples of such points (Lisboa and
Perantonis 1991, Table 1). However, Sprinkhuizen-Kuyper and Boers give a proof
that one of these is a saddlepoint (Sprinkhuizen-Kuyper and Boers 1996, page 1319).
They aso present a proof that all cases with finite weights and one input weight to the
output unit (that is, weights 7 or 8 in our Table 6) equal to zero are saddlepoints.

Many previous discussions have used empirical investigations, but often these have

Range of Per centage
weights, £ | non-conver gence

0.05 100

0.25 10

0.5 0

1 0

15 20

2.5 30

5 50

Table 12: Non-convergence
accordingto Hirose et al
(adapted from their Figure 4)
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been based on repeated runs of back-propagation using random starting points. Hirose
et al isatypica example. Although much interesting information can be obtained in
this way, there are two important shortcomings. Firstly, the method is not based on
analysis of the surface and does not particularly help in understanding why the surface
has a particular shape at a particular point. Secondly, the surface is so complicated
that random explorations are very unlikely to exhaust the possible cases. As Figure 6
shows, the behaviour of our net using the step function is aready fairly complex in
three dimensions. Aswe shall see later, when the sigmoid is used each of the areas of
that Figure ceases to be flat, ridges and trenches replace the lines of the Figure, and
intersections between lines become peaks or holes. When al nine dimensions are
considered the number of outcomes become very large. Also, some of these outcomes
occupy quite small volumes in the space and thus are very likely to be missed by
random probing.

A smaler number of investigations have approached the problem though a
mathematical analysis of the surface. Lisboa and Perantonis take this route. In
general, of course, analysis is preferable to brute force, but in this particular case they
arrive at conclusions which we shall suggest are unhelpful. In addition, their
concentration on the minima of the surface leads them to ignore the shape of the
surface as awhole. In this paper we aim to combine an analysis of the whole surface
with empirica investigations. In particular we shall look at the behaviour of back-
propagation at various points on the surface.

b) Wherethe solutions are located

Our work with the step function, presented above, led us to the conclusion that the
network computed XOR in 16 distinct volumes in the space. These are the volumes
of the Boolean classes shown in Table 8. However, when we used the sigmoid we
found that XOR solutions did not correspond to Boolean classes so negtly. So, are
there still 16 volumes when the sigmoid is used?

Using a number of brute-force iterative procedures, many millions’ of configurations
were tested in a search for ‘solutions’: that is, for configurations which computed
XOR with an SSE <0.01. These procedures explored the space of combinations of the
nine weights, each weight taking on values in the range £ 30. Some of the procedures
simply explored all points in regular nine-dimensiona grids. Others explored areas
around the boundaries of the Boolean classes, looking at points close to, and on either
side of, the boundary lines shown in Figure 6.

These experiments yielded several thousand configurations that were solutions. One
obvious hypothesis, arising from our previous work with the step function, would be
that these solutions would be drawn from 16 basins in the surface of the SSE, one
basin corresponding to each of the 16 Boolean classes of Table 8. We might expect,
then, that application of back-propagation to these solutions would find the lowest
point of each basin. Thisis not the case: a very high proportion of the solutions move
only a short distance before stopping, and there is little sign (if any) of the solutions
tending towards common minima. Even more disconcertingly, although al the
Boolean classes of Table 8 are represented, solutions come from a much larger
number of classes. However, further work revealed the following:

2 Approximately 4x10°
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1. All the Boolean classes found in the solutions are either those listed in Table 8 or
are derived from those of Table 8 by a change to only one of the hidden units
(either the left or right hidden unit). For example, b(4,d) is one of the classesin
the Table, and solutions are found that come from that class: so also are solutions
from b(0,d) and b(c,d), where the hidden units from regions 0 and c respectively
replace that from region 4.

2. Thevariant hidden unit always comes from aregion that borders the original unit
in the three-dimensional cube shown in Figure 6. Thus, in the previous example
regions 0 and c are neighbours of region 4.

3. Single-linkage clustering of the classes of the solutions leads to a grouping of the
solutionsinto 16 clusters, and the Euclidean centroids of these clusters
correspond to the 16 Boolean classes of Table 8, with each centroid® lying in the
middle of the Euclidean space of its Boolean class.

4. Totest the homogeneity of the clusters, a‘walk’ procedure was used. This
procedure was applied to pairs of solutions and attempts to find a city-block walk
(of at least two paces in each dimension) between the solutions such that every
step of the walk isalso asolution. In other words, the procedure looks for a
(possibly curved) tunnel of solutions between its starting and end points, atunnel
that contains at least nine other solutions. It turned out that it is possible to
‘walk’ from every solution to the centroid of its cluster and to every other
solution in its cluster, and it is not possible to ‘walk’ from any solution to the
centroid of another cluster. Therefore, the clusters are distinct entities.

These findings show that our original hypothesis was very nearly correct. Using the
sigmoid there are indeed exactly 16 solution-basins in the surface of the SSE, and
these basins are indeed in the same regions of nine-dimensional space as the 16
Boolean classes that are solutions when the step function is used. However, our
hypothesis was not completely correct. Firstly, the ‘basins’ are in fact ‘trays': that is,
they have flat floors (and hence solutions in them do not converge to a common point
when iterative back-propagation is used). Secondly, the edges of these trays are not
exactly where we would expect them to be: sometimes an edge includes a volume that
we should expect not to provide solutions, and sometimes an edge excludes a volume
that we should expect to provide solutions.

We can explore this last phenomenon graphically. Figure 7 shows the SSE surface in
the upper-left quadrant of the plane of the input weights of the left-hand hidden unit of
the solution at the centroid of b(4,d). The weights for this solution are shown in (C5):
the entries x and y are the dimensions in which the SSE is plotted in Figure 7. (At the
centroid, those dimensions have the values (-14,14).)

X y 7 -14 14 -7 14  -14 -7 (C5)
In Figure 7, we are looking at values of the SSE in an 80-by-80 grid of x and y

positions, x ranging from —20 to 0 and y from O to 20. Each point in the grid has a
corresponding letter, whose ASCII value is given by the formula

| = (char)(a’-(int)(05+ 4l0g,,9)) (14)

where s the SSE at the point. Thus, the letter ‘a represents a point where the SSE is
1.0, and higher letters correspond to lower SSEs, with ‘h’ and above denoting XOR
solutions. Figure 7 should be compared with the second drawing in the first column

% The values of the weights are shown later, in Table 21.
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of Figure 6: The plane plotted in Figure 7 corresponds to the top-left quadrant of that
drawing, as can be seen from the correspondence between the annotating letters and
lines of the two drawings.

Figure 7 shows the following:

1. The'basin’ of solutions using the sigmoid fits exactly within the region (the
triangular area) that we would predict from our earlier analysis of the step
function.

2. Therim of the basin, atransitional space where no-functions are computed, is
within the region and thus reduces the size of the space where XOR is computed.
This explains why we can have configurations that do not compute X OR when
the sigmoid is used, despite being within a Boolean class that computes XOR
with the step function. (We shall see afurther reason in amoment.)

3. The'basin’ isindeed a‘tray’ with aflat floor. We can also see that the rim of the
tray is asmooth and steep escarpment.

