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Abstract

Our interest is in making object-oriented analysis a more rigorous process. As we wish

to create a practical and usable method, we do not propose a new specification language.

Instead, we base our work on standard formal description techniques which provide executable

specifications and which are supported by validation and simulation tools so that prototyping

can be used validate a specification against the requirements. Also, the first steps in our

rigorous object-oriented analysis method are based on widely used informal methods such as

OMT and OOSE. In this report, we show how SDL can be applied during object-oriented

analysis to produce a formal object-oriented requirements specification. SDL is a standard

formal description technique that is normally used in the design phase of systems development.

Building a formal specification from informal requirements is difficult. To simplify this,

our method builds two formal models: a user-centred model and a system-centred model. The

user-centred model is based on scenarios and specifies the external behaviour of a system from

the viewpoint of the environment. It is used to support the construction of the system-centred

model which is the formal object-oriented requirements specification.

We represent both models in the same formal language (in this case SDL, but it could be

another formal description technique such as LOTOS). From the external point of view, the

two models should exhibit the same behaviour. We validate the user-centred model against

the requirements. Validation of the system-centred model can then be achieved by verifying

that it provides the behaviour expected by the user-centred model.
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Chapter 1

Introduction

An essential first step in the creation of any system is to ensure that the requirements are

properly understood, are complete and do not contain inherent contradictions. Unfortunately,

informal requirements are usually inconsistent, ambiguous and incomplete. However, by

forcing the analyst to be precise, the process of creating a formal specification can show up

inconsistencies, omissions and ambiguities sufficiently early in the development process so

that their correction is relatively inexpensive. Creating a formal requirements specification is

therefore of major value even when the rest of the development is not a formal process.

To support this approach, we have been investigating how formal description techniques

(FDTs) can be integrated into object-oriented analysis. The goal is to obtain a formal object-

oriented requirements specification while we are still dealing with the problem domain. In

this report, we demonstrate the suitability of using SDL as the FDT [1]. This differs from

other work on SDL which has concentrated on the design phase of the software life cycle.

Our previous work in this area used LOTOS [2, 3] and the result is the Rigorous Object

Oriented Analysis (ROOA) method [4, 5]. Here we use ROOA as the vehicle to demonstrate

the suitability of using SDL in the analysis phase. Our interest has been to produce a rigorous

process that can be used by systems engineers as part of a development process. Our goal is

to make FDTs more acceptable to those systems engineers who currently have little interest

in formal methods. That is why we only use standard FDTs, such as SDL or LOTOS, which

produce executable specifications and which are widely supported by prototyping tools.

A major problem is the wide gap between the requirements and a formal object-oriented

specification. As informal requirements are normally expressed in terms of user needs, ROOA

bridges the gap by first creating a formal user-centred model which specifies the observable

behaviour as a set of scenarios describing how external users expect to use the system [6, 7].

The user-centred model is validated with respect to the requirements and is then used in the

construction and validation of an object-oriented requirements specification, i.e. a system-

centred model. We use the same formal language in both models.

This report concentrates on how the user-centred and the system-centred models can be

represented in SDL and how SDL tools can be used to guarantee their internal consistency,

to support their validation against the requirements and to demonstrate that the two models

are equivalent. We also discuss our previous experiences with LOTOS and compare the

representation of object-oriented concepts in LOTOS and SDL.

This report consists of six chapters and two appendices. Chapter 2 discusses the need for

a rigorous method that builds a formal specification from informal requirements. It then gives

1



Chapter 1. Introduction 2

a brief overview of the ROOA method, analysing its strengths and weaknesses. Chapter 3

presents a mapping of the most important object-oriented concepts into LOTOS and SDL,

describing how each of these concepts can be modelled in the two specification languages.

Chapter 4 gives a detailed description of the ROOA method by means of a case study of a

road pricing system and describes how SDL can be used to represent both the user-centred and

the system-centred models. Chapter 5 compares the advantages and disadvantages of using

LOTOS and SDL within ROOA. Chapter 6 presents our main conclusions. Finally, Appendix

A presents the complete SDL specification of the user-centred model and Appendix B does

the same for the system-centred model.



Chapter 2

A rigorous process

2.1 Introduction

We have been investigating the advantages of adding formality to the object-oriented analysis

process. Existing object-oriented analysis methods suffer from two fundamental problems:

weak integration between the static and dynamic models and lack of formality. We have

created the rigorous object-oriented analysis (ROOA) method which addresses both these

problems.

It is impossible for an analysis method to be completely formal as the starting point is a

set of informal requirements with probable inconsistencies, ambiguities and omissions. That

is why we have produced a rigorous method.

In this chapter we discuss the needs for a rigorous method and the benefits we can gain

from using formality.

2.2 Reasons for a rigorous analysis process

Given that, in order to be useful, software must be correct and reliable, it is clear that we only

gain by using formal techniques. Our work is concerned with enhancing the object-oriented

analysis process. We know that the object-oriented analysis methods that are currently used

suffer from several deficiencies, namely:

• they are weak at representing dynamic views;

• they do not integrate the static and dynamic properties;

• they lack formality in the method and in the models used;

• they lack supporting tools to check the semantics of the models.

The use of a formal description techniques, such as SDL or LOTOS, during the analysis phase

can overcome these deficiencies. Both those languages are good at describing the behaviour

of a system (after all that is what they were designed for). The ROOA method guides us on

how to write formal specifications, in SDL or LOTOS, which integrate the static, dynamic

and functional properties of a system. Formal description techniques have a precise syntax

and semantics, and therefore the resulting ROOA model is formal; also, they have supporting

tools, such as syntax and static semantic checkers, validators and simulators, which can be

3



Chapter 2. A rigorous process 4

used to check that the final model is internally self-sufficient and to validate it against the

requirements.

The validation of a specification is a difficult task. In ROOA, we have devised a process

to simplify the validation task by dividing that task into two. We first create a user-centred

specification which is then used to support the creation and validation of the object-oriented

specification. Both specifications are executable and so prototyping can be used in the vali-

dation process.

ROOA is especially useful for specifying distributed, embedded and concurrent system.

As their implementations are very difficult (if not impossible) to test on real hardware, being

able to validate their specifications is very important.

2.3 What about formal methods?

It is possible to provide a formal design process if a formal requirements specification already

exists. However, the analysis process starts from a set of informal requirements and may

include the capture of the requirements, involving discussions with clients or the users of the

system. Thus, an analysis method cannot provide a formal process.

Nevertheless, we can reduce the distance between informal requirements and formal spec-

ifications by providing a process which creates formal specifications very early in the develop-

ment cycle. Shortening this distance is the main goal of our work, and the primary result of

the ROOA method. The final specification provided by ROOA is a requirements specification

which can then be used as the starting point of a formal design process.

The following are the characteristics that make ROOA a rigorous method:

• ROOA produces a formal requirements specification, expressed in a specification lan-

guage which is formal and has a mathematical semantics.

• ROOA uses prototyping to validate the formal specification against the requirements.

• ROOA proposes rules to be followed when constructing the specifications.

• ROOA provides a systematic development process, by offering a set of well-defined steps,

heuristics and mappings from object-oriented concepts into SDL or LOTOS.

• ROOA builds on well-established methods and tools.

Therefore, ROOA is a rigorous method, as it is less formal than a formal method should be.

But formality is not a goal in itself; it is only useful as a means towards more effective software

development [8].

2.4 Strengths of the ROOA method

2.4.1 The ROOA Process

The first major strength of ROOA is that it combines two important software development

techniques: object-oriented analysis and formal methods. The specification resulting from

an application of ROOA acts as an initial formal requirements specification. Creating a

formal requirements specification is useful, even when we do not follow a formal development
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trajectory. It gives us the opportunity to reason about the requirements early, helping us to

get them right and therefore to understand the user needs.

ROOA builds on the work already available for object-oriented analysis methods. By using

an executable specification language such as SDL or LOTOS, ROOA produces a prototype

where the validators and simulators may be used to validate the requirements.

Our work with ROOA started using LOTOS. We decided to show how difficult (or easy)

it would be to use a different formal description technique. The result of our work is that

ROOA was easily adapted to use SDL and we are convinced that it can easily embrace other

specification languages.

ROOA proposes a set of tasks to produce an initial formal requirements specification

systematically. During the method we give rules to be followed, so that tools can automate

part of the ROOA process.

ROOA offers a mapping on how to model object-oriented analysis concepts in either

LOTOS or SDL. The main concepts we deal with are: class (concrete and abstract), services,

attributes, objects, object identity, message passing, aggregates, subsystems and inheritance.

2.4.2 Assessing the resulting specifications

While assessing the formal specifications produced by ROOA, two main questions come to

mind:

• Do the specifications reflect the analysis model being created?

• Are these specifications readable?

Both SDL and LOTOS have a very rich set of constructs which allow us to express many

different ideas.

The difficulties of understanding formal specifications are a problem shared by most, if

not all, formal specification languages. We believe that the problem in writing specifications

is in producing a good model and in getting the right level of abstraction. When writing

programs we use a low level of abstraction, as compared with what is usual in analysis, and

we spend much time in so-called “implementation details”. When writing specifications we

use a higher level of abstraction where the details we have to consider are of a different kind.

Hall observes that many people find it difficult to write specifications because it is difficult for

them to get away from the detailed descriptions they are used to when writing programs [9].

In order to make our specifications less difficult to read and to understand, we propose

an object-oriented style together with meaningful names for processes, events, abstract data

types, operations, parameters and gate names. Meaningful names do not always come to

mind immediately; however, we cannot overlook this point, as requirements specifications

are used for communication between users, analysts and designers. Moreover, the ROOA-

style maintains a correspondence between the concepts and names used from a class diagram

through to the formal specification.

2.5 Overview of ROOA

ROOA is an iterative and incremental process. It creates a formal and executable specification

from informal requirements. As this is difficult, ROOA proposes that it should be done in

two steps. We first build a user-centred model, which is closer to the informal requirements,
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and then, based on this, we build a system-centred model which is the formal object-oriented

requirements specification.

Figure 2.1 gives a simple schematic view of how the user-centred and the system-centred

models relate.

System−centred modelUser−centred model

User x

User y

User z service_B1
...
service_Bn

service_A1

rtn_service_An

service_An

service_Bn

service_B1

rtn_service_B1

user_view_1

user_view_n

attribute_C1
...
attribute_Cn

service_C1
...
service_Cn

Object Interface_A

service_A1
...
service_An

Object Interface_B

Object C

Figure 2.1: Relationship between the user-centred and the system-centred models

The user-centred model is a set of user views where each user view provides scenarios

of how the system is to be used. The users may be humans, hardware devices or software

systems. They belong to the external environment, and are not therefore part of the model we

want to build. A user view shows interactions between a user and the system; it is concerned

with the role being played. For example, a particular human being can play different roles

and therefore take part in more than one user view, while several different people can play a

similar role and therefore take part in different instances of the same user view.

We deal initially with views involving a single user. We represent these single-user views

informally as a directed graph and then formalise them in SDL or LOTOS. Later we compose

these single-user views to form multi-user views. The user-centred model is the set of multi-

user views and it is validated with respect to the requirements using simulation and validation

tools.

The user-centred model is then used as a stepping stone in the construction of the system-

centred model. The system-centred model is concerned with modelling an idealised view of the

system and its interaction with the environment. It is the formal requirements specification

of the system from which the design and eventual implementation will be developed. Both

models are represented in the same formal language and are simulated with an equivalent set

of scenarios. Instead of the difficult and informal task of validating the system-centred model

with respect to the requirements, we can verify that it provides the behaviour expected by

the user-centred model. Figure 2.2 shows the main tasks of ROOA.

We do not propose that a complete user-centred model is created before we proceed to

the creation of the system-centred model. Instead, it is best if an incremental approach is

adopted. With incomplete requirements, some parts will be well understood while others

will not. Those parts of the requirements which are best understood can be modelled first.