This Figure, although it provides useful information, does not cast any light on the
process whereby solutions are found outside the spaces of the Boolean classes that
compute XOR. We can look at this question by constructing similar Figures for two
such solutions. These are Figure 8, which plots a solution in b(0,d) (C6), and Figure
9, which plotsonein b(c,d) (C7). These are the examples that we discussed earlier.

X y 10 10 10 -3 30 -10 -3 (C8)
X y 10 15 10 -10 15 -15 5 (C7)
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small weights then the network as a whole will tend to compute 0.5 for any pattern of
letter ‘c’) has an SSE of about 0.2, above the value that we would use as the

close to 0.5 for inputs close to zero, and so if the weights of a unit are al small then
that unit will tend to produce an output of 0.5. In particular, if the output unit has

We have aready noted that Figure 7 shows us that the trays of solutions have flat

fit to XOR. However, it is clear from Figure 2 that the
weights by four. The result is shown in Figure 10. In compar

bases. Thus we can scae the values on the two d
acceptable approximation to XOR
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inpu

tray of solut
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maximum

7 with all weightsdivided by four
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¢) Pointsnear an escarpment

Consider the points ‘X', ‘Y’ and ‘Z’ in Figure 11.
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Starting the back-propagation algorithm at the point ‘X’ (y

ly three iterations. The rate of change is high, with the solution moving at an

in on
average crow-fly (Pythagorean) distance of 0.33 per iteration.

movement takes placein f

ISsone

1. The point corresponding to the trial configuration moves up (north) on Figure 11
so that the point begins to descend the escarpment.

The threshold of the left-hand unit d

2.

the configurat

to lie to the south of the point * X'.
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Valueofy Iterations Mean distance
per iteration
7.0 3 3.3
3.5 74 0. 06
0.0 213 0. 03
-1.0 394 0.01
-2.0 2182 0. 004

Table 13: Effects of modifying starting point
(alpha=0.95, eta=0.25)

3. All three weights of the output unit increase in magnitude and the unit becomes
unsymmetrical, moving the triangular solution region towards the test
configuration, in the manner that we have already seen from Figure 8: again this
contributes to a southward shift of the escarpment’s edge.

What happens if the point starts further away from the escarpment? From the point
‘Y’ on Figure 11 (y = 3.5) we find that the configuration moves in just the same way

as from the point ‘X, but much more slowly: a solution is reached in 74 iterations at
an average crow-fly (Pythagorean) distance of 0.06 per iteration. For most of this
time the configuration is moving very slowly indeed across an amost flat plain until
the northbound point meets the southbound escarpment edge, when speed picks up

very rapidly.
Moving still further, from the point ‘2" on Figure 11 (y=0) we find that the

behaviour is the same, but this time 213 iterations are needed at an average crow-fly
distance of 0.03 per iteration. Carrying out a sequence of such experiments,
successively moving the starting point further south, we obtain the results shown in
Table 13.

It might be expected that the path followed by the algorithm would be a straight(ish)
line. Thisis not the case, however, as Table 14 shows. This table shows the changes
in the nine values of the configuration referred to in the last line of Table 13, where
the starting configuration is to the south of the point ‘Z’ of Figure 11. These values
are shown at 200-iteration intervals. In some of the columns, the direction of change
reverses as the solution proceeds. This can be seen in the columns relating to the last
value (the threshold weight) of the left-hand hidden unit and the last two values of the
output unit. Indeed, the effect of the changes in these last two columns, with the
values for the right-hand weight and the threshold moving together and then apart

Iter LH Hi dden Unit RH Hi dden Uni t Qutput Unit
0| -14.00 -2.00 7.00 -14. 00 14. 00 -7.00 14. 00 -14. 00 -7.00
200 | -14.00 -1.92 7.19 -13.83 14. 17 -7.37 13.99 -10. 84 -10.13
400 | -14.00 -1.71 7.62 -13.62 14. 38 -7.95 13. 96 -10. 81 -10. 10
600 | -14.00 -1.54 7.89 -13.52 14. 48 -8.29 13.94 -10.79 -10.09
800 | -14.00 -1.38 8. 07 -13. 45 14.55 -8.53 13.92 -10.78 -10. 08
1000 | -14.00 -1.22 8.21 -13.41 14.59 -8.72 13.91 -10.77 -10. 07
1200 | -14.00 -1.05 8. 30 -13.37 14. 63 -8.88 13.91 -10.76 -10. 06
1600 | -14.00 -0.86 8. 36 -13.34 14. 66 -9.01 13.90 -10.76 -10. 06
1800 | -14.00 -0.64 8. 37 -13.32 14. 68 -9.12 13.90 -10. 75 -10. 05
2000 | -14.00 -0.34 8.32 -13.30 14. 70 -9.23 13.91 -10.75 -10.05
2200 | -14.00 0.13 8.12 -13.28 14.72 -9.32 13.92 -10.74 -10. 04
2182 | -14.00 4.85 3.97 -13.26 14. 74 -9.40 14. 23 -11.93 -8.85

Table 14: Progress of solution of last line of Table 13
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again, is that the output unit moves very close to the point where it would compute f;
rather than f, and then moves back again.

So far, we have managed to obtain a solution despite moving the starting point further
and further from the tray of solutions. However, when the point is moved still further
south, we run into difficulties. At y =-3 the algorithm, using the parameters shown

in the caption to Table 13, apparently fails to find a solution in any practica number
of iterations.

But is it stuck in a local minimum? The answer is “no.” In fact, the problem is
caused by the fact that the gradient is now so small that the point is moving at a
negligible speed. If we increase the parameter n (the learning rate) to (say) 4.0, then a
solution can be obtained, abeit very slowly. Almost 20,000 iterations are required.
As Table 15 shows, the path of the solution follows the same form as in the previous
case: the output unit moves relatively quickly towards the boundary between f, and f;
and hugs that boundary while the left-hand hidden unit crawls its way towards
computing f; rather than the f, of the starting point. When the point finally reaches
the escarpment then the output unit moves back towards its initial position, and the
high value of n together with the steep slope of the escarpment carries the fina
solution much further in the final few iterations than in the previous 19,000.

Can we conclude that back-propagation will reach a solution from any point? No. If
we change the configuration further in the direction which we have been pursuing, so
that y = —-14, say, giving

14 -14 7 -14 14 -7 14 14 7 (C9)
then a solution cannot be reached with any set of parameters that | have tried so far.
The configuration alters in most of the ways we saw in Table 15: the magnitudes of
the thresholds of the hidden units increase, and its output unit executes the now-
familiar move towards f; , but then over many thousands of iterations the configuration
drifts to a halt. If the momentum factor a is set to zero then it stops quite quickly, in
the position given in (C10).

-14.00 -14.00 16.12 -16.58 17.47 -15.20 1342 -11.71 -10.46 (C10)
Iter LH Hi dden Unit RH Hi dden Unit Qut put Unit
0| -14.00 -3.00 7.00 -14.00 14.00 -7.00 14. 00 -14.00 -7.00
1000 | -14.00 2.33 10.80 12.95 15.05 -10.97 13.73 10. 82 -9.82
2000 | -14.00 2.13 11.45 12.90 15.13 -11.60 13.68 10. 80 -9.80
3000 | -14.00 1.99 11.82 12.96 15.18 -11.90 13. 65 10. 80 -9.80
4000 | -14.00 1.87 12.07 13.10 15.22 -12.06 13.63 10. 82 -9.82
5000 | -14.00 1.76 12.26 13.23 15.25 -12.18 13. 62 10. 83 -9.84
6000 | -14.00 1.66 12.42 13.35 15.29 -12.29 13.61 10. 85 -9.85
7000 | -14.00 1.56 12.54 13.46 15.33 -12.39 13. 60 10. 87 -9.87
8000 | -14.00 1.47 12.64 13.56 15.36 -12.48 13.59 10. 88 -9.88
9000 | -14.00 1.37 12.72 13.66 15.40 -12.56 13.59 10. 89 -9.90
10000 | -14.00 1.27 12.79 13.74 15.43 -12.64 13.58 10.91 -9.91
11000 | -14.00 1.17 12.85 13.82 15.47 -12.71 13.58 10. 92 -9.92
12000 | -14.00 1.07 12.89 13.89 15.50 -12.77 13.57 10. 93 -9.94
13000 | -14.00 0.95 12.92 13.96 15.53 -12.83 13. 57 10. 94 -9.95
14000 | -14.00 0.82 12.93 14.03 15.56 -12.89 13.57 10. 96 -9.96
15000 | -14.00 0.68 12.92 14.09 15.59 -12.95 13. 57 10. 97 -9.97
16000 | -14.00 0.50 12.89 14.15 15.62 -13.00 13.57 10. 98 -9.98
17000 | -14.00 0.28 12.82 14.20 15.65 -13.05 13.58 10. 99 -9.99
18000 | -14.00 0.05 12.65 14.26 15.68 -13.10 13.59 11. 00 -10. 00
19000 | -14.00 0.80 12.14 14.31 15.71 -13.14 13.63 11.01 -10.01
19376 | -14.00 8.42 4.77 14.33 15.72 -13.16 14.17 13.53 -7.50

Table 15: Progress of solution for y=-3
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What we have found is a point at which the configuration is not computing XOR but
is stationary (or, to be more exact, where the configuration moves in a closed path of
four positions, one position after each of the four inputs of the XOR problem).

Common sense suggests that this point must be a “local minimum.” This is not so,
however. If we explore the space around the point by varying each value in (C10) by
+ 0.5, generating 3° (19,683) starting positions, we find that although al are closeto a
stationary point and converge to it, there are 10,935 distinct stationary points, all with
the same SSE. In al cases, the movement is in the last two dimensions: there is no
movement in the first seven dimensions (that is, there is no gradient in any of those
dimensions).

If we plot the SSE in these two dimensions, using for the other seven values those of
the stationary point of (C10), thus:

-14.00 -1400 16.12 -16.58 17.47 -1520 1342 x y (C11)
we obtain Figure 12. This Figure, unlike earlier ones, plots the whole plane in the
square from (-20,-20) to (20,20) rather than just a quadrant. In a further change, the
SSEs are indicated by lower-case letters chosen automatically by the mapping
procedure so as to range from ‘@ (highest value) to ‘t' (lowest value). Here ‘t’
indicates an sserror of (about) 0.7 and ‘a one of 3.0 (none of the pointsis a solution to
XOR, in other words). The position of (C10) isindicated on the plot by the letter ‘A’
and we can see that this point lies in a trench of the lowest values in the plane. This
trench runs from the bottom left-hand corner of the plot towards the origin.

When the hypercube of starting configurations round the stationary (C10) move to the
stationary points mentioned in the previous paragraph, it is to the floor of this trench
that they move their x and y dimensions. For each of the 19,683 configurations in this
experiment, the other seven dimensions remain the same: and, because all points
along the floor of the trench are at the same depth, there are many possible finishing
values of the x and y dimensions. These considerations, then, explain why we see as
many stationary points as we do.
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It is a global minimum in

1342 -11.71 -10.46

To demonstrate this, we can experiment by
31

Letter ‘A’ showsthe position of (C10).

-16.58 17.47 -15.20

Figure 12: Trench of non-solution stationary points: plot of (C11).
16.12

terms of these two dimensions, holding the others constant, and a flat ledge in terms

of the configuration as a whole.
positive value. Of course, we found the stationary configuration of (C10) from the

standard solution in b(4,d) by progressively decreasing the y value, moving through
the points ‘X', ‘Y’ and ‘Z’ of Figure 11 and on to the configuration of (C9), from

vyhich back-propagation moved us to (C10), and so this new experiment should
simply reverse the process. We expect to encounter the escarpment to the south of the

solution region at some stage in these progressive increases in the y dimension.
This experiment was carried out as follows: the back-propagation algorithm was run

on the configuration of

-1400 vy

this experiment were as follows. at each step, the new configuration was a new

(which is the.stationary point of (C10) with one variable dimension indicated by the
letter ‘y’) giving the y dimension the values —13, -12, -11 and so on. The results of

progr.vely moving the configuration to where we know a solution can be found:
that is, by progressively increasing the dimension y of (C8) from —14 towards a

But is the floor of this trench a “local minimum”? No.



stationary point: the configuration simply settled like a drop of water placed on a flat
sheet of glass. The flatness of the surface is strikingly shown by the fact that each
new configuration had the same SSE as the origina configuration, to (at least) six
significant figures. This continued to apply until y =7, when the point moved,

slowly and then with rapidly accelerating steps, reaching a solution at

-14.00 11.45 1167 -1658 17.47 -1520 13.78 -12.45 -9.72 (C16)
This solution is, of course, in the same region as all the others we have been
discussing in the preceding paragraphs. a solution of Boolean class b(4,d), that is, one
intheareashownas‘4’ in Figure7.

We see, then, that the process of finding a solution from the starting point of (C10)
follows much the same path as that shown in Table 15: successively

1. The hidden unitsincrease their thresholds, and the output unit changes its values
to come closeto f; , reducing the SSE by moving the configuration into the trench
shown in Figure 12. These are the changes in the move from (C9) to (C10), and
make up what we might call a palliative reduction: it is the quickest way of
reducing the SSE, but will have to be undone later in order to achieve afinal
solution.

2. Theleft-hand hidden unit changes the y value to move northward towards the area
shown as ‘4’ in Figure 7. This stage does what we may think of as the essential
task of moving directly towards the solution region.

3. Theleft-hand hidden unit reduces its threshold, and the output unit changes back
towards the middle of f, to allow the floor of the areato be at alower error level,
thus undoing the work of step 1. They value rapidly increases to move the point
onto the floor of the tray of solutions. These are the changes in the move from
(C15) to (C16).

The critical difference, however, is that from the starting point (C9) the algorithm is
incapable of doing the work of the second step without human assistance: for a very
long distance, the surface to be traversed is flat. Worse, the changes of the first step
have increased the distance that must be traversed to reach an escarpment: from (C9)
the y dimension needs to be increased by 11 units to (about) -3, but from (C10) it
needs to be increased by 21 units to (about) 7. The human operator with knowledge
of the XOR space can see which way the solution should move, but the agorithm
cannot. The remedy suggested in all the basic texts is, of course, to use a momentum
term: but this would be completely ineffective in this case. Firstly there is no gradient
towards the escarpment and no momentum towards it can never develop; and,
secondly, the only movement that takes place from points close to (C9) is movement
that must be reversed later, and momentum would be counter-productive.