This subset of the user-centred model can be executed to ensure that it behaves according to

the clients’ expectations. This will give both the specifiers/analysts and the clients a better

understanding of the system. The corresponding part of the system-centred model can then

be created. Prototyping of both the user-centred and system-centred models gives feedback to
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Informal requirements

User−centred model

System−centred model

Identify system
interface objects

  Build & validate
user−centred model

        Create
sequence diagrams

Create initial
class diagram

     Refine
class diagram

Add "obvious"
     classes

Specify classes

Formal object−oriented analysis specification

    Build & validate
system−centred model

Identify & specify
    subsystems

  Identify agents & 
single−user views

      Represent
single−user views

Formalize & validate
 single−user views

Identify & formalise
 multi−user views

Figure 2.2: The ROOA process

the requirements capture process, enabling further user views to be formulated and existing

ones refined. In this way both the user-centred and system-centred models can be developed

incrementally.

2.6 Related work

The creation of a formal user-centred model based on scenarios has also been proposed by Hsia

et al., Glinz and Somé et al. [10, 11, 12]. However, they do not integrate their user-centred

model with a formal system-centred model.

In the requirements analysis phase of the OOSE method, Jacobson proposes the construc-

tion of a requirements model which corresponds, in some respects, to our user-centred model

although his model is not formal [13]. The OOSE requirements model is composed of a use

case model and a simplified object model called a domain object model.

Several methods combine SDL with an object-oriented method [14, 15, 16, 17, 18]. How-

ever, while we integrate SDL within an analysis process, first to represent the user-centred
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model and then to represent the object-oriented specification, these other approaches do not

introduce SDL until the design phase. In the analysis phase, they use OMT [19] and represent

the use case model by message sequence charts (MSCs) [20].

Examples are the SOMT [14] and SISU [16, 21] methods. In the system design phase of

SOMT, SDL is used to define the system, block and process structure. Then, in the object

design phase, individual objects are modelled as SDL processes or blocks and the testing and

validation process begins. SISU deals with reactive systems where modelling the environment

as part of the specification is standard practice. SISU introduces an enhanced object notation

to provide a domain object model and its interaction with the environment, but SDL process

definitions and prototyping are not used until the design phase.

There is a similarity between our approach and work on specification via viewpoints [22,

23]. As with user views, viewpoints promote a separation of concerns. However, as different

viewpoints are developed by different participants using different notations, the integration

of viewpoints is difficult. User views are more restricted than viewpoints as they are only

concerned with the direct interactions between the environment and the system. A major

problem in understanding and capturing user requirements is being overwhelmed by their

complexity, which is why we believe that restricting our attention to external events and a

single specification language is a virtue.



Chapter 3

Object-oriented concepts in SDL

and LOTOS

3.1 Introduction

SDL and LOTOS are standard formal description techniques [1, 3]. Although they are pri-

marily used in the specification of communication protocols and standards, they are general

purpose specification languages. There have been several versions of SDL since its first release

in 1976. An important change was in 1992 when object-oriented features were included in

the language.

SDL and LOTOS have a data typing part, based on abstract data types (ADTs), and

a process part. Their focus is on the specification of behaviour, especially concurrent be-

haviour. The process part of LOTOS is based on process algebra while in SDL it is based on

communicating extended finite state machines. Both languages specify a system in terms of

its interaction with the environment. In LOTOS, behaviour is defined by processes synchro-

nizing with each other and with the environment on events. A major difference in SDL is

that communication between processes and with the environment is in terms of asynchronous

signals.

Entities in the real world exist in parallel and this should be mirrored when requirements

are modelled in a specification language even when the eventual implementation is to be

sequential. ROOA achieves this by specifying a class as a process definition, an object as a

process instance and by modelling a problem as a set of communicating concurrent objects.

LOTOS and SDL support this approach.

3.2 Classes and objects

We use control objects, entity objects and interface objects in a specification. We treat control

objects as transient entities which are created dynamically to carry out some function and

then terminate.

An object’s attributes are specified by one or more ADTs and are given, in LOTOS, as

the parameters of a process 1 and, in SDL, either as the parameters of a process or as local

variables. Each object has a distinct identity, represented by an object identifier. In LOTOS,

1We use the term process as shorthand for process instance.

9



Chapter 3. Object-oriented concepts in SDL and LOTOS 10

each process has a special attribute, defined as an ADT, to represent its object identifier. In

SDL, each process is allocated a process identifier (PId) when it is created. The PId acts as

the object identifier.

An SDL process is specified as an extended finite state machine and so the behaviour of

a class is defined by means of transitions between states. In a given state, a process is willing

to accept one of a set of signals from its environment, i.e. accept one of a set of service calls.

When an acceptable signal is received it initiates a transition, which leads to a new state.

During a transition, attributes can be modified and signals can be sent to other processes

(i.e. we can call a service offered by another object). Multiple instances of a class can exist

in a given context and this is represented by having multiple instances of a process type.

3.3 Message passing

Message passing between two objects is represented in LOTOS by two processes synchronizing

on an event, while in SDL it is modelled by a client process sending a signal to a server process.

As signal passing in SDL is asynchronous, the client is not suspended if the server is not ready

to receive the signal. Instead the signal is queued. Each SDL process instance maintains its

own input queue.

A second signal is required when information is to be returned from a server. If we make

the restriction that the client must wait to receive the return signal, and may not take part in

any intermediate activity, we have the equivalent of synchronous communication. We model

this by having two signals, signal name and rtn signal name. When no answer is required,

we can take the view that it does not matter if the server carries out the service immediately

or at some future time. As received signals are queued by the server, the order is preserved.

If the server process is in a state whose set of acceptable input signals does not include

the signal at the front of its input queue, the signal leads to a null transition and so is lost,

unless it is explicitly saved. A server may have several clients and the save mechanism can

be used to save service requests until the server has completed the series of communications

required to satisfy the current request.

When multiple process instances are possible destinations of a signal, the destination

process may be explicitly named by means of its PId. If no PId is specified, we have implicit

addressing. We can specify a destination process implicitly by referring to the appropriate

channel or signal route.

3.4 Inheritance

A subclass inherits the behaviour of its superclass and can add new transitions and gates

or redefine existing transitions. It is only the new or modified transitions and gates that

are given in the definition of the subclass. To redefine an SDL transition (i.e. a service in

a class diagram), we prefix the input of that transition, in the superclass, with the keyword

virtual and in the subclass we redefine the transition and prefix the input with the keyword

redefined.
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3.5 Relationships and aggregates

Relationships are modelled as attributes holding the object identifier of the other object

involved in the relationship. We can model the relationship either in one direction or in both.

Multiple cardinality is modelled using sets of object identifiers. We model an aggregate as a

coordinating object together with one or more component objects. In SDL, the coordinating

and component objects are represented by processes in a block specification. In LOTOS, each

component is represented by a process within the process specifying the aggregate.

The interesting situation in SDL is when there are multiple instances of the aggregate.

We define this as a block which contains multiple instances of the processes representing the

coordinating and component objects. A process may dynamically create another process,

but only when it is in the same block. When the number of aggregate instances is fixed,

the required number of coordinating objects is created statically. Each coordinating object

then dynamically creates instances of its components and notes their PIds so that it can

communicate with them. When aggregate instances may be created dynamically, the block

must also contain an administration process to create the coordinating objects.

An alternative approach is to model each aggregate, including its components, as a block

and to have multiple block instances [14, 16]. However, we regard an aggregate as an object

and, as a block does not have identity or local variables, it cannot represent an object. Also,

block instances cannot be created dynamically and so this approach cannot deal with the

dynamic creation of aggregates. We therefore use SDL blocks purely as a static structuring

mechanism and always represent objects by processes and classes by process types.

3.6 Direct language support

Although LOTOS can be used in an object-oriented style [5], a major advantage of using SDL

is that it has object-oriented features such as inheritance built in. Another advantage of SDL

is that it has specific language constructs, packages and blocks, to deal with the structuring

of large systems into manageable and reusable units.

There is a graphical form of LOTOS [24], but the textual form is usually used. The

opposite is the case with SDL where specifications are usually represented graphically. This

means that tool support is essential for the creation and representation, as well as for the

validation, of an SDL specification. The tool used in our experiments is Telelogic SDT [25].

Both SDL and LOTOS lead to executable specifications and are supported by simulation and

validation tools which can be used in the process of validating a specification against the

requirements.

As SDL has object-oriented features built in, toolsets such as SDT support an object-

oriented design method, and this results in better support for ROOA than with LOTOS tools.

SDT allows links to be set up between entities in the data dictionary, class diagram and SDL

diagrams. This supports both forward and backward traceability. Forward traceability is

supported as information in one diagram can be used to help create subsequent diagrams and

conformance of the diagrams can be checked. In an iterative method it is important that the

diagrams remain consistent as changes are made and that we can trace back to the origin of

any inconsistency or error.



Chapter 4

SDL in Object-Oriented Analysis

4.1 Case study

Our examples are taken from the following case study.

In a road traffic pricing system, drivers of authorized vehicles can be charged at

toll gates without having to stop. Vehicle owners register and then install a device

(a gizmo) in their vehicle. The system holds information about authorized vehicles

including a bank account from where automatic debits are done monthly. Owners

may cancel a gizmo or inform the system if the gizmo is stolen.

The gizmos are read by sensors installed in special lanes at toll gates. Different

types of vehicle pay different rates. When an authorized vehicle passes through

a special lane, it gets a green light and the amount being debited is displayed.

If an unauthorized vehicle passes through the lane, it gets a yellow light and a

camera photographs its plate number. (Later, the owner will be fined.) There are

two kinds of special lane: all vehicles of the same type pay the same amount at a

toll bridge while, on a motorway, the amount to be paid depends on the distance

travelled.

Complete specifications in SDL of both the user-centred and system-centred models are

given in the appendices. We previously applied ROOA to this problem and the resulting

specification is available in LOTOS [26].

4.2 Build the user-centred model

4.2.1 Identify and represent user views

The first question to ask ourselves is: what interacts with the system? The first user we

may think of is the gizmo installed in a vehicle. A vehicle uses a toll gate and has a driver.

Another user is the owner of the vehicle. He or she has to buy a gizmo and be registered

before their vehicle can use the special lanes. Other users are the system manager and the

bank. The bank behaves differently from the other users. While the bank offers services to

the system, the others require services from the system.

The second question to answer is: how does each user view the system? In order to answer

this, we imagine ourselves to be the user and describe what we see when we use the system.

12
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Our focus is on modelling behaviour as seen by users, not on modelling the users themselves.

Each behaviour must be sufficiently simple so that it is easily understood, but not so simple

that we are overwhelmed by a mass of trivial views. Consider a vehicle, its driver and its

gizmo pasing through a toll gate. We regard this as a single behaviour. Hence, instead of

dealing with vehicle, gizmo and driver as separate users with separate views, we regard the

composite vehicle-driver-gizmo to be a single user which we refer to as vehicle.

The vehicle user uses the system in different ways: one where it always pays the same

amount, the Single-Point-Vehicle view, one where it enters a motorway, the Enter-Motorway-

Vehicle view, and one where it leaves a motorway and the amount paid depends on the

distance travelled, the Exit-Motorway-Vehicle view.

As part of the identification of user views, we identify the entities (interface objects)

through which they interact with the system. For example, the vehicle views use a toll gate.

They see a light turning green or yellow, see the amount shown in the display, know that there

must be a sensor which identifies their gizmo, and also know that if the light turns yellow a

photograph of their plate number will be taken. Therefore, a toll gate is an object which has

four components: a sensor, a light, a camera and a display.

As there are three different vehicle user views, we decide that there are three different

types of toll gate and that the display is only used when we are either leaving the motorway

or when we pass through a single toll gate.

Sensor.read

stopstop

(unauthorized) (authorized)

Sensor.detect

stop

(fail to read)

?Light.show_yellow

?Camera.photo

?Light.show_green

?Display.show_amount

?Light.show_yellow

?Camera.photo

Figure 4.1: Graph representing the Single-Point-Vehicle view

Alternative behaviours within a user view are represented in a tree-like directed graph.

Figure 4.1 shows the graph for the Single-Point-Vehicle view. Each path through the graph

represents a sequence of events between a user and the system-centred model and is re-

ferred to as a user scenario. Events in a user view either represent signals sent by the user

(e.g. detect) or they correspond to signals being sent by the syatem and being received by

a user (e.g. show green and show amount). In the graph, signals sent by the system are pre-

ceded by a ‘?’. During the creation of a user view, we determine the interface objects involved

in each event. These objects belong to the interface classes of the system-centred model and

each node in the graph has the structure:

〈interface class〉.〈event〉.