This sub-section has provided us with an example of the features that characterise the
error surface: plateaux and trenches. In the next subsection we look at this more
systematically.

d) Plateaux and trenches

The sixteen Boolean functions each have a “natural” SSE, given by the number of
cells by which their truth table differs from the truth table of XOR. Thus, for
example, the natural SSE of fo, False, is 2 because its truth table is all zeros but the
truth table of XOR has two ones. These natural SSEs are set out in Table 16, which
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also givesin its third column the number of Boolean classes computing each function
and therefore the number of Boolean classes at the given levels.

Thus, using the step function the error surface would consist of 2,744 flat surfaces,
one for each Boolean class, with each surface at the height shown in Table 16.
Between surfaces, there would be discontinuous changes of level. When we use the
sigmoid, however, the picture is more complicated:

1. Attheorigin (al weights zero) the SSE is 1. Thisis because the sigmoid
produces 0.5 for summed inputs close to zero, and hence when all weights are
zero al four cells of the output truth table approach 0.5, differing from the XOR
truth table by +0.5. Thusthe SSE is 4% (0.5)? i.e. 1.0.

2. Thenet is computing a continuous function and thus the error surface is smooth.
It follows that the plateaux have smooth edges where atransition is made to the
next plateau (or, towards the origin, to a height of 1).

3. Theplateaux are not exactly flat. For example the eight surfaces where XOR is
computed all have slight downward slopes as all weights are increased: as the
weights increase the SSE drops. Thisis because the output of the sigmoid
becomes closer to 0 or 1, and the output of the net approaches the ideal truth
table.

To explore these phenomena, 14 sample sets of “ideal” weights were used, one for
each of the functions computable by a single unit. They are “ideal” is the sense that
they were chosen to represent points in the three-dimensional space of Figure 6 so that
each point was as far away as possible from the others. The values are given in Table

Function | SSE Number of Function |W1 |W2 | W3
Boolean 0 -4 -4 2
classes 1 40 4l 2
0 2 524 2 4 -4 2
1 3 144 3 o] -4 -2
2 1 144 4 -4 4 2
3 2 128 5 -4 0 -2
4 1 144 7 4| -4 -6
5 2 128 8 4 4 6
6 0 16 a 4 0 2
7 1 144 b 4| -4 -2
8 3 144 c 0 4 2
9 4 16 d -4 4 -2
a 2 128 e 4 4 2
b 3 144 f 4 4 2

C 2 128 ) ,

d 3 144 Tqble 17: “1deal” smglegmt
o 1 144 weightsfor Boolean functions

f 2 524
Total 2744

Table 16: Natural SSEs of the
Boolean functions
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Function | Count SSE

Natura Max | Mean Min Std

Dev

0 524 2 2.000| 1964 | 1.929| .027
1 144 3 2953 | 2889 | 2871 | .019
2 144 1 1.001 975 965 | .015
3 128 2 1954 | 1927 | 1913 | .013
4 144 1 1.001 975 965 | .015
5 128 2 1954 | 1927 | 1913 | .013
6 16 0 .002 .002 .002 | .000
7 144 1 1.001 975 960 | .015
8 144 3 2953 | 2889 | 2.877| .019
9 16 4 3.824| 3.824| 3.824| .000
a 128 2 1954 | 1927 | 1919 | .013
b 144 3 2953 | 2889 | 2.871| .019
c 128 2 1954 | 1927 | 1919 | .013
d 144 3 2953 | 2889 | 2.871| .019
e 144 1 1.001 975 965 | .015
f 524 2 2.000| 1.963| 1.918| .028

Table 18: Outputsof nets constructed from " ideal" units, by
Boolean class

17. Each of the 2,744 Boolean classes could then be modelled by constructing a net
using the appropriate units. Additionally, the effects of scaling all the weights in such
anet could be explored.

We look first at the extent to which networks constructed in this way do actually
approximate the “natural” SSEs. Table 18 shows the results when the weights are
scaled by afactor of 2 (in order to saturate the sigmoid). Broadly, the 2,744 nets give
the expected results. Grouping the classes by their expected output, we find that each
group has on average a close approximation to its “natural” SSE, and the classes are
tightly clustered within their groups. For example, the 524 classes computing fo,
False, have heights with a standard deviation of only 0.027. We note the following
points:

1. classeswhose natural SSE is 3 or 4 have computed SSESs |ess than the natural SSE
2. classes whose natural SSE is 2 have computed SSEs that are 2 or less
3. classeswhose natural SSE is 1 have computed SSEs that straddle 1.

What happens as the weights are scaled (multiplied by a positive constant)? We know
that if the weights of any configuration are scaled towards zeroes then the SSE
approaches 1. Thus we would expect that scaling outwards from the origin we will
see the SSE move from 1 and approach a final value asymptotically. This is indeed
what happens.
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Figure 14: SSE of 7(0,0)

Figure 13 shows what happens to the SSE as the weights of a class whose natural SSE
is 3 (in this case €(d,d,)) are scaled towards the origin. We see that the SSE decreases
smoothly towards 1.0 as the origin is approached. Compare this with Figure 14,
showing a class whose natural SSE is 2 (in this case f(0,0)). We see that in the latter
case the slope from the origin to the natural SSE is much steeper and hence the
plateau is much larger and flatter, at least in the plane through the origin.
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Figure 16: SSE of 7(c,a)
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Figure 17: SSE of 2(7,1)

One might imagine that Boolean classes whose natural SSE is 1 would have SSEs of 1
no matter how the weights were scaled. Thisis not the case, however, as we can see
by scaling two examples, starting at the origin. Figure 15 shows that the SSE of 8(7,f)
fals to a minimum below 0.8 as it leaves the origin, before rising to its natura 1,
while Figure 16 shows that 7(c,a) rises to a maximum of almost 1.2 before falling to
its natural 1. Similarly, athough one might imagine that a configuration whose
natural SSE is zero (i.e. an XOR solution) would show an SSE falling monotonically
as the configuration is scaled away from the origin, we see from Figure 17 that 2(7,1)
rises very slightly before falling away towards zero. These effects are al caused by
complex interactions between the weights, the truth tables of the functions and the
behaviour of the sigmoid. The contributions of the different units of the net change at
different ratesif the weights are scaled down.

As configurations are scaled up (away from the origin) they asymptotically approach
what we can call “saturated” values. Many (but not all) are close to their natural SSEs
for crow-fly distances of 20 and above. This means that above this distance we find
that the surface is characterised by large areas that are rather flat. Certainly at this
distance there is only a very small gradient in the plane through the origin, but the
gradient in other directions (orthogonal to that plane) will depend on the proximity to
the area of another Boolean class. We can get some idea of the magnitude of these
effects by rotating sample configurations round the origin. For example, if we move
(C12) in acircle round the origin in the plane of its first and eighth dimensions, then
we obtain Figure 18.

80 80 -40 -80 80 -40 80 80 40 edd) (C12)
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Degrees

Figure 18: SSE ase(d,d) isrotated in the plane of itsfirst and eighth
dimensions

Because this transformation keeps constant the distance from the origin, it does not
involve any of the scaling effects that we saw above: but there is much else to
observe. Figure 18 shows that this rotation takes the configuration through a sequence
of Boolean classes, through a(d,d), 2(d,d), 2(f,d), a(f,d), e(f,d) and back to e(d,d). For
some part of this journey the region does indeed appear to be flat, as in e(f,d). But
other parts are not at al flat: nearly all of the path through a(d,d) is on a steep slope.
We can obtain some idea of the surface in nine-dimensiona space if we superimpose
eight circular paths round the origin, in different planes. We get these eight by
looking at the planes of dimension 1 against each of the eight other dimensions (to get
a complete idea we would need to examine al 36 possible rotational planes). These
are shown in Figure 19.

Another way of viewing the surface at this point (C12) is to superimpose nine curves,
each curve showing how the SSE changes if the configuration is moved (“disturbed”)
inasingle dimension. Thisfamily of curvesis shown in Figure 20.

These Figures suggest that (C12) isin fact at the top of aridge, and that from (C12)
(i.e. starting at either the extreme left or the extreme right of Figure 19, or outward
from the central axis of Figure 20) there is a slope that leads down to aflat area at an
SSE of 2. If asked to guess, we might suggest that back-propagation from (C12)
would take that path and that it might then stick when it reaches the plateau. Thisis
exactly what happens, and we arrive at* (C13).

-6.630 8.000 -5.370 -6.630 8.000 -5.370  8.185 8.185 0.385 edd) (C13)

“or closeto it. Where exactly back-propagation will stop is of course amatter of the particular values
used for the parametersa and n.
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0 90 180 270 360
Degrees

Figure 19: Family of SSE curvesase(d,d) isrotated in the plane of itsfirst
and second to ninth dimensions

SSE

Disturbance

Figure 20: Family of SSE curvesas g(d,d) isdisturbed in each dimension

Re-drawing the family of disturbance curves from the new point, (C13), we obtain
Figure 21. We see why back-propagation has stopped making progress. in all
directions (as before, we follow curves outwards from the central axis of the Figure)
the surface is flat, and in some directions it goes uphill. In one direction only it goes
markedly upwards: this is the direction from which we came in our descent from
(C12).
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SSE

Disturbance

Figure 21: Family of SSE curvesas (C13) isdisturbed in each
dimension
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Disturbance

Figure 22: Family of SSE curvesas (C15) isdisturbed in each
dimension

(C12) was an example of a configuration at the top of aridge. We turn now to a
striking example of a plateau: the configuration (C14).

80 -80 40 -80 -80 40 -80 -80 -120 7(0,0) (C14)
The disturbance plot of this configuration (not shown here) appears to be a single flat
line at a SSE of 2.0 from -5 to +5, representing nine superimposed lines al equally
flat. Infact the lines are not quite flat - at the extremes of the plot two of them have
dropped to 1.995 - but of course this cannot been seen on a plot scaled from 0.0 to 3.0.
When back-propagation is started at this point, no movement takes place at all.
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SSE

Disturbance

Figure 23: Family of SSE curvesas (C16) isdisturbed in each
dimension

The two previous examples have been cases where back-propagation came to a halt on
plateaux. Our next example, (C15), is a configuration that halts on the floor of a
trench.

80 -80 40 -80 -80 40 -80 -80 40 00,0) (C15)

Figure 22 shows the disturbance plots of this configuration, and the downward path of
the configuration is clear on the left-hand side of the Figure.

Back-propagation on (C15) stops at (C16).

-80 -80 1471 -80 -80 1471 -834 -834 -617 10,00 (C1e)
The disturbance plots for (C16) are shown in Figure 23. The locally trench-like nature
of the surface is shown by the fact that the dip in the SSE is in only one dimension,

while the others are flat lines, some rising very slightly away from the point. Thus,
the Figure looks as though thisis aloca minimum?®.

So far in this section we have looked at examples of configurations where back-
propagation is unsuccessful in finding solutions in any reasonable number of
iterations, and stops in non-solution regions of the space. Of course, there are
configurations where back-propagation is successful, and there are configurations that
are solutions already. An example of the first is (C17), which has a natural SSE of 3
but descends easily to an XOR solution.

-8.00 -800 4000 -800 -800 -400 -800 8000 4.000 401 (C17)
Figure 24 shows disturbance plots for (C17) and it is clear that descent is possible in
any one of a number of dimensions (back-propagation will of course use the
combination that gives the steepest descent), one of which will take us down to an
SSE of 1. Moving our focus to that lowest point of Figure 24 (in fact this is (C17)

®In fact thisis not alocal minimum, and a solution can be reached from here (but not by back-
propagation. We shall see later how thisis done.
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Figure 24: Family of SSE curvesas (C17) isdisturbed in each
dimension

with the sixth dimension atered to —9) and drawing new disturbance plots we obtain
Figure 25, which shows a dimension in which we can easily descend to a solution.

These examples show that back-propagation on the surface can, asiswell known, give
solutions: they also illustrate the two difficulties that can cause it to fail. These are
firstly the existence of large flat areas with negligible gradients, and secondly the
existence of strongly-marked trenches. We can examine the relative proportions of
success and failure by trying back-propagation on each of the representatives of the
2744 Boolean classes constructed from the weights of Table 17. As before, we shall

SSE

o
-5 -4 -3 -2 -1 0 1 2 3 4 5
Disturbance

Figure 25: Family of SSE curves asthe lowest point of Figure 24 is
disturbed in each dimension
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Original | SSE after back-propagation (rounded) All
SSE 0.0 0.5 1.0 15 2.0
0 16 16
1 144 288 144 576
2 224 491 567 8 270 | 1560
3 40 74 358 104 576
4 16 16
All 424 853 | 1069 8 390 | 2744

Table 19: Frequencies of outcomes of back-propagation
on representatives of all Boolean Classes

scale these by 2.0 to increase saturation. Thisis the population of configurations from
which the examples that we used above, (C12), (C14), (C15), and (C17), were drawn.

Table 19 shows the results of this experiment, rounding the SSE after back-
propagation to the nearest 0.5, and Table 20 summarises the results.

The relative proportions of solutions and non-solutions shown in Table 20 are
consistent with the results of other authors who have used random weights, such as
(Hirose, Yamashita, and Huiya 1991). The figures are sensitive to scaling of the
configurations, as we might expect: broadly, if the weights are scaled down then the
number halted on plateaux is reduced both absolutely and as a proportion of non-
solutions, while the proportion of non-solutions is itself reduced. Again, thisis what
Hirose et al found, although we shall in due course suggest that they are wrong about
configurations close to the origin.

€) Connectionsto solutions

So far, we have used two techniques in our search for the solutions that can be reached
from various starting-points. These have been back-propagation and human intuition
guided by inspection of SSE plots such as Figure 7. In this sub-section, we describe
the use of a new agorithmic approach. Given two configurations where the second
has a lower SSE than the first, this approach uses a method that tries to connect the
two configurations by finding a monotonically descending path between them. This
algorithm is described in detail in Section 5, below, but we note the main pointsin the
following paragraph.