A class diagram in the system-centred model is created in conjunction with the user views.
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Figure 4.2 depicts an initial class diagram showing the interface classes used in the vehicle

user views. As the user views are developed, new interface classes are identified and added

to the class diagram. The creation of the class diagram helps ensure that different user views

use identical names for classes and services which are essentially the same.

ClassDiag3 1(1)

S_Toll_GateEx_Toll_GateIn_Toll_Gate

Camera

take_photo

Sensor

detect
read

Light

show_green
show_yellow

Toll_Gate

get_gizmo_id
no_gizmo_detect

Display

show_amount

Figure 4.2: Initial class diagram

4.2.2 Formalise single-user views

It is straightforward to specify the graph representing a single-user view as an SDL process

type. This process includes signal signatures and is parameterised to deal with the cases of

a valid gizmo, an invalid gizmo and failure to read a gizmo. We use a separate SDL gate for

each interface class with which a user view interacts. Figure 4.3 shows the SDL definition of

the Single-Point-Vehicle view.

Detection of a vehicle is represented by a synchronous communication between the view

process and a sensor. This is accomplished by defining two signals: a detect signal (to detect

that there is a vehicle using the toll) and a rtn detect signal (to wait for the answer). Then

the view process sends a read signal to the sensor with the gizmo identifier as a parameter or

indicates failure with a zero value. If the gizmo is valid, the view waits for show green and

show amount signals, otherwise (if it fails to read or if it is an unauthorized gizmo) it waits

for show yellow and photo signals.

The graph in Figure 4.1 actually overconstrains the system by expecting a response

from Light before the response from either Display or Camera. As the system may send

a show amount signal before show green or photo before show yellow, the SDL specification

allows these signals to be saved and dealt with after it has dealt with the signal from Light.

The purpose of the s term signal is explained in 4.2.3.

Although an SDL specification only interacts with its environment (which is represented

by the special PId env), we construct the SDL definition of a view as if signals were being sent

to particular system interface objects, in this case to a particular sensor. The system-centred

model and the users play the role of the environment of our SDL user-centred model.
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;
FPAR valid Boolean,
  gid Gizmo_Id,
  sensor_id PId,
  fail Boolean;

Process Type S_Vehicle 1(1)

DCL am Cost;

detect 
to sensor_id

wt

rtn_detect

fail

read(gid)
to sender

wait

read(0)
to sender

wait_fail

wait

show_green

valid

wait_display

show_amount
(am)

s_term(gid)

show_yellow

not(valid)

wait_photo

photo

s_term(gid)

show_amount,
photo

wait_fail

show_yellow

wait_photo

photo

C

photo

L

show_green,
show_yellow

D

show_amount

S
detect,
read

rtn_detect

T

s_term

false
true

Figure 4.3: SDL Single-Point-Vehicle view

4.2.3 Validate single-user views

Although single-user views are independent of one another, we have found it useful to intro-

duce a Coordinator process to the SDL specification to coordinate the execution of the user

views. The specification is then represented as an SDL block containing the Coordinator

process together with the processes representing each single-user view. The specification is

shown in Figure 4.4 and the Coordinator process in Figure 4.5.

After checking for syntax and static semantics errors, the SDT toolset enables an SDL

specification to be translated into an executable form so that it can be manipulated by

simulation and validation tools. During interactive simulation in SDL, we initiate scenarios

by sending a drive signal to Coordinator from the environment with the signal parameters

determining which particular user-view process is to be created and executed to demonstrate

that it displays the expected behaviour. The drive signal models a user deciding to initiate

some interaction with the system. On completion of its execution, a user-view process sends a

terminate signal (represented as 〈prefix〉 term) to Coordinator. An example is signal s term

in Figure 4.3.

Interactive simulation is used to explore the behaviour offered by each single-user view.

In addition, we use the validator to show that the specification is internally consistent and

does not contain deadlocks. The validator explores the state space of a system. Although

this cannot be complete for all but the smallest systems, by using bit state hashing the SDT

validator allows a large number of states to be examined. A hash table is used to hold the

system states which have already been reached so that the same state is not used repeatedly.

SDT also offers random walks.

Inconsistencies in the requirements and logical errors in the specification will often result
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Block User_Model 1(1)
SIGNAL
in_term(Gizmo_Id), ex_term(Gizmo_Id), s_term(Gizmo_Id),
o_term(Boolean, Gizmo_Id, Owner_Id), o_term1(Gizmo_Id);

newtype Gizmo_Set PowerSet(Gizmo_Id);
endnewtype;

Ow(0,):
Owner_Reg

Op(0,1):
Op_View

theCoord(1,1):
Coordinator

In_Vehs(0,):
In_Vehicle

S_Vehs(0,):
S_Vehicle

BE(1,1):
Bank_Enquiry Ex_Vehs(0,):

Ex_Vehicle

BD(1,1):
Bank_Debit

In_Vehicle Bank_Debit Coordinator

Op_View Ex_Vehicle S_Vehicle Owner_Reg Bank_Enquiry

T
O_T

o_term,
o_term1

E
OpA

monthly_debit,
update_prices

O
R

Re
get_gizmo,
refuse_gizmo

give_info,
report_stolen,
cancel

R

Driver
Drdrive

OA D
SS

IV
SV

SS L
SL

show_green,
show_yellow

EV

ISe
detect,
read

rtn_detect

S

In_T

in_term

T

S_T

s_term

T

SSe

detect,
read

rtn_detect

S
L

C
IC photo

C D
SDshow_amount

D
L

IL
show_green,
show_yellow

L
C

SCphoto
C

Ex_T

ex_term

T L
EL

show_green, show_yellow

L

B

BA
rtn_check_account

check_account

E S
ESe detect, readrtn_detect

SS
D

C EDshow_amount
D

ECphoto
C

R
BRno_funds

E2

BD

send_debit
Db

Figure 4.4: User model with single-user views

in reports produced by the tools that, for example, a signal has no acceptable target or that

it has been implicitly consumed. When such conditions arise, the validator generates an MSC

to help detect the cause. Transitions in the specification which have not been executed are

also reported. Except where they correspond to virtual transitions in an abstract superclass,

a transition which cannot be reached indicates a logical error in the specification.

The validator automatically generates signals from the environment. We can provide the

validator with a list of parameter values which may be associated with these signals. We

can also associate priorities with the different kinds of signal. As we are concerned here with

executing individual user views, we set the priority of internal signals to be higher than signals

generated by the environment so that the emphasis is on completing the execution of a user

view rather than creating new views by the generation of drive signals.

4.2.4 Identify and formalise multi-user views

In general, the interaction of a user view with the system involves other user views. For

example, the user view where an owner attempts to register a vehicle involves another user

view where a bank checks the owner’s account. The graphs representing these two single-user
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Process Type Coordinator 1(1)

DCL ok, bpar, bpar2 Boolean;
DCL gid Gizmo_Id := 1;
DCL oid Owner_Id := 1;
DCL op_k Op_Kind;

ready

drive
(op_k, bpar, bpar2)

op_k

In_Vehs
(bpar, gid, bpar2)

ready

Ex_Vehs
(bpar, gid,  bpar2)

ready

S_Vehs
(bpar, gid, bpar2)

ready

Ow(oid,
 theinfo, theaccno, bpar)

ready

Op(bpar)

ready

in_term(gid)

ready

ex_term(gid)

ready

s_term(gid)

ready

o_term(ok,
gid, oid)

ready

o_term1(gid)

ready

D
drive

SV
s_term

OA
o_term,
o_term1 EV

ex_term
IV

in_term

o_in_veh o_ex_veh o_s_veh o_own o_op

Figure 4.5: Coordinator process

views are shown in Figures 4.6 and 4.7.

The SDL specifications of these two single-user views are composed to form a multi-user

view. The advantage of dealing initially with single-user views is that they are simpler and

give us a place to start when handling large and complex requirements. They provide a

separation of concerns; at any one time we focus on a single user’s view of the services the

system is to provide. They are therefore ideal in giving feedback to potential users who can

check that their requirements have been interpreted correctly.

The interaction between user views in our case study is shown in the use case model of

Figure 4.8. It should be noted that complex multi-user views may be composed from simpler

multi-user views as well as from single-user views. The leaves of the tree are single-user views

while all the other nodes represent multi-user views.

It is important that the representation of the constituent user views is clearly visible

within the representation of a multi-user view. There are three main ways in which user

views interact:

• User views A and B take place in sequence. This is modelled by the SDL process

representing A creating the process representing B just before A terminates.

• The behaviour described by a user view is dependent on a condition set by another user
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stop

Reg_Desk.give_info

stop

?Reg_Desk.get_gizmo ?Reg_Desk.refuse_gizmo

Figure 4.6: Owner registration user view

stop

Bank_Intf_Reg.check_account

?Bank_Intf_Reg.rtn_check_account

Figure 4.7: Bank enquiry user view

view. For example, we cannot have a vehicle view with a valid gizmo until that gizmo

has been registered. To specify this interaction, the Coordinator process maintains

sets of available and invalid gizmo identifiers which determine the parameters used in

the creation of a vehicle view process.

• Two user views interleave as in the case of the bank enquiry and owner registration

views. Interleaving is achieved by replacing an SDL process defining a user view by an

SDL service definition. The process defining the multi-user view is then composed from

the services defining each of the constituent views. As SDL services and processes are

both defined using extended finite state machines, the constituent user views are still

clearly distinguishable within the composite user view (see Figure 4.9).

The transition from an SDL specification containing single-user views to a user-centred

model composed of multi-user views proceeds incrementally. The form of the specification is

the same although now the Coordinator process maintains sets to record the overall state.

<<uses>>
<<uses>> <<uses>> <<uses>>

<<uses>><<uses>>
<<uses>> <<uses>>

Full_Single_Point_Vehicle

Single_Point_Vehicle

Full_Registration

Bank_Enquiry
Owner_Registration

Enter_Motorway_Vehicle
Exit_Motorway_Vehicle

Motorway_Vehicle

Full_Motorway_Vehicle

Figure 4.8: Use case model
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;
FPAR ow Owner_Id,
inf Info,
acc AccNo,
ok Boolean;

Process Type Registration 1(1)

DCL ok_now Boolean := false;

Owner_Reg

Bank_Enquiry

R

give_info,
report_stolen,
cancel

get_gizmo,
refuse_gizmo

ROA

give_info,
report_stolen,
cancel

get_gizmo,
refuse_gizmo

TOA

o_term,
o_term1

T

o_term,
o_term1

E
rtn_check_account

check_account

EBArtn_check_account

check_account

Figure 4.9: A multi-user view composed of two single-user views

These sets are used to determine the values passed during the creation of user-view processes

and are updated when the processes are created and when they terminate. The complete

user-centred model is shown in Appendix A.

4.2.5 Validate the user-centred model

We first simulate the SDL user-centred model interactively. Interactive simulation is par-

ticularly important during the creation of the user-centred model so that we can explore

particular execution paths to increase our confidence that the model has the expected be-

haviour. We then use random walks in the validator to demonstrate that the specification is

internally consistent and that all transitions are reached. Now that we have multi-user views,

the behaviour offered is much more complex than was the case where we were only considering

individual single user-views. We must, for example, now check the situation where we have

multiple simultaneous instances of each user view.

Interactive simulation is no longer sufficient. Hence, to validate the user-centred model,

we define user scenarios as MSCs which are then used to constrain the behaviour considered

by the validator. As the MSCs are representing user scenarios, they only show interactions

between the user-centred model and its environment (which here corresponds to the users

and the system-centred model). The MSC does not show the interactions between the SDL

processes which make up the user-centred model although, of course, the simulator will execute

these process interactions in order to satisfy the external behaviour required by the MSC. The

MSC describing the registration of a vehicle is shown in Figure 4.10. An owner initiates the

user view that results in the registration of a gizmo by sending a drive signal with parameters
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MSC Registration

User_Model Env

drive

o_own, true

give_info

check_account

rtn_check_account

get_gizmo

rtn_drive

o_own

Figure 4.10: Registration top-level MSC

o own and true.

We can either use interactive navigation under the control of an MSC or let the validator

automatically check that the specification can support a particular behaviour. The SDT

validator reports a verified MSC when an SDL specification offers a possible path through

the system that is consistent with the MSC. As a specification does not just specify correct

behaviour, but must also rule out incorrect one, we also construct MSCs whose behaviour

must be rejected by the specification.

Initially, our aim is to understand and to model the given requirements from the point

of view of individual users and so it is to be expected that combining single-user views will

lead to inconsistencies. It is only at this stage that these inconsistencies need to be resolved.

Their resolution may require us to go back to the users for further or revised information.

We cannot guarantee that all inconsistencies will be detected at this stage. Further in-

consistencies may be detected and have to be resolved during the construction of the system-

centred model. ROOA therefore allows the modelling of inconsistent requirements during

the early stages and provides a framework in which the inconsistencies can be detected and

therefore resolved.

4.3 Build the system-centred model

4.3.1 Create sequence diagrams

The starting point is the informal requirements, the user views and the initial class diagram.

We identify “obvious” classes from the informal requirements and add them to the class
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MSC Registration

Env theReg_Desk
:Reg_Desk

theReg_Control:
Reg_Control

the_Bank_Intf_Reg:
Bank_Intf_Reg

theGizmo_Details:
Gizmo_Db

theGizmo_Detail:
Gizmo_Detail

theOwner_Details:
Owner_Detail

give_info

check_account

rtn_check_account

rtn_check_account

reg_gizmo

rtn_reg_gizmo add_gizmo

bank_info

get_gizmo

/* This MSC describes the registration of a gizmo*/

Figure 4.11: Registration MSC showing process interactions

diagram.

The user views show interactions between the environment and objects which belong to

the interface classes of the system-centred model. The system-centred model also includes

control and entity classes which are required to support the external behaviour. To identify

these other classes and their interactions, we construct MSCs. The MSCs are more detailed

than those used to validate the SDL user-centred model as they show interactions between

processes and not just interactions between the system and the environment. The starting

event will usually be an event in a user scenario which then triggers a series of interactions

between objects internal to the system.

Let us consider the view where a gizmo is registered. As we see from the graphs in

Figures 4.6 and 4.7 which represent the two single-user views, an owner gives information to

the system through a Reg Desk interface object, the system checks the owner’s bank account

through a Bank Intf Reg object and a gizmo is either granted or refused. We must now

identify the control and entity objects which are required to support this behaviour. So that

several registration requests can be handled at the same time, the Reg Desk object creates

a control object of class Reg Control to handle each registration. Enquiries to the bank are

through the Bank Intf Reg interface object. On getting a positive reply from the bank, the
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ClassDiag2 1(1)

Gizmo_Db

reg_gizmo
report_change
check_gizmo
getgids

S_Toll_GateEx_Toll_GateIn_Toll_Gate

Bill

date
amount
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update_prices

Gate_Processor
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take_photo
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detect
read

Light
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add_info

Reg_Desk

give_info
report_stolen
cancel
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Bank_Intf_Reg

check_account

Op_Interface
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Figure 4.12: Class diagram

Reg Control object sends a request to the Gizmo Db to register the gizmo. The Gizmo Db

object creates a new Gizmo Detail object together with an Owner Detail object if one does

not already exist. The resulting MSC is shown in Figure 4.11. Its creation has allowed us to

identify new services and the new entity classes Gizmo Db, Owner Detail and Gizmo Detail

together with the control class Reg Control.

Note that the MSC shown in Figure 4.11 not only has more detail than that shown in

Figure 4.10, but the external events are in the opposite direction as we are now consider-

ing the system’s interaction with the environment while previously we were considering the

environment’s interaction with the system.

Each multi-user view is considered in turn and detailed MSCs constructed to show the

resultant interactions within the system-centred model that is required to support the view.

When this causes new classes and services to be identified, they are added to the class diagram.

A full class diagram for the road pricing system is depicted in Figure 4.12. The SDT tool

supports the creation of a class diagram and links can be set up between items in the data
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dictionary and the class diagram so that the tool can check that they are consistent with one

another.

4.3.2 Identify and specify subsystems

We group logically related classes in the class diagram into subsystems to provide an ini-

tial structure for the system. In our example, we identified four subsystems: Tolls (with

the Toll Gate inheritance hierarchy, its aggregate components and the Gate Processor in-

heritance hierarchy), Debits (with Bill Processor and its associated interface objects),

Control Reg (with Reg Control, its interfaces and the entity classes such as Gizmo Detail),

and Process Pass (with the entity objects Photos Taken, Current Journey and Price Table).

The system-centred model is represented by these four interacting subsystems. Each subsys-

tem is itself modelled as a block (see Figure 4.13). We propose that two blocks within a model

always communicate through a single channel, but can communicate with the environment

via many channels.

Block System_Model 1(1)
SIGNAL
check_gizmo(Gizmo_Id), rtn_check_gizmo(Boolean, PId),
addphoto(Photo, Gizmo_Id), addjourney(PId, Gizmo_Id, info),
check_if_in(Gizmo_Id),  rtn_check_if_in(Boolean, PId),
get_bill, rtn_get_bill(Bill, AccNo, Gizmo_Id),
add_usage(Cost), getgids, rtn_getgids(GizPIdSet),
get_amount(PId, Gizmo_Id, PId), rtn_get_amount(Cost);
SIGNALLIST P = addphoto, addjourney, check_if_in, get_amount;
SIGNALLIST Pret = rtn_get_amount, rtn_check_if_in;

Debits

Process_Pass

Control_Reg

Tolls

SS

L

D

C

R

Db

O
Op

update_prices,
monthly_debit

Up
update_prices

Deb

send_debit

Re

get_bill,
getgids

rtn_get_bill,
rtn_getgids

Reg

get_gizmo,
refuse_gizmo

give_info,
report_stolen,
cancel,
no_funds

Bk
check_account

rtn_check_account
B

SSe
rtn_detect,
reg_sensor

detect, read

Lgt show_green,
show_yellow

Pr

(P)

(Pret)

Dpl show_amount

Cam photo

G
check_gizmo,
add_usage

rtn_check_gizmo

Figure 4.13: System-centred model

Block Tolls is further decomposed into blocks representing the different kinds of toll

gate. Figure 4.14 shows block S Toll which corresponds to the S Toll Gate aggregate and

its components. The figure includes instances of the components Sensor, Display, Light

and Camera which are modelled as processes.

4.3.3 Specify classes

We start by specifying the interface classes and then proceed to the control and entity classes.

The interface classes and their interaction with the environment have already been determined

by the user-centred model. Each signal in the SDL process definition of a user view has a

corresponding signal in the SDL process definition of an interface class.
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Block S_Toll 1(1)

theSSensor(0,2):
Sensor

theSToll_Gate(2,2):
S_Toll_Gate

theSCamera(0,2):
Camera

theSLight(0,2):
Light

theSDisplay(0,2):
Display

theSGate_Pr(0,2):
S_Gate_Pr

S_Toll_Gate S_Gate_Pr

SC SL

SP

SD

SSe1
ToSdetect,

read

rtn_detect,
reg_sensor FrE

FrS

get_gizmo_id,
no_gizmo_detect

set_sensor

Tol

Se

FrC

photo

ToE
FrL

show_green, show_yellow

ToE

ToCtake_photo

rtn_take_photo
Cam

Com

ToL turn_green,
turn_yellow

Li

Com

Ph

addphotoP
ToD

disp_amount

Di

Com
FrD

show_amount
EPr

rtn_get_gizmo_info

T

Pr

P
(P)(Pret)

P SP

G check_gizmo,
add_usage

rtn_check_gizmoG
SG

Figure 4.14: Composition of S Toll

Similarly, each class in the class diagram has a corresponding process definition and each

offered service a corresponding signal in the SDL specification. SDT allows us to check that

the two models are consistent and uses the information in the class diagram to semi-automate

the construction of the SDL process definition.

The MSCs used to help identify the classes in the class diagram show the interactions

between objects of these classes. This is a major help in determining the required process

behaviour.

SDL supports inheritance. For example, in our class diagram, we have inheritance between

the superclass Toll Gate and the subclasses S Toll Gate, In Toll Gate and Ex Toll Gate.

Figure 4.15 shows the definition of the abstract superclass Toll Gate. The inputs get gizmo id,

rtn get gizmo info and the start transition are defined as virtual, which means that the as-

sociated transitions may be redefined in the subclasses. The process identifiers li, di, ca and

se are given values in the subclasses.

In Figure 4.16, we define the subclass S Toll Gate by redefining the virtual transitions

and adding an extra gate to deal with Display. The rest of the behaviour is inherited from

the superclass.

Let us consider the behaviour of the subclass S Toll Gate. It is an aggregate with

four components: Display, Camera, Light and Sensor. During the initialization step,

S Toll Gate creates its components and notes their PIds. As the creation is in terms of

the component instances (process sets) defined within block S Toll, the creations cannot be

specified in the superclass. It then enters state wait where it waits for a signal from its sensor.

Two possibilities are specified in the superclass: the sensor reports a vehicle with a gizmo (sig-

nal get gizmo id) and passes its gizmo identifier to the toll gate, or it reports a vehicle which
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Process Type Toll_Gate 1(1)

DCL ok Boolean;
DCL gid Gizmo_Id;
DCL am Cost;
DCL li, di, ca, se PId;
DCL im Photo;
DCL source PId;

wait

no_gizmo_detect
(source)

gid := 0

turn_yellow
(source)
to li

take_photo
(source)
to ca

ph

virtual
get_gizmo_id
(gid, source)

wt

wt

virtual
rtn_get_gizmo_info
(ok, am)

ok

turn_green
(source)
to li

set_sensor
to se

processing cycle must
be finished before
next vehicle arrives

wait

turn_yellow
(source)
to li

take_photo
(source)
to ca

ph

ph

rtn_take_photo(im)

addphoto
(im, gid)

set_sensor
to se

Processing cycle must
be finished before
next vehicle arrives

wait

virtual

wait

P

addphoto

Se set_sensor

get_gizmo_id,
no_gizmo_detect

Cam take_photo

rtn_take_photo

Li

turn_green,
turn_yellow

Pr

rtn_get_gizmo_info

true
false

Figure 4.15: Toll abstract superclass

does not have a gizmo (signal no gizmo detect). When a vehicle with a gizmo is detected, a

control process of class S Gate Pr is created to initiate the action required to check whether

or not the gizmo is valid. The result is given by the redefined signal rtn get gizmo info.

When a vehicle with no gizmo has been detected, the actions associated with the transition

are sending a signal to the light to turn yellow (this corresponds to calling the offered service

turn yellow in class Light) and a signal to the camera to take a photograph (corresponding

to calling the offered service take photo in class Camera). The process then enters state ph

where it waits for a new input rtn take photo which gives it the photo image. This input

initiates another transition in which the image is sent to process Photos Taken (corresponding

to calling the offered service addphoto in class Photos Taken) and the sensor is reactivated

to deal with the next vehicle.

When we specify the system-centred model, it is not unusual for incompatibilities to

appear in the expectations of different users. This may require us to go back to the users for

clarification. The complete system-centred model is shown in Appendix B.

4.3.4 Build and validate the system-centred model

Initially, we use interactive navigation with either the simulator or validator to explore inter-

esting execution paths so that we can increase our confidence that the expected behaviour

is offered. The detailed MSCs that aided the creation of the system-centred model can be

used to guide the navigation to ensure that their behaviour has, in fact, been modelled. The

validator can then demonstrate that the specification is internally consistent. Due to the

large number of possible paths through the system-centred model, a larger number of random

walks, with each explored to a greater depth than was needed with the user-centred model,

is required to demonstrate that all transitions are executed at least once.

The user-centred model has already been validated against the requirements using a set

of high-level MSCs which showed the interaction between user views and their environment

(i.e. the system). We now replace the informal task of validating the system-centred model

with respect to the requirements by the formal task of verifying that it offers the behaviour



Chapter 4. SDL in Object-Oriented Analysis 26

inherits Toll_Gate;

 Process Type S_Toll_Gate 1(1)

redefined

theSCamera

ca:= offspring

theSDisplay

di := offspring

theSLight

li := offspring

theSSensor
(stoll)

se := offspring

set_sensor
to se

wait

wait

redefined
get_gizmo_id
(gid, source)

theSGate_Pr
(gid)

wt

wt

redefined
rtn_get_gizmo_info
(ok, am)

ok

turn_green
(source)
to li

disp_amount
(am, source) to di

set_sensor
to se

wait

turn_yellow
(source)
to li

take_photo
(source)
to ca

ph

Di

disp_amount

true
false

Figure 4.16: S Toll subclass

expected by the user-centred model. We construct a high-level MSC for the system-centred

model corresponding to each scenario used in the validation of the user-centred model. These

high-level MSCs only show the interaction between the system and its environment although,

of course, for them to be satisfied, the validator must execute the necessary interactions

between the interface, control and entity objects that are required to support the external

behaviour.