The agorithm explores nine-dimensional city-block moves from the first
configuration to the second using a step-size that is supplied as a parameter. In other
words, it finds (or fails to find) a path consisting of discrete steps. Of course, in
considering such a path we are principally concerned with the question as to whether

Outcome Count | %

Already a solution 16 0.6
Converged on solution 408 14.9
Started on plateau, no movement 414 15.1
Halted after initial movement 1906 69.5
All 2744 | 100.1

Table20: Summary of Table 19
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there is a continuous path passing through the same points; or, if the algorithm fails to
find a path, whether this means that a continuous path does not exist. Experience
shows that, firstly, if the step-size is very coarse (1, for example) then the agorithm
may find a path when in fact no continuous path exists, because the algorithm steps
over an obstacle. However, the results that we shall report have been carefully tested
using small step-sizes and we are confident that continuous paths exist in every case
where a discrete path is reported. Secondly, under certain conditions the algorithm
can fail to find paths in a reasonable number of iterations, even when a path exists.
Typically, these are where a slope lies obliquely to the direction of travel.

Using this agorithm, we can see whether configurations can be moved down
monotonically descending paths to one of the sixteen XOR solution regions. We call
this a connection to a standard solution. Obvioudly, if a particular point can be
connected to a solution then it cannot be (or be in the neighbourhood of) a loca
minimum.

The Boolean Classes of the sixteen solutions were listed above, in Table 8. The
weights used for these solutions are shown in Table 21. These values are those of the
centroids referred to above in Section 4, sub-section b), above. These configurations
have very low SSEs, as the Table shows. Using them helps to avoid spurious non-
connection with points on the edge of the region.

# Weights Class SSE
1[-13[-13] -6 9 9 13[-14[-15[ -8 1(1,8) | 0. 00000796
2 9 9| 13[-13[-13| -6 |-15|-14| -8 1(8,1) | 0. 00000796
3| -8 -8|-13[-13[-13| -6| 15|-14 7 2(7,1) | 0. 00001027
4-13]-13| -6| -8 -8[-13|-14| 15 7 4(1,7) | 0.00001027
5 13| 13 6 9 9 13| 14-15 6 2(e,8) | 0. 00000796
6 9 9 13| 13| 13 6-15| 14 6 48,6) | 0. 00000796
7| 14 -12] -6|-12 14| -6|-10|-10[-15 7(b,d) | 0. 00018891
8|-12| 14| -6 | 14 [-12| -6|-10|-10[-15 7(d,b) | 0. 00018891
9|-10[-10|-15| 13| 13 6| 10| 10| 15 8(7,e) | 0. 00020241

10| 13| 13 6(-10[-10[-15| 10| 10| 15 8(e,7) | 0. 00020241

11| 11]-12 7111 (-11 -7 14[-13| -7 b(2,b) | 0. 00001425

12 11 [-11| -7 11]-12 71-13 14| -7 d(b,2) | 0. 00001425

13]-12 | 11 71-11 12| -7 14[-13| -7 b(4,d) | 0. 00001416

14-11] 12| -7[-12] 11 71-13 14| -7 d(d,4) | 0. 00001416

15 11[-12 71-12 11 71 14| 14 6 e(2,4) | 0. 00001303

16 [-12 | 11 71 11(-12 71 14| 14 6 e(4,2) | 0. 00001303

Table 21: Weightsfor “standard” solutions

A crucia point is the following. The origin (the configuration with all values zero)
connects to all 16 solutions. This startling result has been verified using very fine
granularity (steps as small as 0.00001).

We can exploit this fact in dealing with initial configurations with SSE >=1. Instead
of trying to connect them to the standard solutions, we can begin by trying to connect
them to the origin: if they connect to the origin, then they can be connected to al 16
solutions. Our method attempts to do this by simple scaling of the weights (“mono-
connecting” to the origin) or, if thisfails, by using the full connection agorithm. Only
if thisfails does it revert to attempting connection to the individual standard solutions.

Table 22 shows the results of applying these methods to the 2744 test configurations.
We note the following points:



Original SSE (rounded)

Connection method ) 1 5 3 7 All
Already a solution 16 16
Connectable viaorigin 1488 | 566 16| 2070
Connectable to particular 576 72 10 658
solutions(s)

All 16| 576| 1560 | 576 16| 2744

Table 22: Connection (to any solution) of the 2744 trial configurations

* All can be connected to at |east one solution.
» Of those with natural SSEs greater than 1, the great majority (96%) can be

connected to the origin and therefore to all 16 standard solutions. | believe that all

could be so connected, given perhaps an improved version of the connection

algorithm, but | have not yet made a systematic attempt to proveit.

» Of those directly connected to solution(s), further work shows that the great

majority (89%) can be connected to more than one standard sol ution (89% can be

connected to at least two within 10,000 iterations using a step-size of 0.1). The
average number of connectionsin this group isfour. Thisfigure could be

increased by using more iterations, but it is not yet clear what the upper limit is.
Even configurations with natural SSEs of 1 can typically be connected to more

than one solution.

We have already seen (Table 20) what happens when back-propagation is used on the
2744 sample configurations: the mgjority halt on plateaux or in trenches. Clearly, it is
of considerable interest to know whether these include any local minima: after all, if
local minima exist, an excellent way of finding them would be to start back-
propagation at representative points on the surface and examine the points where
back-propagation stops unsuccessfully. With this in mind, it is very remarkable that
the connectability of the 2744 points after back-propagation is essentially the same as
the connectability before back-propagation. Table 23 gives the results of attempting
to connect the 2744 back-propagation outcomes to standard solutions. We note the

following points:

* All can be connected to at |east one solution. That is, there are no local minima.
» Of those with SSEs greater than 1, the great majority can be connected to the
origin and therefore to all 16 standard solutions. Again, it is conceivable that all

could be so connected.

» Of those directly connected to solution(s), further work shows that many can be

connected to more than one standard solution.




SSE after back-propagation (rounded
Connection method to nearest 0.5) All
0.0 0.5 1.0 1.5 2.0
Already a solution 424 424
Connectable viaorigin 16 4| 381 401
Connectable to particular 853 | 1053 4 9| 1919
solutions(s)
All 424 | 853 | 1069 8| 390| 2744

Table 23: Connection (to any solution) of the 2744 trial configurations
after back-propagation
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f) Claimed local minima

In the previous two sub-sections we took a set of configurations representing all
possible combinations of three units, and found that

» For 85% of these configurations, back-propagation failed to find asolutionin a
practical number of iterations.

* However, none of these failureswerein alocal minimum. Inal cases, the lowest
point found by back-propagation could be connected to a solution by a
monotonically-descending path. Indeed, many could be connected to severa
solutions.

In this section, we shall look at points that previous authors have claimed to be local
minima.