Where the user-centred model accepts a behaviour, that behaviour must also be accepted

by the system-centred model. Where the user-centred model rejects a behaviour, that be-

haviour must also be rejected by the system-centred model.

4.4 The combined model

An SDL specification assumes that its environment behaves reasonably and obeys constraints

imposed by the specification. However, these constraints can only be imposed if we model

(important parts of) the environment explicitly. As the user-centred model specifies what the

users expect from the system, and the system-centred model specifies the system’s interaction
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with the environment, we can compose the two models to enable a complete sequence of

interactions between the environment and the system.

Conceptually, the user-centred model interacts with the interface objects of the system

being specified. The SDL specification of the user-centred model is therefore expressed in

terms of it sending and receiving signals from the processes which constitute the system-

centred specification. However, the user-centred SDL specification in fact sends signals to,

and receives signals from, its environment; there are no actual process instances to receive

and return signals. Similarly, the system-centred model receives signals from, and returns

signals to, its environment. Again, there are no actual process instances in its environment.

We cannot use the value of sender in a simulation to ensure that a dialogue occurs between

a particular user in the environment and a particular object in the system as the user-centred

and system-centred models each model only one side of the dialogue. Nevertheless, we specify

both the user-centred and the system-centred models as if their environment was composed

of distinct process instances. Then, when we compose the user-centred and system-centred

models, complete sequences of interactions between the system and the environment can be

modelled explicitly, with the value of sender being used in both models to ensure that signals

are sent to the correct instance in the other model. Demonstrating that the combined model

is internally consistent, and offers the same behaviour as its components, is a powerful test

that the two component models correctly specify the same system.

System Roadprice 1(2)

User_Model
System_Model

Driver

drive

rtn_drive

SS
detect, readrtn_detect,

reg_sensor

L
show_green,
show_yellow

D
show_amount

C photo

R
get_gizmo,
refuse_gizmo

give_info, report_stolen,
cancel, no_funds

Bcheck_account rtn_check_account

Dbsend_debit

O
update_prices, monthly_debit

Figure 4.17: The combined system

The SDL specifications of the user-centred and system-centred models each consist of a

single block which interacts with the SDL system environment. The SDL system representing

the combined model contains these two blocks as shown in Figure 4.17. The Driver channel

remains between the environment and the user-centred model. The set of MSCs used to

validate the user-centred and system-centred models are easily modified so that they can be

used to validate the combined model. Our normal rule is that blocks interact through a single

channel, but the user-centred and system-centred models interact with each other through as
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many channels as existed in their original interaction with their environment.

Ideally, the user-centred and system-centred models are used unchanged in the combined

model. There is one circumstance where we may want to make a change. The SDT toolset

does not allow PIds to be passed as parameters to and from the environment while they may

be passed between the user-centred and system-centred components of the combined model.

Passing PIds can be important in setting up dialogues and ensuring that the correct process

instances are accessed. In our combined model, we have changed the Owner Registration

view so that it passes the PId of the Bank Enquiry view. That way the system-centred model

can ensure that it sends the check account signal to the correct view. The system-centred

model is unchanged.



Chapter 5

Comparison with LOTOS

Our previous work in this area used LOTOS and the result was ROOA. We have found that

the replacement of LOTOS in ROOA by SDL is straightforward and that the application of

the method is basically unchanged, with the same tasks being applied in the same order. The

differences are primarily in the detail of how the two languages are applied within a ROOA

task. The differences are concerned with:

• the ease of defining data types,

• the specification of multi-user views,

• the validation process,

• the structuring of the formal specification,

• the tool support,

• the effect of the different approach to process synchronization.

Data types

Although data typing in SDL and LOTOS is based on the same principles, they are much

easier to use in SDL than in LOTOS where most data types have to be constructed from first

principles. SDL has built in types such as Integer, Character, Boolean, records (structs),

has predefined generators such as Array, String, PowerSet and Bag, and allows enumeration

types to be created. As we are dealing with the analysis phase, the new types we create from

first principles are simple with only symbolic values and few, if any, operators. The ability to

create structs, enumeration types and sets of values is very useful.

Multi-user views

Multi-user views are specified in LOTOS using multiway synchronization [6] instead of a

Coordinator process. New LOTOS processes were defined to specify the constraints imposed

by the interaction between two views. The LOTOS processes defining the single-user views are

then interleaved and composed in parallel with the constraint processes to form a multi-user

view.

In SDL, the Coordinator process maintains sets to represent the current state. These are

used to control the creation of multi-user view components and to define their parameters.

29
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Validation

When the specifications were expressed in LOTOS, the validation process used scenarios

expressed in LOTOS, rather than introducing a new notation (i.e. MSCs) as is the case with

SDL. Also, event synchronization in LOTOS is symmetric; there is no notion of a sending

event and a receiving event. This allows us to verify that the user-centred and the system-

centred models offer the same behaviour. In SDL, we verify that the behaviour required by

the user-centred model is that offered by the system-centred model. To show that the system-

centred model offers the required behaviour, it must satisfy the same set of MSCs used in

validating the user-centred model; only now the direction of the signals is reversed.

During validation with LOTOS, the scenarios acted as the environment and ensured that it

behaved reasonably. However, the MSCs do not provide this control when validating an SDL

specification and important parts of the environment had to be modelled explicitly in SDL.

This means that the combined model plays a more important part in an SDL specification

than it does in the LOTOS version.

Structuring

SDL has explicit constructs such as blocks which help structure a specification. We feel that

this leads to the construction of an SDL specification being top-down whereas, in LOTOS,

the processes were created first and their combination into behaviour expressions occurred

later.

With LOTOS, ROOA constructs an object communication diagram (OCD) to show the

graphical structure of the eventual LOTOS specification and to help in the construction of

the LOTOS behaviour expression. In SDL, the equivalent of the OCD are the block diagrams

which diagrammatically show the interaction either between a set of blocks (subsystems) or

between a set of process instances (objects).

Tool support

A major advantage of SDL is that it has object-oriented features built in. Toolsets such as

SDT support an object-oriented design method and this results in better support for ROOA

than with LOTOS tools. SDT also allows links to be set up between entities in the data

dictionary, class diagram and SDL diagrams. This supports both forward and backward

traceability. Forward traceability is supported as information in one diagram can be used

to help create subsequent diagrams and conformance of the diagrams can be checked. In an

iterative method it is important that the diagrams remain consistent as changes are made

and that we can trace back to the origin of any inconsistency or error.

Process synchronization

When we model message passing in LOTOS, an object cannot send a message unless another

object is willing to receive it, i.e. we have synchronous communication.

In SDL, as we have asynchronous communication, an object can send a message (i.e. a

signal) when the intended receiving object (process) is not ready. This can lead to several

problems.

With asynchronous communication, the fact that a signal has been sent does not guarantee

that it has been accepted. Similarly, when one process creates another, there is a delay before
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the new process comes into existence, executes its start transition and is ready to receive a

signal. This can require the new process sending a signal to its parent to confirm that it now

exists and is ready to receive signals.

Also, when validating a specification which contains a set of processes, if a signal is sent

to the set, a process is chosen at random. With the SDT tool, it is possible that the chosen

process has terminated or is not able to receive the signal even when there are processes which

are able to receive the signal. This can lead to signals being implicitly consumed.

Another related point is that, with structured events in LOTOS, value matching of any

of the parameters of an event can be used to control the synchronization. In SDL, the only

way that we can specify that one of a set of processes is to be chosen is by explicitly using

its PId. We therefore have much tighter control over process interaction in LOTOS while

asynchronous communication in SDL leads to a more loosely coupled and flexible structure.
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Conclusions

The main goals of ROOA are:

• to clarify and understand the requirements, i.e. to help get the requirements right,

• to create and validate a formal specification of the informal requirements.

Informal requirements are usually expressed in terms of user needs. They almost invariably

contain inconsistencies, ambiguities and omissions. Therefore, it is important to understand

correctly the exact needs of a user (or a client) before any code starts to be written. We

believe that the best (and least expensive) way to achieve this is by adding formality to the

analysis process.

We have investigated how a formal specification can be obtained from informal require-

ments in a systematic way. The result of this work is the Rigorous Object-Oriented Analysis

(ROOA) method.

ROOA produces executable specifications that can be prototyped to identify inconsisten-

cies, omissions and ambiguities very early in the development process.

A formal requirements specification may be used as the starting point for a formal de-

velopment trajectory. However, the process of creating a formal specification from informal

requirements is of major value even when the rest of the development process is not formal.

It forces the specifiers to be precise and to consider all combinations of circumstances; they

cannot hide in vague generalities.

To simplify the difficult task of constructing a formal object-oriented specification (a

system-centred model) from informal requirements, we first build a user-centred model. This

model helps us build the system-centred model and simplifies the problem of validating it

against the requirements.

Our previous work used LOTOS. Here we have shown how SDL can be integrated into

ROOA to represent both models. We have found that the differences in using SDL instead

of LOTOS in ROOA was in the detail of multi-user views, the validation process and tool

support. The basic approach remained unchanged.

SDL is already widely used in industry for design. Here we have demonstrated its suit-

ability within requirements analysis. Our work therefore complements previous uses of SDL.
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Appendix A

The user-centred model

A.1 Overall model

The block representing the SDL specification of the user-centred model and all the diagrams

defined within that block are given in this appendix.

The user-centred model is defined as a single block. In the combined system, shown in

Figure 4.17, that block together with the block representing the system-centred model form

the specification.

Block User Model consists of a Coordinator process together with the processes repre-

senting the user views.
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Block User_Model 1(1)
SIGNAL
in_term(Gizmo_Id), ex_term(Gizmo_Id), s_term(Gizmo_Id),
o_term(Boolean, Gizmo_Id, Owner_Id), o_term1(Gizmo_Id);

newtype Gizmo_Set PowerSet(Gizmo_Id);
endnewtype;

Ow(0,):
Registration

theCoord(1,1):
Coordinator

OwnG(0,):
Owner_with_Gizmo Op(0,):

Operator_View

B_Debit(0,1):
Bank_Debit

In_Vehs(0,):
In_Vehicle

S_Vehs(0,):
S_Vehicle

Ex_Vehs(0,):
Ex_Vehicle
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R
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Figure A.1: User-centred model
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A.2 The coordinating process

Process Coordinator, shown in Figure A.2, controls the execution of the user views. The

available toll gate sensors report their existence by reg sensor signals. User views are initi-

ated by a drive signal from the environment which determines which view is to be created

and executed. There are three main situations: passage of a vehicle through a toll gate, reg-

istration of a vehicle and monthly debits. Passage of a vehicle is subdivided into three views

depending on the kind of toll gate being passed. A gizmo identifier of zero is interpreted as

failure by a sensor to read the gizmo.

Various sets are maintained by Coordinator so that the environment can maintain knowl-

edge of the system state, in particular the status of the different gizmos. These sets are used

to initialise the parameters used in view creation and are updated when a view is created

or when it terminates. Termination of a view is reported to Coordinator by it sending a

prefix term signal.

Process Type Coordinator 1(1)
DCL avail, on_jour Gizmo_Set;
DCL ok, bpar Boolean;
DCL gid Gizmo_Id;
DCL oid Owner_Id;
DCL invalid Gizmo_Set := incl(0, Empty);
DCL allg Gizmo_Set := Empty;
DCL op_k Op_Kind;
DCL count Integer := 0;
DCL t Toll_Kind;
DCL stolls, itolls, etolls Tollset;
DCL toll PId;

ready

drive
(op_k, bpar) in_term(gid) ex_term(gid) s_term(gid) o_term(ok,

gid, oid)
o_term1(gid) reg_sensor(t)

length(avail)
> 0 avail := incl(gid, avail),

on_jour := incl(gid, on_jour)
avail := incl(gid, avail),

on_jour := del(gid, on_jour)

avail :=
incl(gid, avail)

rtn_drive
(o_own)

invalid := 
incl(gid, invalid) t

rtn_drive
(o_s_veh)

gid :=
 take(avail) gid := 0 rtn_drive

(o_in_veh)
rtn_drive
(o_ex_veh) ok rtn_drive

(o_own_stcf)
itolls:= incl

(sender, itolls)
etolls:= incl

(sender,etolls)
stolls := incl

(sender, stolls)

avail := incl(gid, avail),
allg := incl(gid, allg)

ready ready ready ready

ready ready ready

ready ready

op_k

bpar

length(etolls) > 0 length(stolls) > 0 Ow(1,
 theinfo, theaccno, bpar)

length(allg)
> 0

length(itolls) > 0

count := count + 1
avail := del
(gid, avail),

toll := take(etolls)

avail := del
(gid, avail),

toll := take(stolls)

gid :=
take(allg) ready

avail := del
(gid, avail),

toll := take(itolls)
ready

Ex_Vehs
(gid in on_jour

and not(gid in invalid),
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rtn_drive

drive
OP

o_term1
SV

s_term
OA

o_term,
o_term1 EV

ex_term
IV

in_term
E

reg_sensor

Figure A.2: Coordinator process
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A.3 Vehicle views

The vehicle views are created with four parameters: gid gives the gizmo identifier, sensor id

gives the identifier of the relevant sensor, valid determines whether or not the gizmo is

valid and fail determines whether or not the gizmo fails to be read. The values of these

parameters are determined by Coordinator using the information it holds about the status

of the different gizmos. We have three vehicle views: Single-Point-Vehicle (Figure A.3),

Enter-Motorway-Vehicle (Figure A.4) and Exit-Motorway-Vehicle (Figure A.5).

;
FPAR valid Boolean,
  gid Gizmo_Id,
  sensor_id PId,
  fail Boolean;

Process Type S_Vehicle 1(1)

DCL am Cost;

detect 
to sensor_id

wt

rtn_detect

fail

read(gid)
to sender

wait

read(0)
to sender

wait_fail

wait

show_green

valid

wait_display

show_amount
(am)

s_term(gid)

show_yellow

not(valid)

wait_photo

photo

s_term(gid)

show_amount,
photo

wait_fail

show_yellow

wait_photo

photo

C

photo

L

show_green,
show_yellow

D

show_amount

S
detect,
read

rtn_detect

T

s_term

false
true

Figure A.3: Single-Point-Vehicle view

The SDL specifications of the user views are created directly from the graphs representing

them. A difference is that the signals photo and show amount are saved if they arrive too

early.

The processes representing the vehicle views send the signals s term, in term or ex term

to indicate that they have finished execution.
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;
FPAR ok Boolean,
  gid Gizmo_Id,
  tl PId,
  fail Boolean;

Process Type In_Vehicle 1(1)

detect to tl

wt

rtn_detect

fail

read(gid)
to sender

wait

read(0)
to sender

wait_fail

wait

show_green

ok

in_term(gid)

show_yellow

not(ok)

wait_photo

photo

in_term(gid)

photo

wait_fail

show_yellow

wait_photo

photo

C

photo

S

detect,
read

rtn_detect

L

show_green,
show_yellow

T

in_term

false
true

Figure A.4: Enter-Motorway-Vehicle view

;
FPAR ok Boolean,
  gid Gizmo_Id,
  tl PId,
  fail Boolean;

Process Type Ex_Vehicle 1(1)

DCL am Cost;

detect to tl

wt

rtn_detect

fail

read(gid)
to sender

wait

read(0)
to sender

wait_fail

wait

show_green

ok

wait_display

show_amount
(am)

ex_term(gid)

show_yellow

not(ok)

wait_photo

photo

ex_term(gid)

show_amount,
photo

wait_fail

show_yellow

wait_photo

photo

D

show_amount

C

photo

S
detect,
read

rtn_detect

L

show_green,
show_yellow

T

ex_term

false
true

Figure A.5: Exit-Motorway-Vehicle view
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A.4 Registration

The registration view consists of a process containing two SDL services (see Figure A.6).

;
FPAR ow Owner_Id,
inf Info,
acc AccNo,
ok Boolean;

Process Type Registration 1(1)

DCL ok_now Boolean := false;

Owner_Reg

Bank_Enquiry

R

give_info,
report_stolen,
cancel

get_gizmo,
refuse_gizmo

ROA

give_info,
report_stolen,
cancel

get_gizmo,
refuse_gizmo

TOA

o_term,
o_term1

T

o_term,
o_term1

E
rtn_check_account

check_account

EBArtn_check_account

check_account

Figure A.6: Registration view

The service Owner Reg (Figure A.7) represents the user view where an owner tries to

register a vehicle and get a gizmo. The other, Bank Enquiry (Figure A.8), is where the

owner’s bank account is checked.

Service Owner_Reg 1(1)

DCL gid Gizmo_Id;

give_info
(inf,
 acc, ow)

wait

get_gizmo
(gid, ow)

ok and ok_now

o_term
(true, ow, gid)

refuse_gizmo
(acc)

not(ok)
 and ok_now

o_term
(false)

Figure A.7: Owner registration user view



Appendix A. The user-centred model 41

Service Bank_Enquiry 1(1)

DCL sbk PId;

ready

check_account
(acc)

sbk := sender

waitacc

waitacc

none

ok_now := true

rtn_check_account
(ok, acc)
to sbk

Figure A.8: Bank enquiry user view

The two services communicate through the variable ok now. When the view is created,

the start transition of Owner Reg causes a message to be sent to the system giving informa-

tion about the owner. The system then enquires at the bank (the response is handled by

Bank Enquiry) to check that the owner’s account is satisfactory. Owner Reg is then informed

whether or not a gizmo is to be granted. It can only receive this signal once ok now is true.

Once an owner has a gizmo, we have the view where he or she may cancel the gizmo or

report that it is stolen. This view is dealt with in a separate process of class Owner with Gizmo

(Figure A.9).

;
FPAR gid Gizmo_Id,
    is_stolen Boolean;

Process Type Owner_with_Gizmo 1(1)

is_stolen

cancel(gid)

o_term1(gid)

report_stolen
(gid)

o_term1(gid)

H o_term1 T report_stolen,
cancel

false
true

Figure A.9: Error report owner user view
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A.5 Monthly debits

The operator view, represented by process Operator View (Figure A.10) either prompts the

system to deal with the monthly debits by sending a monthly debit signal or updates prices

by sending an update price signal. It then terminates unless this is the first time it has

received a monthly debit signal, in which case a Bank Debit process (Figure A.11) is created

to handle responses from the system.

;
FPAR m_debit Boolean,
    count Integer;

Process Type Operator_View 1(1)

m_debit

monthly_debit

count = 1

B_Debit

update_prices

E
monthly_debit,
update_prices

true

true
false

false

Figure A.10: Operator user view
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The Bank Debit process nondeterministically decides whether the account has funds. If

there are no funds, a no funds signal is sent to the system so that the information on the

gizmo can be updated and Coordinator is informed via an o term1 signal so that it knows

that the associated gizmo is no longer valid.

Process Type Bank_Debit 1(1)

DCL b Bill;
DCL acc AccNo;
DCL gid Gizmo_Id;

ready

send_debit
(b, acc, gid)

any

- no_funds
(acc, gid)

o_term1(gid)

-

H

o_term1

E2no_funds

send_debit

Figure A.11: Bank debit user view
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The system-centred model

B.1 Overall model

The SDL specification of the system-centred model is represented as a single block (shown in

Figure B.1). It contains four subsystems. This block is unchanged when it is used as one of

the two components of the combined model shown in Figure 4.17.

Block System_Model 1(1)
SIGNAL
check_gizmo(Gizmo_Id), rtn_check_gizmo(Boolean, PId),
addphoto(Photo, Gizmo_Id), addjourney(PId, Gizmo_Id, info),
check_if_in(Gizmo_Id),  rtn_check_if_in(Boolean, PId),
get_bill, rtn_get_bill(Bill, AccNo, Gizmo_Id),
add_usage(Cost), getgids, rtn_getgids(GizPIdSet),
get_amount(PId, Gizmo_Id, PId), rtn_get_amount(Cost);
SIGNALLIST P = addphoto, addjourney, check_if_in, get_amount;
SIGNALLIST Pret = rtn_get_amount, rtn_check_if_in;

Debits

Process_Pass

Control_Reg

Tolls

SS

L

D

C

R

Db

O
Op

update_prices,
monthly_debit

Up
update_prices

Deb

send_debit

Re

get_bill,
getgids

rtn_get_bill,
rtn_getgids

Reg

get_gizmo,
refuse_gizmo

give_info,
report_stolen,
cancel,
no_funds

Bk
check_account

rtn_check_account
B

SSe
rtn_detect,
reg_sensor

detect, read

Lgt show_green,
show_yellow

Pr

(P)

(Pret)

Dpl show_amount

Cam photo

G
check_gizmo,
add_usage

rtn_check_gizmo

Figure B.1: System-centred model

44
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B.2 Block Tolls

Block Tolls 1(1)
SIGNAL get_gizmo_id(Gizmo_Id, PId), no_gizmo_detect(PId),
     turn_yellow(PId), turn_green(PId), take_photo(PId),
     rtn_take_photo(Photo), disp_amount(Cost, PId),
     rtn_get_gizmo_info(Boolean, Cost);

In_Toll

Ex_Toll

S_Toll

Toll_Gate Gate_Processor
Camera Display

Sensor Light

Lgt
Pr

Cam

G
SSe

ISe1 detect,
read

rtn_detect,
reg_sensor

IL
show_green,
show_yellow

IP (P)(Pret)

ICphoto

IG check_gizmo,
add_usage

rtn_check_gizmo

Lgt
Pr

Cam

Dpl
G

SSe
ESe1 detect,

read
rtn_detect,
reg_sensor

EL
show_green,
show_yellow

EP (P)(Pret)

ECphoto

EDshow_amount

EG

check_gizmo,
add_usage

rtn_check_gizmo

Lgt
Pr

Cam

Dpl
G

SSe
SSe1 detect,

read
rtn_detect,
reg_sensor

SL
show_green,
show_yellow

SP (P)(Pret)

SCphoto

SDshow_amount

SG

check_gizmo,
add_usage

rtn_check_gizmo

Figure B.2: Block Tolls

Block Tolls, shown in Figure B.2, contains separate blocks for each of the three kinds of toll

gate. The process types Toll Gate, Gate Processor, Camera, Sensor, Display and Light

are all defined here so that they are available in all three blocks.

Process Toll Gate, shown in Figure B.3, is an abstract superclass, which is specialised

to form each of the three toll gate subclasses. The start transition is virtual as each of the

subclasses must create the instances of the Camera, Sensor and Light components (and, in the

case of S Toll Gate and Ex Toll Gate, an instance of Display) which make up the toll gate

aggregate. The identifiers ca, se and li are PIds which are initialised in the start transition

of the subclasses and used by a toll gate so that it can send signals to its components.

Process Gate Processor, shown in Figure B.4, is also an abstract superclass, which is

specialised for each kind of toll gate. Toll Gate is an interface class. Gate Processor is a

control class and an object of that class is created by a toll gate to carry out the processing

and communication with the rest of the system necessary to handle a vehicle passing through

the toll gate. When it has finished its task, it dies.
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Process Type Toll_Gate 1(1)

DCL ok Boolean;
DCL gid Gizmo_Id;
DCL am Cost;
DCL li, di, ca, se PId;
DCL im Photo;
DCL source PId;

wait

no_gizmo_detect
(source)

gid := 0

turn_yellow
(source)
to li

take_photo
(source)
to ca

ph

virtual
get_gizmo_id
(gid, source)

wt

wt

virtual
rtn_get_gizmo_info
(ok, am)

ok

turn_green
(source)
to li

set_sensor
to se

processing cycle must
be finished before
next vehicle arrives

wait

turn_yellow
(source)
to li

take_photo
(source)
to ca

ph

ph

rtn_take_photo(im)

addphoto
(im, gid)

set_sensor
to se

Processing cycle must
be finished before
next vehicle arrives

wait

virtual

wait

P

addphoto

Se set_sensor

get_gizmo_id,
no_gizmo_detect

Cam take_photo

rtn_take_photo

Li

turn_green,
turn_yellow

Pr

rtn_get_gizmo_info

true
false

Figure B.3: Toll abstract superclass

;
FPAR gid Gizmo_Id;

Process Type Gate_Processor 1(1)

DCL ok Boolean;
DCL am Cost;
DCL g_pid PId;

check_gizmo
(gid)

wt

wt

virtual
rtn_check_gizmo
(ok, g_pid)

ga

rtn_get_amount
(am)

add_usage(am)
to g_pid

rtn_get_gizmo_info
(ok, am)
to parent

P
(P)

(Pret)
T

rtn_get_gizmo_info

G

check_gizmo,
add_usage

rtn_check_gizmo

Figure B.4: Gate processor abstract superclass
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B.2.1 Single toll

Block S Toll (Figure B.5) shows instances of the single toll gate subclasses S Gate Pr (Fig-

ure B.6) and S Toll Gate (Figure B.7) together with the Camera, Display, Sensor and Light

components.