We look first at the claim of Hirose et al (Hirose, Yamashita, and Huiya 1991) that the
region around the origin isalocal minimum. Thisis claim is based on taking random
starting points within constrained intervals. see Table 12, above. | have not been able
to reproduce this very strong effect of the magnitude of the weights. In relation to the
area round the origin, it is certainly true that back-propagation starting at a high
proportion of the volume round the origin will fail: but it is not true that this region
contains local minima. As we have seen, the origin itself (the limiting point in this
process of shrinking the weights) is connectable to al 16 standard solutions. Thus the
volume round the origin contains up to 16 valleys leading outwards and down.
Anaytically, the surface round the origin, as everywhere elsg, is differentiable. My
own experiments with very small weights have had results quite different from those
of Hirose et al. An examination of (approximately) 20,000 configurations with small

weights (|w|<0.025) found no configurations that could not be connected to a
solution.

Secondly, we look at the claimed minima of Lisboa and Perantonis (Lisboa and
Perantonis 1991). Discussing the same network as us, they suggest that a number of
(non-solution) local minimaexist. Their discussion differs from oursin notation: they
write the weights of a configuration in a different order and write the threshold
weights with the opposite sign. A more important difference is that they use the
convention that the network is attempting to reproduce the truth table of Table 24, in
which conventional XOR table has each cell modified by small value , which is
given some suitable value such as 0.1. This has a number of consequences, four of
which we note now:

1. When their model isimplemented in any practical computing device it must still
include some other parameter defining an acceptably small deviation from a
“correct” solution, so the introduction of & complicates rather than simplifies
matters.

2. Wenow have the odd situation that when a particular configuration of weights
produces a truth table closer to the conventional table made up zeroes and ones,
then computational work must be done to produce a (worse) result.

3. Asweshall see shortly, we can find ourselvesin a position where one or two of
the training inputs are conveying no error information, athough the current
configuration is computing a no-function. This situation cannot arise using the
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Table 24; Alternative Truth Tablefor XOR

approach that we have taken so far, of measuring deviations from the “ideal”
XOR truth table using a function that only approachesOor 1 as x — .

4. What isintheir terms alocal minimum (a point surrounded by higher points)
might be equivalent in our terms to a point in atrench whose floor approaches a
non-solution minimum value as the values of weights approach infinity. For
present purposes, this differenceis not important: in both cases we should not be
able to move from such a point to a solution without going uphill.

They present their local minima in terms of the four outputs produced by the network
in response to the four possible input patterns, as follows: (11) - O', (1,0) - O?,

(01) - O*, (0,0) — O*. The casesin which they claim minima are produced are:

a 0'=0*=0°=0"=1

b) O'=0%?=1, 0*=¢, 0°=1-¢ andsimilar “solutions’® with O' . O* and
0o? - O°

) 0'=0%=0°=(2-9)/3, 0" =¢ and the corresponding solution with
o' . o*

d O'=0°=0"=(1+09)/3, O*=1-¢ and the corresponding solution with
0% . O°

In passing, we note that in case b) outputs O* and O® are exactly “correct” in terms of

Table 24 and thus do not contribute to learning. In case c¢), the same thing applies to
O*and in case d) to O%

Lisboa and Perantonis present five configurations as examples of these cases (Lisboa
and Perantonis 1991, page 122). Although they do not say so explicitly, these
examples are respectively of cases b), b), c), d), and @). We shall examine each of
these examplesin turn.

Thefirst example, using our conventions and rounding to three decimal places, isthe
configuration

-5.521-13.690 -1.1419 -4.509 12.275 -4.736 -2.783 -5.057 -5.057 3(Lf) (C18)
Thisis an example of case b), and has a SSE of 0.52. Because our apparatus in this
paper does not use the parameter o, we should not expect this to be exactly a local
minimum in our system: but if Lisboa and Perantonis are correct it should be very
close to one, and this minimum would be reached by gradient descent. If back-
propagation is used (with a=0, n=1) then this does look very like a local minimum.
The configuration moves very slowly outwards but is at the bottom of atrench. After
10,000 iterations, it has reached (C19).

® A “solution” here means a solution to Lisboa and Perantonis’ equations, and not a solution to the XOR
problem.



-5.697-13.755 -2.328  -5.761 12.460 -3.749 -5.329 -5.695 -5.562 3(Ld) (C19)
Even using 100,000 iterations will not change this configuration significantly: it
continues to drift outwards but the SSE remains above 0.5. However, this
configuration (C19) can be connected’ to two standard solutions: these are 1(1,8) and
7(b,d), rows 1 and 7 of Table 21. The fact that two solutions can be reached shows
that this point is a saddle.

The second exampleis also of caseb).

-11.521 -1.106-12.599 -11.900 4.010-11.707  4.593 -6.141 -1.549 b(7,d)  (C20)
As with the first example, 10,000 iterations of back-propagation will move the
configuration an insignificant distance and the SSE changes from 0.52 to just above
0.5. Theresultis(C21).

-11.724 -291 -12.799 -12.834 4.915-10.964 6.135 -7.44 -151 b(7,d) (C21)

However, (C21) can be connected to the standard solution b(4,d), row 13 of Table 21.
The point is therefore not a local minimum. There are indications that (C21) could
also be connected to 2(7,1), row 3, but the existing connection agorithm, using the
parameters set out in Footnote 7 on page 49, does not terminate in a reasonable time
and so this remains a conjecture.

Thethird exampleisof casec).

-13.709-13.709 -1.394  6.015 6.015 -5.217 -3.421 0.438 -0.109 51f) (C22)
Again, back-propagation will not find a solution from here. Back-propagation will
make the configuration drift to (C23), but not to a solution.

-14.178-14.238 -2.343  6.063 6.063 -5.305 -7.143 0.402 -0.231 5(1f)  (C23)
However, (C23) connectsto 4(1,7), 4(8,e), 7(b,d), 7(d,b), 8(7,€). These are rows 4, 6,
7,8 and 9 of Table21. The point istherefore asaddle.

Thefourth exampleis of case d).

-10.425 8.558 10.280 -12.714 11.478 10.973  0.663 4.238 0.547 e0,4) (C24)
Back-propagation will not find a solution from here. After 100,000 iterations we have
-10.518 9.069 10.105 -13.561 12.841 10.917  1.090 7.182 0.736 e04) (C25)

However, (C25) connects to 4(1,7), b(4,d), d(d,4), 7(d,b), e2,4). These are rows 4,
13, 14 and 15 of Table 21. The point istherefore a saddle.

The fifth example is rather different. It of case a) and Sprinkhuizen-Kuyper and
Boers (Sprinkhuizen-Kuyper and Boers 1996) show that case a) is a saddle rather than
alocal minimum. The exampleis:

0 0.483 -1.509 -0572 0 08% 0 0 0 0(f0)  (C26)
Unlike the earlier examples, this configuration has a SSE higher than 1.0 (albeit only
very dightly). It connects to the origin and therefore to all sixteen standard solutions.
This finding reinforces Sprinkhuizen-Kuyper and Boers' demonstration that the point
isasaddle.

It can be seen from the previous discussion that none of the Lisboa & Perantonis
“minima’ are actually minima of the surface.

" With an effective step size of 0.001 (0.1 with two levels of inner iteration). These values are used
throughout this subsection.
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5. Conclusions

In this section we bring together materia from previous parts of the paper to establish
our conclusions about the XOR surface and the behaviour of the back-propagation
algorithm when used on that surface.