Block S_Toll 1(1)

theSSensor(0,2):
Sensor

theSToll_Gate(2,2):
S_Toll_Gate

theSCamera(0,2):
Camera

theSLight(0,2):
Light

theSDisplay(0,2):
Display

theSGate_Pr(0,2):
S_Gate_Pr

S_Toll_Gate S_Gate_Pr

SC SL

SP

SD

SSe1
ToSdetect,

read

rtn_detect,
reg_sensor FrE

FrS

get_gizmo_id,
no_gizmo_detect

set_sensor

Tol

Se

FrC

photo

ToE
FrL

show_green, show_yellow

ToE

ToCtake_photo

rtn_take_photo
Cam

Com

ToL turn_green,
turn_yellow

Li

Com

Ph

addphotoP
ToD

disp_amount

Di

Com
FrD

show_amount
EPr

rtn_get_gizmo_info

T

Pr

P
(P)(Pret)

P SP

G check_gizmo,
add_usage

rtn_check_gizmoG
SG

Figure B.5: Composition of S Toll

inherits Gate_Processor;

Process Type S_Gate_Pr 1(1)

wt

redefined
rtn_check_gizmo
(ok, g_pid)

ok

get_amount
(parent, gid,
parent)

ga

rtn_get_gizmo_info
(false)
to parent

true
false

Figure B.6: Processing S Toll Gate events

There is a 1:1 association between an S Toll Gate object and an object of each of the

classes Camera, Display, Sensor and Light. The block shows that we have two instances of
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S Toll Gate which are created statically while all the other objects are created dynamically.

The behaviour of S Toll Gate is defined to dynamically create one instance of each of its

components. This is done within the start transition of process S Toll Gate.

Process S Toll Gate is a subclass of Toll Gate and process S Gate Pr is a subclass of

Gate Processor. As the Toll Gate superclass does not have a display, an extra gate is added

to process S Toll Gate.

inherits Toll_Gate;

 Process Type S_Toll_Gate 1(1)

redefined

theSCamera

ca:= offspring

theSDisplay

di := offspring

theSLight

li := offspring

theSSensor
(stoll)

se := offspring

set_sensor
to se

wait

wait

redefined
get_gizmo_id
(gid, source)

theSGate_Pr
(gid)

wt

wt

redefined
rtn_get_gizmo_info
(ok, am)

ok

turn_green
(source)
to li

disp_amount
(am, source) to di

set_sensor
to se

wait

turn_yellow
(source)
to li

take_photo
(source)
to ca

ph

Di

disp_amount

true
false

Figure B.7: Composition of S Toll Gate
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B.2.2 Entry toll

Block In Toll (Figure B.8) shows instances of the entry toll gate subclasses In Gate Pr

(Figure B.9) and In Toll Gate (Figure B.10) together with their Camera, Sensor and Light

components.

Block In_Toll 1(1)
In_Toll_Gate In_Gate_Pr

theICamera(0,2):
Camera

theILight(0,2):
Light

theIToll_Gate(2,2):
In_Toll_Gate

theISensor(0,2):
Sensor

theIGate_Pr(0,2):
In_Gate_Pr

IC
FrC

photo

ToE ToE
FrL

show_green,
show_yellow

IL

Com Com

ToCtake_photo

rtn_take_photo
Cam

ToL turn_green,
turn_yellow

Li

P

Ph

addphoto
IP

Se Pr

FrS

get_gizmo_id,
no_gizmo_detect

set_sensor

Tol

Pr
rtn_get_gizmo_info

T P
P (P)(Pret)

IP
ISe1

ToSdetect,
read

rtn_detect,
reg_sensor FrE

G

G
check_gizmo,
add_usage

rtn_check_gizmo
IG

Figure B.8: Composition of In Toll

inherits Gate_Processor;

Process Type In_Gate_Pr 1(1)

wt

redefined
rtn_check_gizmo
(ok, g_pid)

ok

addjourney
(parent,gid,
theinfo)

rtn_get_gizmo_info
(true)
to parent

rtn_get_gizmo_info
(false)
 to parent

true
false

Figure B.9: Processing In Toll Gate events

The block shows that we have two instances of In Toll Gate which are created statically

while all the other objects are created dynamically. The behaviour of In Toll Gate is defined
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to dynamically create one instance of each of its components. This is done within the start

transition of process In Toll Gate.

Process In Toll Gate is a subclass of Toll Gate and process In Gate Pr is a subclass of

Gate Processor.

inherits Toll_Gate;

Process Type In_Toll_Gate 1(1)

redefined

theICamera

ca:= offspring

theILight

li := offspring

theISensor
(Intoll)

se := offspring

set_sensor
to se

wait

wait

redefined
get_gizmo_id
(gid, source)

theIGate_Pr
(gid)

wt

Figure B.10: Composition of In Toll Gate
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B.2.3 Exit toll

Block Ex Toll (Figure B.11) shows instances of the exit toll gate subclasses Ex Gate Pr

(Figure B.12) and Ex Toll Gate (Figure B.13) together with their Camera, Sensor and Light

components.

Block Ex_Toll 1(1)

Ex_Toll_Gate Ex_Gate_Pr

theECamera(0,2):
Camera

theELight(0,2):
Light

theEToll_Gate(2,2):
Ex_Toll_Gate

theEDisplay(0,2):
DisplaytheESensor(0,2):

Sensor

theEGate_Pr(0,2):
Ex_Gate_Pr

EC
FrC

photo

ToE ToE
FrL

show_green, 
show_yellow

EL

Com Com

ToCtake_photo

rtn_take_photo
Cam

ToL turn_green,
turn_yellow

Li

P

Ph

addphoto
EP

Se Di
ToD

disp_amount

Pr

Com

FrS

get_gizmo_id,
no_gizmo_detect

set_sensor

Tol
E

FrD

show_amount

ED

ESe1

ToS detect,
read

rtn_detect,
reg_sensor FrE

Pr

rtn_get_gizmo_info

T P
P (P)(Pret)

EP

G
G check_gizmo,

add_usage

rtn_check_gizmo
EG

Figure B.11: Composition of Ex Toll

inherits Gate_Processor;

Process Type Ex_Gate_Pr 1(1)
DCL intollid PId;

wt

redefined
rtn_check_gizmo
(ok, g_pid)

ok

check_if_in(gid)

wt_ch

rtn_get_gizmo_info
(false)
to parent

wt_ch

rtn_check_if_in
(ok, intollid)

ok

get_amount
(parent, gid,
intollid)

ga

rtn_get_gizmo_info
(false)
to parent

true
false

true
false

Figure B.12: Processing Exit Toll Gate events

The block shows that we have two instances of Ex Toll Gate which are created statically

while all the other objects are created dynamically. The behaviour of Ex Toll Gate is defined

to dynamically create one instance of each of its components. This is done within the start
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transition of process Ex Toll Gate.

Process Ex Toll Gate is a subclass of Toll Gate and process Ex Gate Pr is a subclass

of Gate Processor. As the Toll Gate superclass does not have a display, an extra gate is

added to process Ex Toll Gate.

inherits Toll_Gate;

Process Type Ex_Toll_Gate 1(1)

redefined

theECamera

ca:= offspring

theEDisplay

di := offspring

theELight

li := offspring

theESensor
(extoll)

se := offspring

set_sensor
to se

wait

wait

redefined
get_gizmo_id
(gid, source)

theEGate_Pr
(gid)

wt

wt

redefined
rtn_get_gizmo_info
(ok, am)

ok

turn_green
(source)
to li

disp_amount
(am, source)
to di

set_sensor
to se

wait

turn_yellow
(source)
to li

take_photo
(source)
to ca

ph

Di

disp_amount

true
false

Figure B.13: Composition of Exit Toll Gate
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B.2.4 Toll components

The toll components are Camera, Display, Sensor and Light. Their process definitions are

represented in Figures B.14, B.15, B.16 and B.17, respectively.

Process Type Camera 1(1)

DCL source PId; wait

take_photo
(source)

photo
to source

rtn_take_photo
(the_image)
to parent

-

Com

rtn_take_photo

take_photo

ToE

photo

Figure B.14: Camera

Process Type Display 1(1)

DCL am Cost;
DCL source PId;

wait

disp_amount
(am, source)

show_amount
(am) to source
via E

-

Com

disp_amount

E

show_amount

Figure B.15: Display



Appendix B. The system-centred model 54

The sensor is the only component that is accessed by the environment. When a sensor

is created, it sends a message to the environment to indicate that it is available to receive

signals. The sensor uses synchronous communication with detect (it receives a detect signal

and returns a rtn detect to ensure that the read signal is sent from the same source as the

detect. The set sensor signal from the toll gate ensures that new detect signals are only

handled once the previous detect has been dealt with.

;
FPAR tk Toll_Kind;

Process Type Sensor 1(1)
DCL gid Gizmo_Id;
DCL origin PId;

reg_sensor
(tk)

ready

detect

origin := sender

wait

set_sensor

wait

set_sensor

rtn_detect
to origin

wt

detect

wt

read(gid)

gid = 0

get_gizmo_id
(gid, sender)
to parent

ready

no_gizmo_detect
(sender)
to parent

ready

detect

FrE
rtn_detect, reg_sensor

detect,
read

Tol
get_gizmo_id,
no_gizmo_detect

set_sensor

false
true

Figure B.16: Sensor

Process Type Light 1(1)

DCL source PId;

wait

turn_green
(source)

show_green
to source

-

turn_yellow
(source)

show_yellow
to source

-

Com

turn_green,
turn_yellow

ToE

show_green,
show_yellow

Figure B.17: Light
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B.3 Processing passing a toll

The block Process pass, depicted in Figure B.18, contains objects which hold information

about vehicles that have passed though toll gates.

Block Process_Pass 1(1)

thePhotos_Taken(1,1):
Photos_Taken

thePrice_Table(1,1):
Price_Table

Price_Table Current_Journey Photos_Taken

theCurrent_Journey(1,1):
Current_Journey

Pr

Ph

addphoto

A

Pr

Pr
Up

U

update_prices

U
Prirtn_get_amount

get_amount
A

CJ
rtn_check_if_in

addjourney,
check_if_in

A

Figure B.18: Block to process passing toll gate

The interface to process Price Table (Figure B.19) gives the necessary information so

that different prices can be returned. However, as our interest is in the interface to classes

rather than their internal details, it always returns the same value.

Process Type Price_Table 1(1)

DCL toll_out, toll_in PId;
DCL giz Gizmo_Id;

wait

update_prices

-

get_amount
(toll_out, giz,
toll_in)

rtn_get_amount
(theamount)
to sender

-

A
rtn_get_amount

get_amount

U

update_prices

Figure B.19: Price table

There is a single instance of process Current Journey (Figure B.20) which maintains the

set of gizmo identifiers which have entered, but not yet left a motorway. Again, as our interest
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is in understanding the problem rather than carrying out detailed calculations, it does not

store the identity of the entry toll gate.

Process Type Current_Journey 1(1)

newtype GizmoSet PowerSet(Gizmo_Id);
endnewtype;

DCL stoll PId;
DCL gid Gizmo_Id;
DCL inf Info;
DCL gizmos GizmoSet;

wait

addjourney
(stoll, gid, inf)

gizmos := incl
(gid, gizmos)

-

check_if_in
(gid)

rtn_check_if_in
(gid in gizmos, any(PId))
to sender

response includes
any entry toll gate

gizmos := del
(gid, gizmos)

-

A rtn_check_if_in

check_if_in, 
addjourney

Figure B.20: Current journey

There is a single instance of process Photos Taken (Figure B.21). It maintains a bag of

photos containing the gizmo identifiers of those who have invalidly gone through a toll gate.

Process Type Photos_Taken 1(1)

newtype TPhoto struct
  ima Photo;
  giz Gizmo_Id;
endnewtype;

newtype TPhotos Bag(TPhoto)
endnewtype;

DCL gid Gizmo_Id;
DCL photo TPhoto;
DCL photos TPhotos;
DCL im Photo;

wait

addphoto
(im, gid)

photo := (. im, gid .),
photos := incl(photo, photos)

-

A

addphoto

Figure B.21: Photos taken
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B.4 Registration

The block Control Reg (Figure B.22) deals with the registration of a gizmo. There are two

objects which are concerned with interaction with the environment: Reg Desk (Figure B.23)

and Bank Intf Reg (Figure B.28).

Block Control_Reg 1(1)
SIGNAL
bank_info(Boolean, PId, Gizmo_Id, Owner_Id, AccNo),
add_gizmo(PId), get_acc, rtn_get_acc(AccNo, Info),
reg_gizmo(Info, AccNo, Owner_Id),
rtn_reg_gizmo(Gizmo_Id, Owner_Id),
change_status(GStat), gizmo_ok, rtn_gizmo_ok(Boolean),
report_change(GStat, Gizmo_Id),
conf_cr_gd(Gizmo_Id, Owner_id),
conf_cr_ow;

theReg_Desk(1,1):
Reg_Desk

the_Bank_Intf_Reg(0,):
Bank_Intf_Reg

theReg_Control(0,):
Reg_Control

theGizmo_Details(1,1):
Gizmo_Db

theGizmo_Detail(0,):
Gizmo_Detail

theOwner_Details(0,):
Owner_DetailBank_Intf_Reg Reg_Desk

Gizmo_Db Reg_Control Gizmo_Detail Owner_Detail

Bk
Reg

ToE
get_gizmo, 
refuse_gizmo

give_info,
report_stolen,
cancel,
no_funds

ToE
Bank check_Account

rtn_check_account

B
ToG

DG

report_change

ToC

C

CB rtn_check_account

B
C

bank_info

ToD

GD
Inf reg_gizmo

rtn_reg_gizmo

D ToD Bp
Bp

rtn_getgidsgetgids

Re

GGetget_bill

rtn_get_bill
C

Ow GD

GetRC

rtn_gizmo_ok,
conf_cr_gd

gizmo_ok,
change_status

RC

Pres

check_gizmo

rtn_check_gizmo

G
Ch

add_usage

Ch A

A
add_gizmo,
get_acc

rtn_get_acc

CO

conf_cr_ow

C A

Figure B.22: Registration block

The interface objects communicate with an object of the control class Reg Control (Fig-

ure B.24) which acts as the central controller. A separate instance of this class is created to

deal with each registration.

Class Gizmo Db (Figure B.25) provides the static interface to the information about owners

or gizmos and maintains the set of gizmo and owner identifiers. Objects of this kind are

sometimes known as traders. It dynamically creates instances of Gizmo Detail (Figure B.26)

and Owner Detail (Figure B.27) which is where the actual information is held. Objects of

both classes Gizmo Detail and Owner Detail confirm to Gizmo Db when they have executed

their start transition and so are ready to receive signals. Gizmo Detail is not created until the
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Process Type Reg_Desk 1(1)
DCL ok Boolean;
DCL inf Info;
DCL acc AccNo;
DCL gid Gizmo_Id;
DCL ownid Owner_Id;
DCL owag PId;

Wait

give_info
(inf, acc, ownid)

owag := sender

theReg_Control
(inf, acc, ownid, owag)

-

cancel(gid)

report_change
(gid_cancel, gid)
via ToG

-

report_stolen
(gid)

report_change
(rep_stolen, gid)
via ToG

-

bank_info
(ok, owag, gid, ownid, acc)

ok

get_gizmo
(gid, ownid)
to owag

-

refuse_gizmo
(acc) to owag

-

no_funds
(acc, gid)

report_change
(not_paid, gid)
via ToG

-

ToE
get_gizmo, refuse_gizmo

give_info, report_stolen,
cancel, no_funds

ToG
report_change

ToC
bank_info

true
false

Figure B.23: Registration desk

existence of the relevant Owner Detail object has been confirmed and so is ready to receive

an add gizmo signal.

SDT does not allow PIds to be passed as parameters from the environment. Owner and

gizmo identifiers are therefore held externally as integers and Gizmo Db holds the conversion

table between these integers and the PIds of the Gizmo Detail and Owner Detail processes.

;
FPAR inf Info,
  acc AccNo,
  ownid Owner_Id,
  owag PId;

Process Type Reg_Control 1(1)

DCL ok Boolean;
DCL gid Gizmo_Id;

wt

rtn_check_account
(ok, acc)

ok

reg_gizmo
(inf, acc, ownid)

cr

bank_info
(false, owag)

cr

rtn_reg_gizmo
(gid, ownid)

bank_info
(true, owag, gid, 
ownid, acc)

the_Bank_Intf_Reg
(acc)

wt

ToD

bank_info

GD reg_gizmo

rtn_reg_gizmo

B

rtn_check_account

true
false

Figure B.24: Registration control
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By saving the PId of the process sending the give info signal, we can ensure that

Reg Desk sends a get gizmo or refuse gizmo signal to the correct owner. In the system-

centred model, it is the environment which sends the give info signal and so this is only

conceptual. However, in the combined model this ensures that communication is between the

correct process instances.

Process Type Gizmo_Db 1(1)
newtype O_Rel Array(Owner_Id, PId)
endnewtype;

newtype G_Rel Array(Gizmo_Id, PId)
endnewtype;

DCL  acc AccNo;
DCL inf Info;
DCL gid, gid_gen Gizmo_Id;
DCL ownid, oid_gen Owner_Id;
DCL g_pid, snd, regd PId;
DCL st Gstat;
DCL orel O_Rel := (. null .);
DCL grel G_Rel := (. null .);
DCL gizP GizPIdSet;
DCL ok Boolean;

wait

reg_gizmo
(inf, acc, ownid)

regd := sender

ownid > 0 and
ownid <= oid_gen

theOwner_Details
(inf, acc)

oid_gen := oid_gen+1,
ownid := oid_gen,

orel(ownid) := offspring

wt_conf

conf_cr_ow

gid_gen :=
gid_gen + 1

theGizmo_Detail
(inf, ownid,

orel(ownid), gid_gen)

grel(gid_gen) := offspring,
gizP := incl(offspring, gizP)

wait

*

gid_gen :=
gid_gen + 1

theGizmo_Detail
(inf, ownid,

orel(ownid), gid_gen)

grel(gid_gen) := offspring,
gizP := incl(offspring, gizP)

wait

conf_cr_gd
(gid, ownid)

rtn_reg_gizmo
(gid, ownid)
to regd

wait

report_change
(st, gid)

gid > 0 and
gid <= gid_gen

change_status
(st)
to grel(gid)

- -

getgids

rtn_getgids
(gizP)
to sender

-

check_gizmo
(gid)

gid > 0 and
gid <= gid_gen

g_pid := grel(gid),
snd := sender

gizmo_ok
to g_pid

wt

* rtn_gizmo_ok
(ok)

rtn_check_gizmo
(ok, g_pid)
to snd

wait

rtn_check_gizmo
(false, null)
to sender

wait

Bp
rtn_getgids

getgids
ToD

rtn_reg_gizmo

reg_gizmo
GD

change_status,gizmo_ok

rtn_gizmo_ok, conf_cr_gd C
rtn_check_gizmo

check_gizmo D
report_change

Ow conf_cr_ow

false

true

true false true
false

Figure B.25: Gizmo interface

In process Bank Intf Reg, we want to ensure that check account is sent to the cor-

rect bank view. In SDL, we can do this by sending the appropriate PId as a parameter of

give info. However, SDT does not allow PIds to be passed as parameters to or from the

environment and so this is not possible in the system-centred model, but it is possible in the

combined model where the the signals are internal.
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;
FPAR
  inf Info,
  own_id Owner_Id,
  ow PId,
  id Gizmo_Id;

Process Type Gizmo_Detail 1(1)

DCL stat GStat := good;
DCL am Cost;
DCL acc AccNo;

add_gizmo
(self)
 to ow

conf_cr_gd
(id, own_id)
to parent

wait

get_bill gizmo_ok change_status
(stat)

add_usage
(am)

get_acc to ow rtn_gizmo_ok
(stat = good) - -

wt -

* rtn_get_acc
(acc, inf)

rtn_get_bill
(thebill, acc, id)

wait

RC

rtn_gizmo_ok,
conf_cr_gd

gizmo_ok,
change_status

Get
rtn_get_bill

get_bill
A

add_gizmo,
get_acc

rtn_get_acc
Ch

add_usage

Figure B.26: Gizmo detail
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;
FPAR
  inf Info,
  acc AccNo;

Process Type Owner_Detail 1(1)

DCL gid PId;
DCL gids GizPidSet;

conf_cr_ow
to parent

wait

get_acc add_gizmo
(gid)

rtn_get_acc
(acc, inf)
to sender

gids :=
incl(gid, gids)

- -

A rtn_get_acc

add_gizmo, get_acc

C

conf_cr_ow

Figure B.27: Owner details

;
FPAR acc AccNo;

Process Type Bank_Intf_Reg 1(1)

DCL ans Boolean;

check_account
(acc)

wait

rtn_check_account
(ans, acc)

rtn_check_account
(ans)
to parent

C

rtn_check_account

B check_account

rtn_check_account

Figure B.28: Bank interface
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B.5 Debits

Block Debits (Figure B.29) consists of two interface classes Op Interface (Figure B.30) and

Bank Intf Acc (Figure B.31) and a control class Bill Processor (Figure B.32).

Op Interface receives messages from the operator. The most significant is monthly debit

which initiates the sending of bills to all owners who have used the system in the last month.

It achieves this by creating a Bill Processor control object which handles the actual pro-

cessing. Bill Processor gets the set of gizmo identifiers from Gizmo Db and deals with them

one at a time sending the debits to the relevant bank accounts through the Bank Intf Acc

interface. Once it has finished, Bill Processor reports back to Op Interface. This ensures

that only a single instance of Bill Processor can exist at any one time.

Block Debits 1(1)

SIGNAL proc_over;

theOp_Interface(1,1):
Op_Interface

theBill_Processor(0,1):
Bill_Processor

theBank_Intf_Acc(1,1):
Bank_Intf_Acc

Op_Interface Bank_Intf_Acc Bill_Processor

Re

Op
FrOp

monthly_debit,
update_prices

E

GetD

get_bill,
getgids

rtn_get_bill,
rtn_getgids

Re

De

send_debit

D

D
En

send_debit
Envi

Deb

Ov

proc_over

Op

BP

Up

update_prices

U

Up

Figure B.29: Debits
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Process Type Op_Interface 1(1)

wait

update_prices

update_prices
via U

wait

monthly_debit

theBill_Processor

wt

wt

update_prices

update_prices
via U

wt

proc_over

wait

monthly_debit

E monthly_debit,
update_prices

U update_prices BP
proc_over

Figure B.30: Operator interface

Process Type Bank_Intf_Acc1(1)

DCL acc AccNo;
DCL abill Bill;
DCL gid Gizmo_Id;

wait

send_debit
(abill, acc, gid)

send_debit
(abill, acc, gid)
via Envi

-

Envi

send_debit

D

send_debit

Figure B.31: Bank interface
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Process Type Bill_Processor 1(1)

DCL g_pid PId;
DCL acc AccNo;
DCL giduses GizPidSet;
DCL abill Bill;
DCL gid Gizmo_Id;

gg

rtn_getgids
(giduses)

length(giduses)
= 0

g_pid := take(giduses),
giduses := 

del(g_pid, giduses)

get_bill to g_pid

wt

rtn_get_bill
(abill, acc, gid)

send_debit
(abill, acc, gid)

proc_over

getgids

gg

Op

proc_over

Re
get_bill,
 getgids

rtn_get_bill,
rtn_getgids

D

send_debit

false
true

Figure B.32: Bill processing