We have seen that the back-propagation algorithm terminates unsuccessfully over a
large part of the XOR surface. There aretwo typical cases.

In the first case, the point isin aregion that is flat apart from a very gentle outward
slope. This is characteristic of the central parts of non-solution Boolean classes. In
these regions, locally the maximum SSE reduction is achieved by increasing the
absolute value (the “saturation”) of most or al of the weights. This is (of course)
what the back-propagation algorithm does in such a situation. However, the strategy
Is unsuccessful because the SSE reduction is very small and becomes smaller with
further iterations, tending towards zero. The agorithm is always unsuccessful in such
a case, ho matter what the values of a and n. Despite this, there is always a solution
available via a descending path: this path does not run at right angles to the contours
of the slope (the direction taken by the back-propagation agorithm) but initialy
nearly parallel to them. Such a path eventually comes to a point where it is directly
above the solution to which it leads: from this point, back-propagation will succeed,
usualy quite rapidly.

In the second case, the point is in a trench that is the boundary between two non-
solution Boolean classes. The trench is clearly visible in a plot of SSE in two
dimensions of the configuration and runs diagonally across the plot. The floor of the
trench is (almost) flat in the axis of the trench: the walls of the trench are steep. Such
atrench will “capture” configurations that are being moved by back-propagation. If a
momentum term is being used, a point that is captured in this way will spend many
iterations rocking back and forward across the axis of the trench: these iterations will
not contribute towards finding a solution. If a momentum term is not being used, then
the principal movement of the point in a trench resembles the motion we saw in the
preceding paragraph. There is a very gentle inflation of all or most of the weights
which asymptotically reduces the SSE towards a non-solution value, and it appears
that we arein alocal minimum. Again, however, a solution is aways available via a
descending path. Typicaly, this begins with outward movement along the axis of the
trench.

In both these cases, the path to a solution is normally curved. Sometimes the values
on al dimensions move towards the solution values but at different (and changing)
rates: but in many cases a dimension moves away from its final value and comes back
towards it later. This dimension’s initial movement away is needed to maintain SSE
reduction as other dimensions change towards their solution values. Thus in some
pairs of dimensions the movement may seem to be aimost a closed loop. We see
again that the use of a momentum term in back-propagation is inappropriate for this
problem: because it promotes movement in a straight line, it may make it harder to
follow a curved path.

Although these difficulties, and the anaytical complexity of the surface, have led
authors to claim that the surface has local minima, thisis not true. There are exactly
16 minima and each is a solution.
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6.

Appendix: The monotonic connection algorithm

This appendix describes the algorithm to connect two configurations by a monotonic
path.

1)

2)

3)

4)

5)

6)

7)

8)

9)

There is afrom-configuration and a to-configuration. We are attempting to reach
the to-configuration in steps: at each step we change one or more of the nine
values (the dimensions) of the from-configuration.

The algorithm succeeds if either

a) Thefrom-configuration isidentical to the to-configuration (to within a small
real tolerance, €, in each dimension)

b) The from-configuration has an SSE<0.3 and has the same Boolean Class as the
to-configuration. This second criterion is an ad-hoc fix that recognises that a
connection isimminent but avoids the possible waste of time involved in
curving round alower area of a solution basin lying between the from- and to-
configurations.

The algorithm failsif either

a) A user-selected maximum number of intermediate configurations have been
considered

b) The from-configuration has an SSE<0.3 but is remote from the to-
configuration: specifically, if the Minkowski distance between thetwo is
greater than 60. Thisisan ad-hoc fix that recognises that an SSE of 0.3 isonly
encountered in a solution basin, that the 16 solution basins are not connected,
and that they are much smaller in diameter than 60. If this criterion is met,
then the from-connection has been “ captured” by the “wrong” configuration.

¢) Thereisno possible next step, in any direction, that meets the step criteria
(defined in paragraph 9), below). (If, in other words, we are at alocal
minimum.)

We have a step-size, and any change to adimension is by this amount (or, in the

case of aforward move (defined in the next bullet) by mi n( st ep- si ze,

current -di stance)).

A forward move is either a change in adimension of the from-configuration

towards the to-configuration’s value on that dimension, or, if the from and to-

configurations aready have the same value (to within €) on that dimension, no
change.

A backward moveis achange in adimension of the from-configuration away from

the to-configuration’ s value on that dimension. If the from and to-configurations

already have the same value on that dimension, thisis called a swerve and can be
either addition or subtraction of step-size.

At any proposed step, each dimension is marked for aforward move, a backward

move, or no change.

The number of forward moves (nforward) at any proposed step is the number of

forward moves minus the number of backward moves.

A proposed step (atrial configuration) meets the step criteria if

SSE(from >=SSE(trial )>=SSE(to) and the new configuration has not been

visited before.
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10) Here is the algorithm that finds the next step:
For nforward: =9 downto -9
Loop through all conbinations of forward and backward noves
that yield the current value of nforward
Set up trial configuration as defined by the current
conbi nati on of noves
Repeat through swerves
St ep- count er ++
I f step-counter>max-iter
Exit (failure - too many steps consi dered)
If trial configuration neets step criteria
Exit (found next step)
Until all swerves have been tried with both
addition or subtraction of step-size
End- | oop
End- f or
Exit (failure - local mninum

11) The agorithm of the previous bullet is repeated until overall success (paragraph
1), above) or failure (paragraph 3), above)

12) An option isto impose the extra step criterion that atrial configuration must be
connectable from the from-configuration by arecursive call at one-tenth of the
step-size. (Thisiscomputationally cheaper than ssimply using the smaller step-size
to begin with, as the recursive call can be placed last in the list of step criteria,
resulting in fewer trials.)

13) The outermost loop is not entered if the from-configuration is already a solution in
terms of paragraph 1), above.

An informal version of the algorithm is as follows: at each step a search is made for a
new configuration that meets the criterion of monotonic descent towards the target.
The first such configuration to be found is used. The search examines all possible
moves (almost®), starting with moves that move directly towards the target
configuration and ending with moves away from it. Thus, the algorithm will move
directly towards the target if it can, but will manoeuvre sideways if necessary and can
work its way round concave obstacles.

A number of observations can be made about this algorithm. The most important is
the extent to which it returns false-positives and false-negatives. False-positives arise
when the algorithm steps over aridge, i.e. when intermediate points have SSES that do
not meet the criteria. My belief, based on considerable study of SSE plots, is that
ridges do not occur in the XOR surface at very fine granularities. False positives are
eliminated if asmall enough step-sizeisused. | have used settings that | believe to be
extremely conservative.

False negatives arise quite easily. If the contours of the surface are very obligque to the
direction of travel, then it becomes computationally very expensive to find a path
across the surface. Experiments on the XOR surface show that there are some paths
that take very large numbers of iterations. When exploring whole families of such
paths, runs times can rise to days. When the maximum number of iterations is set to
values that allow reasonable run-times, then fal se negatives are created.

8 Not all combinations of swerves are tested. Also, the user can select alimit on the number of
iterations that will prevent some possibilities being examined.
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